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Abstract: Lactylation, a post-translational modification derived from elevated lactate levels, has gained attention 
as a potential regulator of melanoma’s tumor metabolism and immune responses. Here, we combined single-cell 
RNA sequencing and bulk transcriptome profiling of cutaneous melanoma samples to establish a lactation-centric 
prognostic model. Our analyses revealed melanocytes as the most acetylation-enriched cell population and iden-
tified a six-gene lactylation signature that stratified patients into high- and low-risk groups with distinct survival 
outcomes. Mechanistically, high-risk tumors demonstrated significant immunosuppressive features characterized 
by M2 macrophage accumulation and depleted CD8+ T-cell activity, corresponding to reduced sensitivity to certain 
chemotherapeutic drugs. Pathway enrichment studies implicated DNA repair, Hedgehog, and JAK-STAT signaling in 
driving the aggressive phenotype of high-acetylation tumors. Additionally, pseudotime trajectory analyses highlight-
ed developmental shifts in gene expression related to lactylation during melanocyte differentiation. The signature 
demonstrated robust predictive accuracy in training, testing, and external validation cohorts. Functional validation 
confirmed the critical role of RAN in promoting proliferation and migration in vitro. These findings unveil lactylation 
as a critical epigenetic factor influencing melanoma progression and immune evasion, offering a novel prognostic 
framework and potential therapeutic targets for precision medicine.
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Introduction

Cutaneous melanoma is an aggressive malig-
nancy arising from melanocytes, and it remains 
a leading cause of skin cancer - related mortal-
ity due to its high metastatic potential and 
resistance to conventional therapies [1]. Recent 
advances in cancer metabolism research have 
highlighted lactate, a byproduct of aerobic gly-
colysis (the Warburg effect), as a central factor 
in shaping the tumor microenvironment (TME) 
[2]. In melanoma, dysregulated glycolytic flux 
results in excess lactate production and TME 
acidification, which drives tumor growth, inva-
sion, and therapeutic resistance through vari-
ous interconnected mechanisms [3].

Beyond serving as a metabolic byproduct, lac-
tate also exerts profound immunomodulatory 
effects via protein lactylation - a post-transla-
tional modification first identified on histones 
[4]. Studies have since confirmed lactylation on 
both histone and non-histone proteins, gov-
erned by two distinct mechanisms: enzymatic 
lactylation, mediated by histone acetyltransfer-
ases transferring lactyl groups from lactyl-CoA 
to lysine residues under hypoxic or inflammato-
ry conditions [5]; and non-enzymatic lactylation, 
in which tumor-associated lactate spontane-
ously modifies lysine residues independently of 
enzyme activity [6-8]. This lactylation process 
can promote tumor proliferation, invasion, 
immune evasion, and angiogenesis [9]. Ele- 
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vated lactate also suppresses cytotoxic T-cell 
function and polarizes macrophages toward a 
tumor-supportive M2 phenotype, underscoring 
lactylation’s dual role as a metabolic inter- 
mediate and an immunomodulator [10-14]. 
Accordingly, multiple preclinical and clinical 
efforts aim to target lactate dehydrogenase 
(LDH) or lactate homeostasis to disrupt mela-
noma progression and potentially enhance 
immunotherapy outcomes [15, 16].

Single-cell RNA sequencing (scRNA-seq) has 
revolutionized our ability to dissect tumor het-
erogeneity and uncover clinically relevant mo- 
lecular pathways. By combining scRNA-seq 
with bulk RNA-seq from public repositories, 
researchers can define cell type-specific mech-
anisms and identify robust predictive biomark-
ers [17]. Tools such as SCENIC and CellChat 
further facilitate the reconstruction of gene 
regulatory networks and intercellular commu- 
nication at single-cell resolution [18]. This 
approach is especially pertinent to melanoma, 
which exhibits substantial cellular plasticity 
and distinct immunologic interactions that criti-
cally influence patient outcomes.

In this study, we investigated the molecular 
mechanisms by which lactylation influences 
melanoma progression and identified a lacty-
lation-related prognostic signature. Integrating 
scRNA-seq data (GSE215120), bulk transcrip-
tomic data (GSE53118), The Cancer Genome 
Atlas (TCGA) melanoma cohort (SKCM), and 
previously validated acetylation-associated ge- 
nes, we performed comprehensive analyses 
spanning cell-subtype annotation, ligand-re- 
ceptor interaction mapping, and regulatory net-
work inference. Subsequently, we constructed 
and validated a LASSO-Cox-based risk model, 
examining its associations with immune cell 
infiltration, drug sensitivity, and critical sig- 
naling pathways. Functional characterization 
reveals RAN as a lactylation-associated driver 
of proliferation and metastasis. Our findings 
highlight lactylation as a key epigenetic driver 
in melanoma, providing a novel risk-stratifica-
tion framework and potential targets for preci-
sion therapeutics.

Materials and methods

Data acquisition

The Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/), curated 

by the National Center for Biotechnology 
Information (NCBI), served as the principal 
repository for scRNA-seq and bulk transcrip-
tomic datasets. We specifically obtained the 
scRNA-seq datasets GSE215120, comprising 
four samples with complete single-cell expres-
sion profiles, and GSE115978 which included 
20 human melanoma samples. The microar- 
ray dataset GSE53118 (annotated on the 
GPL6884 platform) included survival data  
from 69 melanoma patients. Additionally, pro-
cessed transcriptomic data for 473 cutaneous 
melanoma (SKCM) patients were retrieved  
from The Cancer Genome Atlas (TCGA) data-
base (https://portal.gdc.cancer.gov/). Lactyla- 
tion-related genes were extracted from a previ-
ously published study [19].

Quality control

Raw scRNA-seq data were processed using the 
Seurat R package (v4.3.0). We applied three 
primary filtering criteria: (1) total unique molec-
ular identifiers (UMIs) per cell, (2) number of 
expressed genes, and (3) mitochondrial gene 
expression ratio (percentage of mitochondrial 
gene counts relative to total counts). Cells with 
elevated mitochondrial gene expression or low 
RNA content were flagged as potentially apop-
totic or stressed. We used the Median Absolute 
Deviation (MAD) method to remove outliers, 
excluding data points that deviated by more 
than 3 MADs from the median for these met-
rics. This rigorous approach ensured consistent 
quality for subsequent analyses.

Data standardization and cell annotation

We performed data normalization using the 
global LogNormalize method, scaling each 
cell’s total expression to 10,000 and then 
applying a log transformation. Cell-cycle scores 
were computed with the CellCycleScoring func-
tion, and highly variable genes were identified 
using FindVariableFeatures. The ScaleData 
function was applied to regress out mitochon-
drial gene expression percentage, ribosomal 
gene expression percentage, and cell-cycle 
phase. Principal component analysis (RunPCA) 
was then used to identify significant compo-
nents for further Analysis. To address potential 
batch effects, we implemented Harmony, fol-
lowed by nonlinear dimensionality reduction 
with RunUMAP (Uniform Manifold Approxima- 
tion and Projection). Cell clusters were anno-
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tated by integrating literature-based markers, 
the CellMarker database, and SingleR, which 
maps scRNA-seq data to known reference cell 
types. Genes were filtered with the parameters: 
only.pos = TRUE, min.pct = 0.25, logfc.thresh-
old = 0.25. This selects only positive marker 
genes expressed in at least 25% of cells with a 
minimum log fold-change of 0.25.

Ligand-receptor interaction analysis (CellChat)

We employed CellChat to predict major signal-
ing interactions among distinct cell subtypes 
[17]. Normalized expression matrices and 
annotated cell populations were used as 
inputs. CellChat’s network analysis and pat-
tern-recognition algorithms quantified intercel-
lular communication’s strength (weight) and 
frequency (count), revealing functional relation-
ships and disease-specific signaling pathways.

SCENIC analysis

Gene regulatory networks and cell states  
were reconstructed via the SCENIC pipeline 
(Single-Cell Regulatory Network Inference and 
Clustering) [18]. First, co-expression modules 
were identified using GENIE3 to detect tran-
scription factor (TF) - associated gene sets. 
Next, motif enrichment analyses were conduct-
ed for each module, and TFs were annotated 
with high or low confidence according to data-
base matches or motif homology. Genes with 
low motif scores were filtered out, yielding regu-
lons - direct TF-target relationships. Finally, 
regulon activity was quantified for each cell 
using the AUCell algorithm, delineating tran-
scriptionally distinct cell states.

Prognostic model construction and survival 
analysis

We performed univariate Cox regression to 
identify prognosis-associated genes, then con-
structed a LASSO (least absolute shrinkage 
and selection operator) regression model to 
compute a risk score for each patient. Pa- 
tients were divided into high- or low-risk groups 
based on the median risk score. Kaplan-Meier 
curves and log-rank tests were used to com-
pare survival differences between these 
groups. LASSO regression and stratified analy-
ses further validated the prognostic value of 
the risk score, while receiver operating charac-
teristic (ROC) curves evaluated its predictive 
performance.

Immune cell infiltration analysis

To assess immune cell composition, we applied 
the CIBERSORT algorithm [20], a deconvolution 
method based on support vector regression 
that uses 547 gene expression biomarkers to 
distinguish 22 immune cell subtypes. Immune 
infiltration levels were inferred for each sample, 
and correlations between gene expression pro-
files and immune cell proportions were subse-
quently analyzed, elucidating the immune con-
text of each tumor.

Nomogram model construction

We designed a nomogram to integrate the risk 
score with relevant clinical features, assigning 
points to each predictor based on its regres-
sion coefficient. Summing these points yielded 
a total score for estimating patient-specific  
survival probabilities. This graphical approach 
visualizes the combined prognostic impact of 
multiple factors and facilitates individualized 
risk assessment.

Drug sensitivity prediction

Chemotherapy response was predicted using 
the oncoPredict R package and training data 
from the Genomics of Drug Sensitivity in Cancer 
(GDSC) database (https://www.cancerrxgene.
org/). Half-maximal inhibitory concentrations 
(IC50s) were estimated via a regression model 
with 10-fold cross-validation. We employed the 
ComBat method [21] to address batch effects 
and averaged duplicate gene expression val-
ues. This approach enabled the correlation of 
risk scores with chemotherapy sensitivity in 
melanoma.

Gene set variation analysis (GSVA)

GSVA, a non-parametric and unsupervised 
method, was used to measure pathway-level 
enrichment by transforming gene-level expres-
sion data into pathway activity scores. We 
downloaded gene sets from the Molecular 
Signatures Database (MSigDB v7.0), computed 
GSVA scores for each sample, and compared 
pathway activity across groups to investigate 
relevant biological processes and signaling 
cascades.

Gene set enrichment analysis (GSEA)

GSEA was conducted to examine pathway dif-
ferences between high- and low-risk groups. 
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We used annotated gene sets from MSigDB, 
ranking differentially expressed genes by their 
correlation with risk scores. Enriched pathways 
were identified based on normalized enrich-
ment scores (NES) and adjusted p-values < 
0.05, providing additional insights into molecu-
lar mechanisms associated with each risk 
group.

Pseudotime trajectory analysis

We employed Monocle [22] to reconstruct cel-
lular differentiation trajectories at the single-
cell level. Cells were ordered along a pseudo-
temporal axis based on transcriptional similari-
ty, revealing transitional states and regulatory 
gene dynamics throughout the differentiation 
process. This Analysis highlighted genes mark-
ing intermediate or terminal stages of melano-
cyte development.

Cell culture, RNA extraction, and qRT-PCR

The human melanoma cell lines A375 and 
SKMEK28 were cultured in DMEM containing 
10% fetal bovine serum (FBS), while normal 
human epithelial keratinocytes (NHEK) were 
maintained in DMEM/F12 supplemented with 
10% FBS and 10 ng/mL epidermal growth fac-
tor (EGF). The manufacturer’s protocol extract-
ed Total RNA using TRIzol (Invitrogen). RNA con-
centrations were measured with a Nanodrop 
2000C (Thermo Fisher Scientific), and cDNA 
was synthesized using a ThermoFisher reverse 
transcription kit. qRT-PCR was performed in a 
20 µL reaction volume containing SYBR Green 
Master Mix (CW0957H, Kangwei) and gene-
specific primers. The reaction conditions in- 
cluded 95°C for 10 min followed by 45 cycles  
at 95°C for 10 s and 60°C for 30 s. Primer 
sequences for LAP3, RBM39, THRAP3, RAN, 
DDX3X, S100A11, and the β-actin reference 
gene are listed in detail below. Relative expres-
sion levels were normalized to β-actin.

The gene primer sequences were: For- 
ward 5’-GTCTGGCCGTGAGACGTTT-3’, reverse 
5’-ACCATAAAAGGTTCGAGTCTTCC-3’ for human 
LAP3; Forward 5’-CAATGCTTGAGGCTCCTTA- 
CA-3’, reverse 5’-TCCGTTCCTTACTTTTGCTTC- 
TC-3’ for human RBM39; Forward 5’-CTCT- 
CTCTCGTTCAAGGAAGCG-3’, reverse 5’-CCTC- 
GGAAATCCCGATTCTGAT-3’ for human THRAP3; 
Forward 5’-GGTGGTACTGGAAAAACGACC-3’, re- 
verse 5’-CCCAAGGTGGCTACATACTTCT-3’ for 
human RAN; Forward 5’-AGCAGTTTTGGATC- 

TCGTAGTG-3’, reverse 5’-ACTGTTTCCACCACGT- 
TCAAAT-3’ for human DDX3X; Forward 5’-TG- 
GCAAAAATCTCCAGCCCT-3’, reverse 5’-GAAG- 
GGACAGCCTTGAGGAA-3’ for human S100A11; 
Forward 5’-CACCAACTGGGACGACAT-3’, rever- 
se 5’-ACAGCCTGGATAGCAACG-3’ for human 
β-actin. Relative expression levels were nor- 
malized to β-actin. siRNA sequences were as 
follows: RAN: siRAN-1: sense: 5’-GUGGCAAC- 
AAAGUGGAUAUTT-3’, antisense: 5’-AUAUCCA- 
CU-UUGUUGCCACTT-3’; siRAN-2: sense: 5’-GU- 
GCCAUCAUAAUGUUUGATT-3’, anti-sense: 5’-UC- 
AAACAUUAUGAUGGCACTT-3’.

Cells were incubated in 6-well plates, and 
transfection was started when cell density 
reached 60%. Transfection was performed 
using Lipofectamine RNAiMAX Transfection 
Reagent (Thermo Fisher Scientific) in all cells 
maintained in Opti-MEM. The culture medium 
was replaced with fresh medium supplemented 
with 10% FBS after 12 h post-transfection. 
Transfection efficiency was detected using 
qRT-PCR.

Western blotting

The cells were lysed in RIPA buffer containing 
protease inhibitors, and the sample was then 
heated at 100°C in a metal bath for 10 min-
utes. Subsequently, the same amounts of  
proteins were separated by 15% sodium dodec-
yl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE), and then were blotted onto PVDF 
membrane (Bio-Rad, Hercules, CA, USA). Mem- 
branes were incubated with primary antibodies 
against human RAN (proteintech, 10469-1-AP) 
and Actin (Santa cruz, sc-7210) at 4°C over-
night. Then, membranes were subsequently 
probed with horseradish peroxidase-conjugat-
ed secondary antibodies (Jackson Immuno- 
Research; AB_2313567, AB_10015289) for 
1.5 h at room temperature. After incubation 
with chemiluminescent substrate (Thermo 
Fisher Scientific), protein bands were detected 
using an Amersham Imager 680 system.

Statistical analysis

All experimental analysis was represented as 
the mean ± standard deviation (SD) from three 
times of replicative experiments. Microsoft 
Excel and GraphPad Prism 5 were used to draw 
the charts. Survival curves were generated 
using the Kaplan-Meier method and compared 
via the log-rank test. A Cox proportional haz-
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ards model was applied for multivariate analy-
ses to assess independent prognostic factors. 
All statistical tests were executed in R (v4.3.0), 
with p-values < 0.05 deemed significant.

Results

Single-cell expression profiling and quality 
control

We obtained the scRNA-seq datasets GSE- 
215120, which comprised four cutaneous mel-
anoma (SKCM) tissue samples. The single-cell 
data from GSE115978 comprises 20 melano-
ma tissue samples. GSE215120: Quality con-
trol was conducted in Seurat (v4.3.0) using 
three main criteria: (1) cells with fewer than 
200 detected genes, (2) mitochondrial gene 
ratios exceeding three median absolute devia-
tions (MADs), and (3) outlier counts of unique 
molecular identifiers (UMIs). After filtering 
27,314 cells, we removed doublets via Dou- 
bletFinder, retaining 13,562 high-quality cells 
for downstream Analysis (Figure S1A, S1B). 
Violin and scatter plots illustrated distributions 
of gene counts, UMIs, and mitochondrial per-
centages before and after filtering. The top 10 
most variable genes were visualized (Figure 
S1C), demonstrating considerable heterogene-
ity in the single-cell population. GSE115978: 
For this dataset, doublets were filtered using 
the DoubletFinder package following the afore-
mentioned method, resulting in 6,404 cells 
after filtration. The corresponding violin plots 
and scatter plots are shown in Figure S3A, S3B. 
Additionally, the top 10 genes with the highest 
standard deviation are displayed in Figure S3C.

Identification of 12 cell clusters in melanoma 
patients

Using principal component analysis (PCA), we 
identified 20 significant dimensions (ElbowPlot, 
Figure S1D, S1E). Batch effects were corrected 
via Harmony (Figure S1F) and UMAP clustering 
to distinguish 12 unique cell subtypes (Figure 
1A). Annotation using CellMarker, literature-
defined markers, and additional validation 
assigned these clusters to seven cell popula-
tions: Melanocytes, T cells, B cells, Fibroblasts, 
Endothelial cells, Macrophages, and Keratino- 
cytes (Figure 1B-D). Differentially expressed 
genes (DEGs) (|avg_log2FC| > 0.25, adjusted  
P < 0.05) in each cluster underwent Gene 
Ontology enrichment, revealing pathways in- 
volved in immune regulation and metabolic 

reprogramming relevant to melanoma biology 
(Figure 1E).

Lactylation interacts with immune cells in 
melanoma 

We initially compiled 330 lactylation-related 
genes from a published source [19]. Applying 
AUCell, we measured lactylation activity scores 
across all single-cell subpopulations and identi-
fied melanocytes exhibiting the highest lacty-
lation enrichment and notable intercellular het-
erogeneity (Figure 2A). Further differential 
gene expression analysis of these melanocytes 
(|avg_log2FC| > 0.25, P < 0.05) yielded 360 
marker genes; intersecting these with the 330 
lactylation-related genes produced 27 over- 
lapping targets (Figure 2B). To evaluate how 
lactylation modulates intercellular communica-
tion, we employed CellChat to infer ligand-
receptor interactions across diverse cell sub-
types (Figure 2C). MIF-(CD74+CXCR4) interac-
tions were highly active between melanocytes 
and immune or stromal cells (Figure 2D), sug-
gesting that acetylation-enriched melanocytes 
engage in key immunomodulatory signaling 
within the melanoma TME.

Regulatory network reconstruction via SCENIC

We next performed SCENIC (Single-Cell Re- 
gulatory Network Inference and Clustering) on 
the melanocyte cluster to uncover potential 
regulatory networks. A heatmap of regulon 
activity scores across individual cells revealed 
distinct transcriptional states (Figure 3A). Re- 
gulons were ranked by their regulon specificity 
score (RSS), indicating their association with 
defined cell subgroups. Key regulons identified 
in lactylation-high melanocytes included YBX1 
(+), POLE4 (+), PSMD12 (+), XBP1 (+), and MXD4 
(+) (Figure 3B, 3C). Regulons with high RSS val-
ues likely orchestrate core transcriptional pro-
grams that define melanocyte function and 
malignant potential. 

Prognostic model construction and validation

Using melanoma patient data from TCGA, we 
performed univariate Cox regression on 27 lac-
tylation-associated genes, identifying seven 
with prognostic significance (P < 0.05) (Figure 
4A). High LAP3, RBM39, DDX3X, and SUMO2 
expression correlated with improved outcomes, 
whereas elevated RAN, THRAP3, and S100A11 
signaled a worse prognosis. Feature selection 
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by LASSO regression produced a prognostic 
signature refined into a risk-scoring formula: 
Risk Score = (-0.463) × LAP3 + (-0.038) × 
RBM39 + (0.111) × THRAP3 + (0.149) × RAN + 
(0.217) × DDX3X + (0.226) × S100A11 (Figure 
4B-D).

Patients were stratified into high- and low-risk 
groups according to their risk scores. In both 
training and testing sets, Kaplan-Meier curves 
showed significantly poorer overall survival (OS) 
for high-risk patients (Figure 4E, 4F). ROC 

Figure 1. Cell types and gene expression patterns of melanoma. A. UMAP visualization of single-cell data colored by 
Leiden cluster assignment (12 clusters). B. Annotations of seven major cell lineages (melanocytes, T cells, B cells, 
fibroblasts, endothelial cells, macrophages, and keratinocytes) based on marker genes. C. Bubble plot of classic 
marker genes illustrating their expression across these cell types. Red indicates high expression, and blue indicates 
low expression. D. Pie chart showing relative proportions of the seven cell types. E. Heatmap displaying log2 fold 
changes for the top six differentially expressed genes (DEGs) in each subpopulation.

Figure 2. Lactylation-associated cell subtypes and cell-cell communication. A. Bubble plot, Violin plot and Scatter 
plots showing comparative profiling in melanocyte populations to identify lactylation-enriched cellular subtypes. 
B. Venn diagram indicating the intersection of differentially expressed lactate-related genes. C. Intercellular com-
munication network among diverse cell populations, visualized by line widths representing interaction strength. D. 
Bubble plots depicting incoming and outgoing signaling pathways between melanocytes with T cells, B cells and 
other clusters.
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curves demonstrated strong predictive accura-
cy (Figure 4G, 4H). The external dataset 

GSE53118 confirmed these findings, under-
scoring the model’s generalizability (Figure 4I).

Figure 3. SCENIC analysis in melanocytes. A. Heatmap of regulon activity scores in individual melanocyte cells, 
indicating distinct transcriptional states. B. Scatter plot ranking transcription factors by regulon specificity score 
(RSS) in high-expression melanocytes (Hexp). C. Scatter plot ranking transcription factors by RSS in low-expression 
melanocytes (Lexp).
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Relationship between risk score and the im-
mune microenvironment

Given that the tumor microenvironment (TME) 
profoundly influences melanoma progression, 
we evaluated correlations between risk scores 
and immune cell infiltration. CIBERSORT-based 
deconvolution showed distinct immune sub-
sets in high- versus low-risk groups (Figure 5A, 
5B). In particular, eosinophils, macrophages 
(M0, M1, and M2), monocytes, and resting and 
activated NK cells varied significantly between 
groups (Figure 5C). The risk score was positive-

ly correlated with immunosuppressive cell 
types (M0 and M2 macrophages) and inversely 
associated with cytotoxic CD8+ T cells and acti-
vated CD4+ memory T cells (Figure 5D). These 
data suggest that high-risk melanomas harbor 
a more immunosuppressive TME, potentially 
driving enhanced tumor progression and resis-
tance to therapy.

Nomogram model for prognostic prediction

Patients were categorized into high- and low-
risk cohorts based on the median risk score. 

Figure 4. Prognostic model construction and validation. A. Forest Plot of seven prognostic genes (P < 0.05) from an 
initial list of 27 lactylation-related genes using univariate Cox regression. B-D. LASSO regression screening to refine 
these genes into a six-gene signature. E, F. Kaplan-Meier survival curves showing significantly lower overall survival 
(OS) in the high-risk group compared with the low-risk group for both training and testing cohorts. Statistical signifi-
cance was determined by the Log-rank test (P < 0.001). G, H. ROC curves demonstrating strong predictive accuracy 
at 2, 4, and 6 years in the training and testing sets. The AUC values range between 0.5 and 1, where 0.5 indicates 
no discriminative ability and 1 represents perfect discriminative ability. I. External validation in the GSE53118 GEO 
dataset, confirming poorer OS for the high-risk group.
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Figure 5. Correlation of the risk model with immune microenvironment. A. CIBERSORT-based immune cell composition in high- and low-risk patient groups. B. Heat-
map illustrating correlations among immune cell subsets. C. Boxplots highlighting statistically significant differences in immune cell proportions between high- and 
low-risk tumors. D. Lollipop plot showing a positive correlation of the risk score with immunosuppressive macrophages (M0, M2) and a negative correlation with 
cytotoxic T cells.
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We built a nomogram integrating risk score  
with clinical parameters to visually estimate in- 
dividual survival probabilities (Figure 6A, 6B). 
Logistic regression demonstrated that the risk 
score significantly improved the nomogram’s 
predictive performance (P < 0.001). Predictions 
at 2-, 4-, and 6-year endpoints showed robust 
discriminative ability (AUCs: 0.6784, 0.7042, 
0.7006; Figure 6C), and decision curve analysis 
(DCA) indicated superior net benefit over stan-
dard staging systems (Figure 6D).

Drug sensitivity correlation analysis

Early-stage cutaneous melanoma often bene-
fits from surgery combined with chemotherapy. 
Using the oncoPredict R package, we assessed 
half-maximal inhibitory concentrations (IC50) 
for common chemotherapy agents, based on 

drug sensitivity data from the Genomics of 
Drug Sensitivity in Cancer (GDSC) repository. 
We discovered significant associations be- 
tween the risk score and responses to vin- 
blastine_1004, paclitaxel_1080, and vincris-
tine_1818 (Figure 7A). Specifically, high-risk 
patients exhibited increased IC50 values for 
these drugs (P < 0.01), indicating diminished 
therapeutic effectiveness under high-acetyla-
tion conditions and reinforcing the need to tai-
lor treatment strategies according to lactylation 
status.

Functional pathway analyses of high- and low-
risk groups

To dissect the molecular mechanisms underly-
ing tumor progression in each risk category, we 
conducted GSVA and GSEA. In the high-risk 

Figure 6. Nomogram model for individualized prognostic prediction. A. Nomogram integrating the lactylation-driven 
risk score with clinicopathological variables to estimate survival probabilities. B. Calibration curve comparing pre-
dicted and observed survival outcomes in melanoma patients. C. Time-dependent ROC curves (2-, 4-, and 6-year) 
indicating the nomogram’s discriminative accuracy (AUCs: 0.6784, 0.7042, 0.7006). Shaded regions denote 95% 
confidence intervals. D. Decision curve analysis (DCA) demonstrating a superior net benefit of the nomogram versus 
conventional staging.
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group, GSVA revealed enrichment in DNA re- 
pair, Hedgehog signaling, and p53-related 
pathways (Figure 7B). GSEA further highlighted 
differential activation of the cytosolic DNA-
sensing pathway, TNF signaling, and JAK-STAT 
signaling (Figure 7C). We constructed a molec-
ular interaction network depicting cross-talk 
among these pathways (Figure 7D), emphasiz-
ing their potential synergistic roles in driving 
high-risk tumor phenotypes.

Expression and pseudotime analysis of model 
genes

We visualized the expression distribution of six 
model genes (LAP3, RBM39, THRAP3, RAN, 

DDX3X, S100A11) in single-cell clusters (Figure 
8A, 8B). Pseudotime trajectory analysis on 
melanocytes placed cells along a developmen-
tal axis, with states color-coded by pseudotime, 
branch-specific clustering, and risk stratifica-
tion (Figure 9A-C). Early differentiation markers 
(BCAN, LIMD1, HMCN1) were prominent at the 
initial stages, whereas late-stage markers 
(MITF, KCNJ13, AFF3) predominated at terminal 
points (Figure 9D). Model gene expression 
showed varied trajectories: DDX3X progressive-
ly increased, while LAP3, RAN, and S100A11 
peaked at mid-differentiation, and RBM39 and 
THRAP3 demonstrated U-shaped patterns 
(Figure 9E).

Figure 7. Drug sensitivity and associated signaling pathways. A. Predicted chemotherapy response (IC50) using the 
oncoPredict R package, anchored by GDSC database profiles. High-risk patients showed reduced sensitivity (elevat-
ed IC50) to vinblastine_1004, paclitaxel_1080, and vincristine_1818 (P ≤ 0.01). B, C. GSVA and GSEA highlighting 
distinct enrichment of pathways (DNA repair, Hedgehog, JAK-STAT) in high- versus low-risk groups. D. A molecular 
interaction network illustrating cross-talk among these enriched pathways.
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Validation of key gene expression profiles and 
multi-algorithm quantification of lactylation 
scores in single-cell data

To further validate our results, we first pro-
cessed the single-cell data (GSE115978). The 
optimal number of principal components (PCs) 
was determined as 20 using an ElbowPlot 
(Figure S3D). PCA dimensionality reduction 
revealed the presence of batch effects between 
samples (Figure S3E). Following dimensionality 
reduction via Uniform Manifold Approximation 
and Projection (UMAP), 17 distinct clusters 
were identified (Figure S3F). These 17 clusters 
were annotated into 8 major cell types - Fib- 
roblast cells, Myeloid cells, T cells, Melanocytes, 
B cells, Keratinocytes, Endothelial cells, and 
Cycling cells (proliferating cells) - based on 
established cell markers (Figure S4A). Dot plots 
illustrating the expression of canonical mar- 
kers for these 8 cell types (Figure S4B) and 
stacked bar charts showing their proportional 
distribution across groups (Figure S4C) are 
provided.

Subsequently, we analyzed the expression pro-
files of key genes within the single-cell dataset. 
The expression patterns of these key genes 
across the annotated cell types (Fibroblast 
cells, Myeloid cells, T cells, Melanocytes, B 
cells, Keratinocytes, Endothelial cells, and 
Cycling cells) are depicted in Figure S5A, S5B.

We then employed the AUCell, UCell, singscore, 
ssGSEA, and AddModuleScore algorithms to 
quantify lactylation scores at the scRNA-seq 
level (Figure S5C). By averaging the scores 
derived from these methods to assess ex- 
pression across different cell types, we ob- 
served that melanocytes consistently exhibited 
significantly elevated lactylation levels (Figure 
S5D).

Validation of prognostic gene expression in 
vitro

To confirm the expression patterns of LAP3, 
RBM39, THRAP3, RAN, DDX3X, and S100A11 
in melanoma cells, we performed qRT-PCR 
using gene-specific primers. S100A11 was 
highly expressed in A375 and SK-MEL28 cells, 

whereas LAP3, RBM39, RAN, THRAP3, and 
DDX3X were abundant in HNEK cells (Figure 
10A-F). These results corroborate the tran-
scriptomic data, lending further support to the 
prognostic relevance of the signature genes.

RAN plays a critical role in melanoma prolifera-
tion and migration

Based on GEPIA (http://gepia.cancer-pku.cn), 
box plots showed that RAN expression was sig-
nificantly up-regulated in 461 skin cutaneous 
melanoma tissues compared with 558 normal 
tissues (Figure 10G), and the Kaplan-Meier 
survival curves showed that the prognosis of 
the RAN high-expression group was signifi- 
cantly worse than that of the RAN low-expres-
sion group (Figure 10H). Therefore, RAN was 
knocked down in A375 and SKMEL28 cells, 
and the knockdown efficiency was validated  
by qPCR and Western blotting (Figure 10I, 10J). 
In the time-lapse proliferation assay, RAN 
knockdown (siRAN1/2) significantly suppres- 
sed cell proliferation at 12, 24, 48 and 72 
hours compared to the siNC group (Figure 
10K). Furthermore, in the scratch wound heal-
ing assay, siRAN1/2 knockdown markedly 
inhibited melanoma cell migration (Figure 10L).

Metabolic-immune crosstalk of model genes

To elucidate potential links between these 
model genes, metabolic pathways, and immune 
modulation, we employed AUCell-based analy-
ses (Figure S2). THRAP3 and S100A11 showed 
high activity in oxidative phosphorylation and 
MYC target pathways, aligning with roles in 
metabolic reprogramming. RBM39 was sig- 
nificantly enriched in allograft rejection and 
NF-κB-mediated TNFA signaling, indicating a 
function in immune escape and inflammation. 
Meanwhile, RAN and LAP3 also exhibited 
increased oxidative phosphorylation and MYC 
target activation, and DDX3X was highly associ-
ated with TGF-β and NF-κB-driven TNFA signal-
ing. These data suggest that the signature 
genes operate at the intersection of metabolic 
adaptations and immunosuppressive mecha-
nisms, reinforcing their significance in melano-
ma progression.

Figure 8. Model gene expression in single cells. A, B. DotPlot and Violin Plot visualizing expression patterns of the six 
model genes (LAP3, RBM39, THRAP3, RAN, DDX3X, S100A11) across melanoma single-cell clusters.
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Discussion

Cutaneous melanoma remains among the most 
lethal skin cancers worldwide, with its rising 
incidence and mortality attributed to high met-
astatic potential and resistance to standard 
therapies. Although targeted treatments (e.g., 
BRAF/MEK inhibitors) and immunotherapies 
(e.g., PD-1/PD-L1 inhibitors) have improv- 
ed patient outcomes, significant heterogeneity 
persists. Existing prognostic systems (e.g., 
AJCC staging) do not capture the molecular and 
epigenetic complexities that critically influence 
disease progression and treatment response. 
To address this limitation, our study construct-
ed a lactylation-related prognostic model that 
integrates risk scores with clinical variables, 
enabling refined stratification of patients and 
revealing immunosuppressive tumor microenvi-
ronment (TME) features in high-risk melano-
mas. By linking lactylation to melanoma prog-
nosis, this work advances the understanding of 
how metabolic and epigenetic dysregulation 
contributes to clinical outcomes.

In recent years, prognostic model development 
in oncology has benefited greatly from multi-
omics integration, machine learning, and ro- 
bust clinical data curation. For instance, com-
bining tumor mutation profiles with immune-
related gene signatures can enhance the pre-
diction of immunotherapy responsiveness [23]. 
Increasing evidence places lactate and histone 
lactylation at the intersection of metabolic plas-
ticity and immune suppression in cancer [24, 
25]. This modification can modulate chromatin 
accessibility, influencing oncogenic pathways 
and immune evasion strategies. In melano-
cytes, the role of histone lactylation in stabiliz-
ing MITF expression further underscores the 
potential of lactylation to drive tumor initiation 
and progression [26-28]. Consequently, lacty-
lation-associated genes have emerged as 
essential biomarkers for diverse malignancies, 
including melanoma [29-33]. Consistent with 
this paradigm, our study identified six acetyla-
tion-linked genes (LAP3, RBM39, THRAP3, RAN, 
DDX3X, S100A11) that predict survival and cor-

relate with chemotherapy sensitivity. These 
genes collectively drive key oncogenic process-
es including proliferation, metastasis, immune 
evasion, metabolic reprogramming, therapy 
resistance, and genomic instability in aggres-
sive cancers [34-42]. Mechanistically, high-risk 
melanomas exhibit activation of pathways cen-
tral to immune suppression and metastasis. 
Functional validation confirmed RAN as a criti-
cal driver of melanoma proliferation and migra-
tion. RAN, a GTPase involved in nucleocytoplas-
mic transport and mitotic spindle assembly, is 
frequently overexpressed in cancers and linked 
to metastatic dissemination [43]. Single-cell 
and transcriptomic validation confirmed the 
expression dynamics of these genes in mela-
noma, providing a foundation for mechanistic 
exploration. Additionally, SCENIC analysis was 
employed to uncover core biological regulatory 
mechanisms, pinpointing key transcription fac-
tors (TFs) and their target genes. We identified 
YBX1 and POLE4 as master regulons in lacty-
lation-enriched melanocytes. For instance, 
LINC01419 binds YBX1 to stabilize PDK1 
mRNA, amplifying lactate production via en- 
hanced transcript stability - a process poten-
tially amplified by lactylation-mediated TF 
recruitment [44]. Heatmap visualization of reg-
ulon activity revealed heterogeneous transcrip-
tional states across melanocyte subpopula-
tions, underscoring the interplay between lacty-
lation and cellular plasticity. In parallel, we vali-
dated our key genes and the elevated lacty-
lation levels in melanoma using an independent 
single-cell dataset. Therefore, these findings 
provide novel insights into melanoma patho-
genesis, immune microenvironment dynamics, 
and precision therapeutics.

Lactylation-related gene prognostic models 
have emerged as powerful tools in cancer 
research and clinical practice, offering novel 
insights into tumor biology, patient stratifica-
tion, and therapeutic decision-making. TME is  
a key determinant of melanoma progression 
and therapeutic response. Immune infiltration 
in cutaneous melanoma represents a complex 
interplay of anti-tumor defense and pro-tumor 

Figure 9. Pseudotime trajectory analysis of model genes. A. Pseudotime ordering of melanocytes, illustrating tran-
sitional states during differentiation. B. Distribution of cells across distinct states. C. Cluster assignments along the 
pseudotime axis, indicating transcriptional shifts among subpopulations. D. Heatmap of gene expression patterns 
at various stages, capturing early (BCAN, LIMD1, HMCN1) and late markers (MITF, KCNJ13, AFF3). E. Expression 
trends of model genes, highlighting mid-stage peaks (LAP3, RAN, S100A11) and U-shaped behaviors (RBM39, 
THRAP3).
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Figure 10. RAN as a critical driver of melanoma proliferation and migration. A-F. qRT-PCR validation of the expres-
sion of four genes (LAP3, RBM39, S100A11, RBM39, THRAP3, DDX3X and RAN) in A375, SK-MEL-28, and NHEK 
cells. G. Box plots showing RAN expression in 461 skin cutaneous melanoma tissues vs 558 normal tissues based 
on GEPIA (http://gepia.cancer-pku.cn). H. Survival Curve plots demonstrating the impact of RAN on overall survival 
(OS) and disease-free survival (DFS) in melanoma based on GEPIA (http://gepia.cancer-pku.cn). I. The knockdown 
efficiency of RAN in A375 and SKMEL28 cells transfected with siRNA1/2 was detected using qRT-PCR. J. The knock-
down efficiency of RAN in A375 and SKMEL28 cells transfected with siRNA1/2 was detected using Western Blotting. 
K. Proliferative capacity was detected by MTS assay. L. Wound healing assay was used to detect the migration ability. 
Data are shown as mean ± SD from three independent experiments. Significance is indicated by *P < 0.05.

http://gepia.cancer-pku.cn
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adaptation, shaping both disease progression 
and therapeutic outcomes. Recent studies 
highlight the dual role of immune cells: while 
cytotoxic CD8+ T cells and M1 macrophages 
exert antitumor effects, regulatory T cells 
(Tregs) and M2 macrophages promote immune 
evasion [45, 46]. Clinically, immune infiltration 
patterns serve as biomarkers, with high CD8+/
Treg ratios predicting immune checkpoint inhib-
itors (ICIs) efficacy [47], while elevated MDSCs 
correlate with BRAF/MEK inhibitor resistance 
[48]. Emerging strategies target metabolic 
competition (e.g., lactate-driven CD8+ T-cell 
dysfunction) [49] and spatial immune exclusion 
(e.g., Wnt/β-catenin-mediated chemokine sup-
pression) [50], employing CSF1R inhibitors 
[51], CD40 agonists [52], and LAG-3/TIM-3 
blockers [53] to reprogram the TME. Tech- 
nological advances, including single-cell RNA-
seq and spatial transcriptomics, reveal dynam-
ic immune evolution during therapy and identify 
perivascular T-cell niches as predictors of ICIs 
response. Despite progress, challenges persist 
in longitudinal monitoring of TME plasticity and 
integrating immune signatures with mutational 
burden for precision immunotherapy. Future 
directions focus on disrupting lactate-mediated 
immunosuppression and leveraging epigenetic 
modifiers to rebalance immune infiltration, 
offering hope for personalized therapeutic 
breakthroughs. Our findings align with these 
observations, revealing that high-risk melano-
mas exhibit elevated M2 macrophage infiltra-
tion and CD8+ T-cell depletion. Notably, we 
identified lactylation as a novel modulator of 
this immunosuppressive shift. Lactate accu- 
mulation, driven by glycolytic reprogramming  
in melanocytes, may polarize macrophages 
toward an M2 phenotype via histone lacty-
lation, as suggested by the enrichment of MIF-
(CD74+CXCR4) interactions [54, 55]. MIF secre-
tion by melanocytes binds to CD74 on macro-
phages, triggering CXCR4-dependent PI3K/AKT 
signaling, which stabilizes HIF-1α and further 
amplifies glycolytic flux in TAMs-a vicious cycle 
sustaining lactate production [56]. This sug-
gests lactylation may reinforce immune eva-
sion by sustaining MIF signaling, a hypothesis 
that warrants experimental validation. This 
aligns with prior reports that lactate-induced 
histone lactylation reprograms myeloid cells 
toward immunosuppressive states [57]. The 
differential drug sensitivity profiles between 
risk groups suggest that lactylation-high mela-
nomas may benefit from combinatorial strate-
gies targeting lactate metabolism. For instance, 

LDH inhibitors or monocarboxylate transporter 
(MCT) blockers could synergize with chemo-
therapy by normalizing the TME [58]. Further- 
more, the association between RBM39 and 
NF-κB activation points to proteasome inhibi-
tors as potential adjuvants to disrupt lacty-
lation-driven survival signaling. High-risk mela-
nomas exhibited enrichment of oxidative phos-
phorylation (OXPHOS) and MYC targets-a para-
doxical finding in light of the Warburg effect. 
This may reflect mitochondrial retrograde sig-
naling, where lactate-derived acetyl-CoA fuels 
histone acetylation, priming chromatin for lac-
tylation-dependent transcription [59]. MYC 
activation further enhances glutamine uptake, 
supporting nucleotide synthesis for rapid prolif-
eration [60]. By integrating risk scores with clin-
ical variables, our nomogram offers a practical 
tool for personalized prognosis and therapy 
selection.

While this study advances our understanding of 
lactylation in melanoma, several limitations 
deserve attention. First, the lactylation-associ-
ated genes were derived from colorectal can-
cer studies, necessitating experimental valida-
tion (e.g., ChIP-seq, lactylation-specific antibod-
ies) to confirm their relevance in melanoma. 
Second, the scRNA-seq cohort (n = 4) lacks 
racial and etiological diversity, potentially bias-
ing subtype annotations. Third, the prognostic 
model requires prospective validation in clinical 
trials to assess its utility in guiding immuno-
therapy decisions. Future work could explore 
spatial transcriptomics to map lactylation gra-
dients within the TME and investigate the role 
of lactylation in resistance to immune check-
point inhibitors.

In summary, this study delineates a lactylation-
centric framework for understanding melano-
ma progression, uniting metabolic dysregula-
tion, epigenetic reprogramming, and immune 
suppression. The prognostic signature and 
mechanistic insights offer a foundation for 
developing lactate-targeted therapies and re- 
fining risk-adaptive treatment strategies. By 
bridging single-cell resolution with clinical out-
comes, our work underscores the transforma-
tive potential of multi-omics approaches in pre-
cision oncology.
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Figure S1. Preprocessing of single-cell expression data. A. Violin plots showing gene counts, unique molecular identifiers (UMIs), and mitochondrial read proportions 
per cell in GSM6622299, GSM6622300, GSM6622301, and GSM6622302. B. Scatter plots of filtered versus unfiltered cells, reflecting quality control outcomes. 
C. Top 10 genes with highest standard deviation. D. Elbow plot revealing the first 20 principal components (PCs) selected for dimensionality reduction. E. PCA-based 
assessment of batch effects among samples. F. Batch effect correction via Harmony.
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Figure S2. Metabolic and immune pathway activities of model genes. Bubble plots visualizing AUCell-based quan-
tification of immune/metabolic pathway engagement in single cells. THRAP3 and S100A11 were strongly linked to 
oxidative phosphorylation and MYC targets, while RBM39, RAN, LAP3, and DDX3X exhibited associations with im-
mune evasion and oncogenic signaling.
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Figure S3. Quality control and clustering of scRNA-seq data from GSE115978. A. Violin plots showing distributions of detected genes, UMIs, and mitochondrial gene 
percentages across 20 melanoma samples before (left) and after (right) quality control filtering. Dashed lines indicate filtering thresholds. B. Scatter plots visualizing 
post-filtering metrics (n = 6,404 cells): gene counts vs. UMIs (left), and gene counts vs. mitochondrial percentages (right). C. Dot plot of the top 10 highly variable 
genes across cells after normalization. D. Elbow plot determining the optimal number of principal components (PCs = 20) for dimensionality reduction. E. PCA plot 
before batch correction, revealing significant inter-sample batch effects. F. UMAP visualization of 6,404 cells clustered into 17 transcriptionally distinct subpopula-
tions after Harmony batch correction.
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Figure S4. Cell type annotation for the GSE115978 scRNA-seq dataset. A. UMAP plot annotating 17 clusters into 8 major cell types using canonical markers. B. 
Bubble plot displaying expression intensity (color) and percentage (size) of marker genes across cell types. C. Stacked bar chart illustrating the proportional distri-
bution of cell types across all samples.
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Figure S5. Key Gene Expression and Lactylation Scoring in Melanoma scRNA-seq Data (GSE115978). A, B. Dot-
Plot and Violin plots visualizing expression of prognostic signature genes (LAP3, RBM39, THRAP3, RAN, DDX3X, 
S100A11). C. Bubble plot showing multi-algorithm quantification of lactylation scores (AUCell, UCell, singscore, 
ssGSEA, AddModuleScore) averaged across cell types. D. DotPlot and Violin plots confirm significantly elevated 
lactylation activity in melanocytes (P < 0.001).


