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Abstract: Objective: To investigate the synergistic interaction between polycystic ovary syndrome (PCOS) and meta-
bolic syndrome (MetS) in relation to the risk of endometrial cancer (EC). Additionally, we aimed to develop a clini-
cally applicable, high-risk early-warning model that incorporates these interactive factors, enhancing the precision 
and clinical utility of EC screening. Methods: We conducted a retrospective case-control study involving 445 newly 
diagnosed EC patients and 299 healthy female controls from the First People’s Hospital of Changde City, between 
January 2018 and January 2025. Multivariate logistic regression was used to assess the independent and com-
bined effects of PCOS and MetS on EC risk. A nomogram-based predictive model was developed and validated 
rigorously using training, internal validation, and external validation cohorts. The model’s performance was evalu-
ated based on discrimination (area under the curve [AUC]), calibration (Hosmer-Lemeshow test), and clinical utility 
(decision curve analysis). The diagnostic performance of our comprehensive model was compared to traditional 
tumor markers (cancer antigen 125/199, human epididymis protein 4). Results: LASSO regression identified 14 
clinically significant predictors. Logistic regression revealed that HE4 levels, endometrial thickness, and fasting 
blood glucose were independent risk factors for EC, while high-density lipoprotein was an independent protective 
factor. The nomogram based on these variables demonstrated excellent discrimination, with AUCs of 0.984 in the 
training set, 0.987 in the internal validation set, and 0.964 in the external validation set. The integrated risk model 
significantly outperformed individual markers in diagnostic accuracy across all datasets (P<0.001). Conclusion: Our 
PCOS-MetS interaction-based EC risk prediction model showed robust and consistent performance across multiple 
validation cohorts. This tool significantly improves early detection accuracy and holds substantial clinical promise, 
laying the foundation for personalized EC risk management strategies.
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Introduction

Endometrial cancer (EC) is one of the most 
prevalent malignancies of the female reproduc-
tive system, with its global incidence steadily 
increasing, particularly in industrialized nations 
and developed regions [1]. According to the 
Global Cancer Statistics 2022, approximately 
420,000 new EC cases were diagnosed, ac- 
counting for 4.5% of all female cancers, along 
with 97,000 related deaths, highlighting the 
significant burden on women’s health and qual-
ity of life [2]. Evolving lifestyle patterns and the 

global obesity epidemic have contributed to the 
alarming trend of earlier disease onset, sug-
gesting a strong association between EC risk 
factors and modern living conditions [3]. The 
pathogenesis of EC is multifactorial, involving 
hormonal imbalances, metabolic dysregulation, 
and genetic predisposition. Of particular clinical 
relevance, polycystic ovary syndrome (PCOS) [4] 
and metabolic syndrome (MetS) [5], two com-
mon endocrine-metabolic disorders - have been 
increasingly recognized as major risk factors for 
endometrial carcinogenesis in recent epidemio-
logical and pathophysiological studies.
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PCOS, a common endocrine disorder affecting 
5-10% of reproductive-aged women, is clinically 
characterized by hyperandrogenism, ovulatory 
dysfunction, and polycystic ovarian morphology 
[6]. A hallmark of PCOS is chronic anovulation 
and a hyperestrogenic state, with prolonged 
estrogen exposure being mechanistically linked 
to endometrial carcinogenesis [7]. Ignatov et al. 
[8] demonstrated that PCOS-driven hyperan-
drogenism and unopposed estrogen stimula-
tion substantially increase EC risk. Epidemio- 
logical evidence indicates that women with 
PCOS have a threefold higher risk of EC com-
pared to non-PCOS women, with an especially 
pronounced risk in premenopausal populations 
[9]. Compounding this risk, PCOS frequently 
coexists with metabolic disturbances, including 
insulin resistance, obesity, and dyslipidemia - 
features that overlap with MetS, further pro-
moting endometrial carcinogenesis [10].

MetS is a cluster of interrelated metabolic dis-
turbances, including obesity, glucose intoler-
ance, hypertension, and atherogenic dyslipid-
emia, with insulin resistance and chronic 
low-grade inflammation serving as its patho-
physiological foundation [11]. The global preva-
lence of MetS has risen dramatically, parall- 
eling the obesity epidemic [12]. Substantial evi-
dence links MetS components to EC pathogen-
esis, particularly through mechanisms related 
to insulin resistance [13]. For example, a pro-
spective cohort study in Chinese women re- 
ported a 1.8-fold higher EC incidence in MetS 
patients, with risk increasing in a dose-depen-
dent manner as the number of metabolic 
abnormalities rose [13]. The underlying onco-
genic mechanisms include hyperactivation of 
the insulin-like growth factor 1 (IGF-1) path- 
way and sustained pro-inflammatory cytokine 
release, both of which drive dysregulated endo-
metrial proliferation and malignant transforma-
tion [14].

Notably, there is considerable overlap between 
PCOS and MetS in patient populations, sug-
gesting potential interactions between these 
conditions that may collectively contribute to 
EC development [15]. For instance, PCOS-
related hyperandrogenism and elevated estro-
gen levels may interact with MetS-associated 
insulin resistance and chronic inflammation, 
creating a feedback loop that further exacer-
bates EC risk [16]. Studies have shown that 

obesity and dyslipidemia in PCOS patients - 
traits that overlap with MetS - significantly 
increase the risk of endometrial hyperplasia 
and carcinogenesis [17]. However, research on 
the precise mechanistic interaction between 
PCOS and MetS, especially large-scale, multi-
dataset validated analyses, remains limited. 
Therefore, elucidating the interaction mecha-
nisms between PCOS and MetS and develop- 
ing a robust, risk-stratified early-warning model 
for EC based on these insights would have sub-
stantial theoretical and clinical importance.

This study aims to develop and validate a high-
risk early-warning model for EC by integrating 
the synergistic interaction between PCOS and 
MetS, thereby improving the accuracy and clini-
cal utility of early screening. Using logistic 
regression analysis, we will assess the inde-
pendent effect of the PCOS-MetS interaction 
on EC risk and construct a nomogram to quan-
tify individual risk. The model’s performance 
will be rigorously evaluated through multi-stage 
validation, including training, internal, and ex- 
ternal validation datasets, to assess its dis-
criminatory ability, calibration, and clinical net 
benefit. Additionally, we will compare the diag-
nostic value of this integrated model with that 
of individual tumor biomarkers to determine its 
superiority in risk prediction. The findings from 
this study will provide a theoretical basis for 
future individualized risk management strate-
gies in patients with PCOS and MetS, address-
ing current research gaps and contributing to 
the advancement of precision medicine in EC 
prevention and early detection.

Methods and materials

Sample size calculation

The required sample size was determined us- 
ing the pmsampsize package in R (type=“b”), 
based on parameters derived from a prior study 
by Kuai et al. [18]. The Cox-Snell R-squared 
value was approximated using the c-statistic, 
with an area under the curve (AUC) of 0.863. 
Other inputs included a predicted event rate of 
7, an outcome incidence rate of 61.61%, and 
an estimated shrinkage factor of 90%. The ini-
tial calculation indicated a minimum sample 
size of 364 participants. To account for poten-
tial data loss (10% attrition), the final sample 
size was adjusted to 404.
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Study population

This retrospective study enrolled 445 patients 
with a primary diagnosis of EC, treated at the 
First People’s Hospital of Changde City be- 
tween January 2018 and January 2025. For 
comparison, 299 age-matched healthy women 
who underwent routine health examinations 
during the same period were included as con-
trols. The study protocol was approved by the 
Institutional Review Board of The First People’s 
Hospital of Changde city (Figure 1).

Sample grouping

The sample collection period spanned from 
January 2018 to January 2023. A total of 595 
samples were collected, with 416 assigned to 
the training set and 179 to the validation set, in 
a 7:3 ratio. The training set was used to build 
and train the model, while the validation set 
assessed the model’s accuracy and generaliz-
ability. Additionally, the external validation set 
was collected from February 2023 to January 
2025, comprising 149 samples, to evaluate the 
model’s performance and reliability across dif-
ferent datasets.

Inclusion and exclusion criteria

Inclusion criteria: Female sex; age ≥18 years; 
histopathologically confirmed EC [19]; PCOS 
diagnosed per the Rotterdam criteria [20]; and 
availability of complete clinical records.

Exclusion criteria: Prior history of malignancy 
(non-EC); recent chemotherapy/radiotherapy; 
severe hepatic or renal impairment; current 
pregnancy or lactation; or recent use of hor-
monal therapy.

Indicator collection

All data were extracted from patients’ electron-
ic medical records, including inpatient records, 
surgical documentation, imaging reports, and 
laboratory test results. Outpatient records, su- 
ch as consultation notes and examination 
records, were also incorporated to ensure data 
reliability and completeness.

Clinical data: The following parameters were 
collected: age (≥55 years), body mass index 
(BMI, categorized as <23, 23-25, or >25), age 

at menarche (≥14 years), smoking history, dia-
betes history, hypertension history, abnormal 
uterine bleeding (AUB), gravidity (≥2 pregnan-
cies), parity (≥1 delivery), menstrual cycle regu-
larity (irregular or regular), polycystic features 
(assessed based on the Rotterdam criteria), 
and endometrial thickness (ET, measured via 
imaging).

Laboratory data: Fasting blood glucose (FBG), 
alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), total protein (TP), albumin 
(ALB), globulin (GLO), total bilirubin (TBIL), uric 
acid (UA), free triiodothyronine (FT3), free  
thyroxine (FT4), thyroid-stimulating hormone 
(TSH), cancer antigen 125/199 (CA125/199), 
and human epididymis protein 4 (HE-4).

Lipid profile indicators: Triglycerides (TG), total 
cholesterol (TC), high-/low-density lipoprotein 
(HDL/LDL), apolipoprotein A1 (ApoA1), apolipo-
protein B (ApoB), and lipoprotein(a) (Lp(a)).

Outcome measures

Primary outcomes: (1) Development and valida-
tion of a nomogram predictive model for EC.  
(2) Interaction analysis to evaluate the syner-
gistic effects between key variables and EC 
risk.

Secondary outcomes: (1) Comparative analys- 
is of baseline characteristics (e.g., age, BMI) 
across datasets. (2) Assessment of variable 
differences between the EC and control groups 
within the training set. (3) Feature selection 
using LASSO regression to identify significant 
predictors. (4) Logistic regression to determine 
the risk effects of variables on EC. (5) Binary 
classification via receiver operating character-
istic (ROC) curve analysis to establish optimal 
cut-off values. (6) Comparative evaluation of 
tumor markers to demonstrate the superior 
predictive performance of the integrated model 
over individual markers.

Statistical analysis

All statistical analyses were performed using 
SPSS 27.0 and R 4.3.3, with statistical signifi-
cance set at two-tailed P<0.05. Frequency  
distributions (n, %) were used to summarize 
categorical variables, and Pearson’s chi-square 
tests (χ2 tests) were applied for comparisons. 
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Figure 1. Sample collection flow chart. Note: EC, Endometrial Cancer; PCOS, Polycystic Ovary Syndrome.
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Table 1. Baseline characteristics of the training, validation, and external validation sets

Variable Training set (n=416) Validation set (n=179) External validation set 
(n=149) Statistic P

Age
    ≥55 182 (43.75%) 93 (51.96%) 69 (46.31%) 3.390 0.184
    <55 234 (56.25%) 86 (48.04%) 80 (53.69%)
BMI
    <23 117 (28.12%) 60 (33.52%) 39 (26.17%) 3.157 0.532
    23-25 142 (34.13%) 59 (32.96%) 57 (38.26%)
    >25 157 (37.74%) 60 (33.52%) 53 (35.57%)
Age at menarche
    ≥14 279 (67.07%) 124 (69.27%) 95 (63.76%) 1.125 0.570
    <14 137 (32.93%) 55 (30.73%) 54 (36.24%)
Smoking history
    Yes 105 (25.24%) 52 (29.05%) 38 (25.50%) 0.987 0.610
    No 311 (74.76%) 127 (70.95%) 111 (74.50%)
Diabetes history
    Yes 41 (9.86%) 19 (10.61%) 13 (8.72%) 0.330 0.848
    No 375 (90.14%) 160 (89.39%) 136 (91.28%)
Hypertension history
    Yes 107 (25.72%) 33 (18.44%) 28 (18.79%) 5.330 0.070
    No 309 (74.28%) 146 (81.56%) 121 (81.21%)
AUB
    Yes 240 (57.69%) 110 (61.45%) 93 (62.42%) 1.373 0.503
    No 176 (42.31%) 69 (38.55%) 56 (37.58%)
Gravidity 
    ≥2 300 (72.12%) 129 (72.07%) 109 (73.15%) 0.066 0.967
    <2 116 (27.88%) 50 (27.93%) 40 (26.85%)
Parity
    ≥1 331 (79.57%) 146 (81.56%) 112 (75.17%) 2.109 0.348
    <1 85 (20.43%) 33 (18.44%) 37 (24.83%)
Menstrual cycle regularity
    Irregular 321 (77.16%) 139 (77.65%) 121 (81.21%) 1.075 0.584
    Regular 95 (22.84%) 40 (22.35%) 28 (18.79%)
Polycystic features
    Yes 46 (11.06%) 15 (8.38%) 15 (10.07%) 0.983 0.612
    No 370 (88.94%) 164 (91.62%) 134 (89.93%)
ET (cm) 0.67 [0.44, 0.94] 0.66 [0.40, 0.92] 0.67 [0.43, 1.01] 0.503 0.778
FBG (mmol/L) 5.91±0.85 5.96±0.88 5.97±0.87 0.313 0.731
ALT (U/L) 17.09±5.13 17.84±5.33 17.42±5.34 1.307 0.271
AST (U/L) 20.80 [18.20, 23.20] 20.30 [17.75, 23.25] 21.20 [18.90, 23.10] 1.700 0.427
TP (g/L) 74.69±7.97 74.78±7.80 74.48±7.57 0.063 0.939
ALB (g/L) 43.69±4.99 44.22±4.79 43.75±5.10 0.747 0.474
GLO (g/L) 29.81±3.90 29.84±4.44 30.45±3.88 1.466 0.232
TBIL (μmol/L) 11.20 [7.00, 14.95] 11.60 [8.10, 14.60] 10.10 [6.60, 14.20] 2.055 0.358
TG (mmol/L) 1.40 [1.19, 1.63] 1.44 [1.23, 1.61] 1.45 [1.16, 1.65] 0.701 0.704
TC (mmol/L) 4.90 [4.60, 5.23] 4.96 [4.61, 5.27] 4.88 [4.57, 5.26] 1.277 0.528
HDL (mmol/L) 1.21 [0.97, 1.46] 1.19 [0.96, 1.44] 1.27 [1.01, 1.45] 2.653 0.265
LDL (mmol/L) 3.01±0.53 3.02±0.51 3.03±0.49 0.133 0.875
ApoA1 (mg/dL) 138.42±29.09 136.51±29.76 139.40±25.86 0.455 0.635
ApoB (mg/dL) 97.24±21.93 96.26±21.50 94.70±23.17 0.734 0.480
Lp(a) (mg/L) 133.00 [113.00, 154.00] 136.00 [117.00, 155.00] 133.00 [112.00, 150.00] 2.510 0.285
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UA (μmol/L) 287.45 [247.40, 326.72] 283.10 [248.85, 328.75] 286.00 [255.30, 331.70] 0.020 0.990
FT3 (pmol/L) 2.65±0.73 2.64±0.73 2.61±0.74 0.143 0.867
FT4 (pmol/L) 15.94±3.92 15.76±3.80 15.72±3.82 0.247 0.781
TSH (mIU/L) 2.24±0.61 2.29±0.59 2.23±0.64 0.561 0.571
CA125 (U/mL) 20.09±5.55 20.68±5.24 19.72±5.43 1.339 0.263
CA199 (U/mL) 16.26±5.34 15.86±5.48 15.78±5.26 0.633 0.531
HE-4 (pmol/L) 55.00 [37.00, 75.00] 54.00 [38.00, 73.00] 56.00 [35.00, 75.00] 0.033 0.984
Note: BMI, body mass index; AUB, abnormal uterine bleeding; ET, endometrial thickness; FBG, fasting blood glucose; ALT, alanine aminotransfer-
ase; AST, aspartate aminotransferase; TP, total protein; ALB, albumin; GLO, globulin; TBIL, total bilirubin; TG, triglycerides; TC, total cholesterol; 
HDL/LDL, high-/low-density lipoprotein; ApoA1, apolipoprotein A1; ApoB, apolipoprotein B; Lp(a), lipoprotein(a); UA, uric acid; FT3, free triiodothy-
ronine; FT4, free thyroxine; TSH, thyroid-stimulating hormone; CA125/199, cancer antigen 125/199; HE-4, human epididymis protein 4.

For continuous variables, normality was as- 
sessed using the Kolmogorov-Smirnov test. 
Normally distributed data were expressed as 
mean ± standard deviation (

_
x  ± SD) and ana-

lyzed using independent samples t-tests. Non-
parametric data were reported as median and 
interquartile range (IQR; M [Q1, Q3]) and tested 
using the Mann-Whitney U method.

Variable selection was performed using LA- 
SSO regression (glmnet package in R 4.3.3) 
with 10-fold cross-validation, identifying lamb- 
da.1se=0.016601 as the optimal penalty 
parameter, retaining 14 predictive variables 
from the initial 17 candidates. The discrimina-
tive performance of 11 continuous variables 
was evaluated through ROC curve analysis 
(pROC package in R 4.3.3), with cut-off values 
determined and AUC, sensitivity, and specifi- 
city reported. Univariate and multivariate logis-
tic regression models were used to assess 
associations between selected variables and 
EC risk, with results presented as odds ratios 
(ORs) and 95% confidence intervals (CIs).

Synergistic interaction was examined using 
generalized linear models (stats package in R 
4.3.3), with estimates and P-values reported. A 
nomogram incorporating 12 clinically relevant 
variables was developed to visualize the pre- 
dictive model. Model performance was evalu-
ated through ROC analysis assessing discri- 
minative ability, calibration curves with 1000 
bootstrap resamples (rms package), Hosmer-
Lemeshow goodness-of-fit (GOF) test, and deci-
sion curve analysis (DCA) to evaluate clinical 
utility (rms package). The DeLong test (pROC 
package) was used to compare AUC differenc- 
es between tumor marker-only models and the 
comprehensive predictive model.

Results

Comparison of baseline characteristics of the 
training, validation, and external validation 
sets

The training, validation, and external validation 
sets exhibited strong comparability across vari-
ous baseline characteristics. No statistically 
significant differences (all P>0.05) were ob- 
served among the three sets for age, BMI, age 
at menarche, smoking history, diabetes history, 
AUB, gravidity, parity, menstrual cycle regulari-
ty, polycystic features, ET, FBG, liver function 
indices (ALT, AST, TP, ALB, GLO, TBIL), lipid pro-
files (TG, TC, HDL, LDL, ApoA1, ApoB, Lp(a)),  
UA levels, thyroid function indices (FT3, FT4, 
TSH), or tumor markers (CA125, CA199, HE-4). 
Although the difference in hypertension history 
among the sets approached statistical signifi-
cance (P=0.070), it did not meet the threshold 
for significance. A detailed comparison is pro-
vided in Table 1.

Comparison of baseline characteristics be-
tween EC and control groups in the training 
cohort

Significant differences were observed in sever-
al baseline characteristics between the EC and 
control groups. BMI was significantly higher in 
the EC group (P=0.023), indicating a greater 
proportion of elevated BMI in these patients. 
Additionally, the EC group demonstrated signifi-
cantly higher prevalence or levels of the fo- 
llowing factors compared to controls: AUB 
(P<0.001), parity (P=0.014), menstrual cycle 
regularity (P=0.030), polycystic features (P< 
0.001), ET (P<0.001), FBG (P<0.001), ALT 
(P<0.001), AST (P<0.001), TG (P<0.001), TC 
(P=0.035), HDL (P<0.001), LDL (P<0.001), 
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Table 2. Baseline characteristics of EC patients and controls in the training cohort
Variable Total EC group (n=250) Control group (n=166) Statistic P
Age
    ≥55 182 (43.75%) 107 (42.80%) 75 (45.18%) 0.230 0.632
    <55 234 (56.25%) 143 (57.20%) 91 (54.82%)
BMI
    <23 117 (28.12%) 59 (23.60%) 58 (34.94%) 7.586 0.023
    23-25 142 (34.13%) 86 (34.40%) 56 (33.73%)
    >25 157 (37.74%) 105 (42.00%) 52 (31.33%)
Age at menarche
    ≥14 279 (67.07%) 166 (66.40%) 113 (68.07%) 0.126 0.722
    <14 137 (32.93%) 84 (33.60%) 53 (31.93%)
Smoking history
    Yes 105 (25.24%) 60 (24.00%) 45 (27.11%) 0.511 0.475
    No 311 (74.76%) 190 (76.00%) 121 (72.89%)
Diabetes history
    Yes 41 (9.86%) 29 (11.60%) 12 (7.23%) 2.145 0.143
    No 375 (90.14%) 221 (88.40%) 154 (92.77%)
Hypertension history
    Yes 107 (25.72%) 62 (24.80%) 45 (27.11%) 0.278 0.598
    No 309 (74.28%) 188 (75.20%) 121 (72.89%)
AUB
    Yes 240 (57.69%) 182 (72.80%) 58 (34.94%) 58.585 <0.001
    No 176 (42.31%) 68 (27.20%) 108 (65.06%)
Gravidity 
    ≥2 300 (72.12%) 185 (74.00%) 115 (69.28%) 1.107 0.293
    <2 116 (27.88%) 65 (26.00%) 51 (30.72%)
Parity
    ≥1 331 (79.57%) 189 (75.60%) 142 (85.54%) 6.065 0.014
    <1 85 (20.43%) 61 (24.40%) 24 (14.46%)
Menstrual cycle regularity
    Irregular 321 (77.16%) 202 (80.80%) 119 (71.69%) 4.702 0.030
    Regular 95 (22.84%) 48 (19.20%) 47 (28.31%)
Polycystic features
    Yes 46 (11.06%) 40 (16.00%) 6 (3.61%) 15.560 <0.001
    No 370 (88.94%) 210 (84.00%) 160 (96.39%)
ET (cm) 0.67 [0.44, 0.94] 0.84 [0.60, 1.14] 0.51 [0.37, 0.64] 10.118 <0.001
FBG (mmol/L) 5.91±0.85 6.08±0.76 5.66±0.93 -4.978 <0.001
ALT (U/L) 17.09±5.13 18.49±4.88 14.98±4.78 -7.249 <0.001
AST (U/L) 20.55±3.99 22.26±3.09 17.97±3.82 -12.625 <0.001
TP (g/L) 74.69±7.97 74.83±8.02 74.49±7.92 -0.421 0.674
ALB (g/L) 43.69±4.99 43.93±4.96 43.34±5.02 -1.170 0.243
GLO (g/L) 29.81±3.90 29.79±3.78 29.83±4.08 0.097 0.923
TBIL (μmol/L) 11.20 [7.00, 14.95] 11.30 [7.10, 14.80] 10.90 [6.60, 15.45] 0.366 0.714
TG (mmol/L) 1.40 [1.19, 1.63] 1.52 [1.32, 1.69] 1.25 [1.02, 1.43] 8.919 <0.001
TC (mmol/L) 4.90 [4.60, 5.23] 4.94 [4.62, 5.28] 4.87 [4.56, 5.12] 2.113 0.035
HDL (mmol/L) 1.23±0.37 1.16±0.31 1.34±0.43 4.783 <0.001
LDL (mmol/L) 3.01±0.53 3.11±0.51 2.85±0.52 -5.097 <0.001
ApoA1 (mg/dL) 138.00 [121.00, 154.25] 135.50 [116.25, 150.75] 144.00 [124.25, 162.00] 3.611 <0.001
ApoB (mg/dL) 97.24±21.93 100.64±21.90 92.11±21.01 -3.954 <0.001
Lp(a) (mg/L) 133.01±30.26 133.05±30.27 132.96±30.33 -0.030 0.976
UA (μmol/L) 289.61±61.10 289.06±64.35 290.43±56.03 0.225 0.822
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ApoA1 (P<0.001), ApoB (P<0.001), CA125 (P< 
0.001), CA199 (P<0.001), and HE-4 (P<0.001). 
In contrast, no statistically significant differ-
ences were observed between groups for age 
(P=0.632), age at menarche (P=0.722), smok-
ing history (P=0.475), diabetes history (P= 
0.143), hypertension history (P=0.598), gravid-
ity (P=0.293), TP (P=0.674), ALB (P=0.243), 
GLO (P=0.923), TBIL (P=0.714), Lp(a) (P=0.976), 
UA (P=0.822), FT3 (P=0.580), FT4 (P=0.457), 
and TSH (P=0.366). For detailed numerical 
comparisons, please refer to Table 2.

curve analysis. The results demonstrated th- 
at ET, FBG, ALT, AST, TG, HDL, LDL, ApoB, 
CA125, CA199, and HE-4 exhibited signifi- 
cant discriminatory power, as evidenced by 
their respective AUC values. Among these bio-
markers, HE-4 showed the highest predic- 
tive accuracy (AUC), followed by ET and AST. 
The optimal cutoff values, determined by the 
Youden index, were applied for binary classi- 
fication, providing a strong foundation for lo- 
gistic regression modeling (Table 3 and Figure 
3).

FT3 (pmol/L) 2.65±0.73 2.64±0.74 2.68±0.73 0.554 0.580
FT4 (pmol/L) 15.94±3.92 15.83±3.90 16.12±3.95 0.745 0.457
TSH (mIU/L) 2.24±0.61 2.22±0.59 2.27±0.63 0.905 0.366
CA125 (U/mL) 20.09±5.55 21.79±5.23 17.53±5.02 -8.258 <0.001
CA199 (U/mL) 16.26±5.34 18.25±4.89 13.27±4.54 -10.468 <0.001
HE-4 (pmol/L) 56.38±24.49 69.64±20.72 36.40±13.87 -18.140 <0.001
Note: EC, endometrial cancer; BMI, body mass index; AUB, abnormal uterine bleeding; ET, endometrial thickness; FBG, fasting blood glucose; ALT, 
alanine aminotransferase; AST, aspartate aminotransferase; TP, total protein; ALB, albumin; GLO, globulin; TBIL, total bilirubin; TG, triglycerides; 
TC, total cholesterol; HDL/LDL, high-/low-density lipoprotein; ApoA1, apolipoprotein A1; ApoB, apolipoprotein B; Lp(a), lipoprotein(a); UA, uric acid; 
FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid-stimulating hormone; CA125/199, cancer antigen 125/199; HE-4, human epididymis 
protein 4.

Figure 2. Feature selection process in LASSO regression. A. Variable 
trajectory plot showing feature selection. B. Coefficient profile plot demon-
strating variable shrinkage.

Results of feature selection 
via LASSO regression

LASSO regression analysis 
was performed on 17 candi-
date variables, with the opti-
mal penalty parameter (lamb- 
da.1se) set to 0.016601. This 
analysis identified 14 clinically 
relevant predictive variables: 
ET, FBG, ALT, AST, TG, HDL, 
LDL, ApoB, CA125, CA199, 
HE-4, AUB, menstrual cycle 
regularity, and polycystic fea-
tures. These selected variabl- 
es showed significant predic-
tive value in the high-risk early-
warning model for EC, as illus-
trated in Figure 2A, 2B.

Conversion of continuous vari-
ables to binary categories for 
logistic regression analysis

To facilitate logistic regression 
analysis, optimal cutoff values 
for converting continuous va- 
riables into binary categories 
were determined using ROC 
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Table 3. ROC curve analysis of diagnostic performance for 11 continuous variables
Marker AUC 95% CI Specificity Sensitivity Youden index Cut off
ET (mm) 0.793 0.750-0.836 92.17% 64.80% 56.97% 0.735
FBG (mmol/L) 0.638 0.582-0.694 49.40% 76.00% 25.40% 5.575
ALT (U/L) 0.7 0.649-0.751 72.89% 61.20% 34.09% 17.45
AST (U/L) 0.814 0.772-0.857 77.11% 73.20% 50.31% 20.55
TG (mmol/L) 0.758 0.711-0.805 53.61% 84.40% 38.01% 1.255
HDL (mmol/L) 0.619 0.562-0.676 42.77% 77.60% 20.37% 1.405
LDL (mmol/L) 0.643 0.589-0.697 59.64% 64.40% 24.04% 2.935
ApoB (mg/dL) 0.61 0.556-0.665 52.41% 66.40% 18.81% 91.500
CA125 (U/mL) 0.723 0.673-0.772 81.33% 56.00% 37.33% 21.090
CA199 (U/mL) 0.772 0.727-0.817 75.30% 67.20% 42.50% 16.170
HE-4 (pmol/L) 0.907 0.879-0.934 90.96% 75.60% 66.56% 55.500
Note: ROC, receiver operating characteristic; AUC, ara under the curve; CI, confidence interval; ET, endometrial thickness; FBG, 
fasting blood glucose; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TG, triglycerides; HDL/LDL, high-/low-
density lipoprotein; ApoB, apolipoprotein B; CA125/199, cancer antigen 125/199; HE-4, human epididymis protein 4.

Figure 3. Determination of optimal binary classification cutoffs using ROC curve analysis. ROC curves illustrating the 
diagnostic performance of (A) ET, (B) FBG, (C) ALT, (D) AST, (E) TG, (F) HDL, (G) LDL, (H) ApoB, (I) CA125, (J) CA199, 
and (K) HE-4. Each panel displays the discriminatory capability of the respective biomarker, with cutoff values 
selected based on the Youden index. Note: ROC, receiver operating characteristic; ET, endometrial thickness; FBG, 
fasting blood glucose; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TG, triglycerides; HDL/LDL, 
high-/low-density lipoprotein; ApoB, apolipoprotein B; CA125/199, cancer antigen 125/199; HE-4, human epididy-
mis protein 4.

Analysis of risk factors for EC using logistic 
regression

Logistic regression was used to evaluate po- 
tential risk factors for EC. As shown in Table 4, 

fourteen variables were dichotomized, with 
continuous variables categorized based on 
optimal cutoff values from ROC curve analysis. 
Categorical variables were coded as 1 (“yes” or 
“irregular”) and 0 (“no” or “regular”), with the 
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Table 4. Variable assignment
Variable name Variable type Assignment content
ET (X) ≥0.735=1, <0.735=0
FBG (X) ≥5.575=1, <5.575=0
ALT (X) ≥17.45=1, <17.45=0
AST (X) ≥20.55=1, <20.55=0
TG (X) ≥1.255=1, <1.255=0
HDL (X) ≥1.405=1, <1.405=0
LDL (X) ≥2.935=1, <2.935=0
ApoB (X) ≥91.5=1, <91.5=0
CA125 (X) ≥21.09=1, <21.09=0
CA199 (X) ≥16.17=1, <16.17=0
HE-4 (X) ≥55.5=1, <55.5=0
AUB (X) Yes =1, no =0
Menstrual cycle regularity (X) Irregular =1, regular =0
Polycystic features (X) Yes =1, no =0
Sample type (Y) EC =1, control =0
Note: ET, endometrial thickness; FBG, fasting blood glucose; ALT, alanine amino-
transferase; AST, aspartate aminotransferase; TG, triglycerides; HDL/LDL, high-/
low-density lipoprotein; ApoB, apolipoprotein B; CA125/199, cancer antigen 
125/199; HE-4, human epididymis protein 4; AUB, abnormal uterine bleeding.

sample type coded as 1 for EC and 0 for con-
trols. Univariate analysis identified statistically 
significant associations (P<0.05) between all 
examined variables and EC risk. Several bio-
markers showed particularly strong associa-
tions, including HE-4 (OR=31.19, P<0.001),  
ET (OR=21.666, P<0.001), AST (OR=9.2, P< 
0.001), TG (OR=6.253, P<0.001), and CA199 
(OR=6.246, P<0.001). Multivariate regression 
modeling revealed that most variables main-
tained independent predictive value after ad- 
justment (P<0.05), except for LDL (OR=2.322, 
P=0.115) and menstrual cycle regularity (OR= 
1.771, P=0.408). The most robust independent 
predictors were HE-4 (OR=24.416, P<0.001), 
ET (OR=22.356, P<0.001), and TG (OR=13.794, 
P<0.001), as shown in Table 5.

Interaction analysis of EC with associated risk 
factors

The interaction analysis revealed significant 
associations between EC and several clinical 
and biochemical variables. The model intercept 
was -35.041 (P<0.001), indicating a strong 
baseline effect. Key variables significantly as- 
sociated with EC risk included ET (Estimate 
=4.472, P<0.001), FBG (Estimate =0.691, 
P=0.040), AST (Estimate =0.327, P<0.001), TG 
(Estimate =3.609, P=0.001), CA125 (Estimate 

=0.195, P<0.001), CA199 (Es- 
timate =0.252, P<0.001), HE-4 
(Estimate =0.100, P<0.001), 
AUB (Estimate =2.149, P< 
0.001), and polycystic features 
(Estimate =3.193, P=0.006). 
No significant associations 
were observed for ALT (Esti- 
mate =0.079, P=0.199), HDL 
(Estimate =-0.658, P=0.349), 
or ApoB (Estimate =0.022, 
P=0.129). Details are in Table 
6 and Figure 4.

Nomogram model for predict-
ing EC risk

The nomogram model, which 
incorporates 12 characteristic 
variables, provides a quantita-
tive tool for individualized EC 
risk prediction. As illustrated in 
Figure 5, the nomogram dis-
plays variables in descending 

order of importance: HDL, AUB, CA199, CA125, 
FBG, ALT, ET, AST, TG, ApoB, and HE-4. Each 
variable is assigned a corresponding score on 
the scoring axis, and the cumulative score is 
used to predict EC risk probability. The mo- 
del demonstrates differential weighting among 
predictors, with HE-4 and ET contributing most 
substantially to the total score, while HDL and 
TG exhibit more modest contributions. This 
suggests varying predictive weights for differ-
ent variables in assessing EC risk (Figure 5).

Internal validation in the training set: model 
performance evaluation

Internal validation performed on the training 
set demonstrated exceptional predictive per-
formance. ROC curve analysis yielded an AUC 
of 0.984 (Figure 6A), indicating excellent dis-
criminative ability between the EC and control 
groups. Calibration, assessed via 1,000 boot-
strap resamples, revealed excellent agreement 
between predicted probabilities and observed 
outcomes, with a mean absolute error (MAE) of 
0.004, mean squared error (MSE) of 0.00003, 
and 0.9 quantile absolute error of 0.008. The 
GOF test showed no significant deviation (P= 
0.271), further supporting the model’s excel-
lent fit. Additional validation metrics confirm- 
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Table 5. Univariate and multivariate logistic regression analysis of risk factors for endometrial cancer

Variable name
Univariate Multivariate

OR P 95% CI OR P 95% CI
ET 21.666 <0.001 12.022-42.15 22.356 <0.001 7.234-84.243
FBG 3.091 <0.001 2.036-4.725 5.959 0.002 1.966-20.282
ALT 4.241 <0.001 2.786-6.544 7.55 <0.001 2.605-25.252
AST 9.2 <0.001 5.875-14.692 8.191 <0.001 3.033-24.497
TG 6.253 <0.001 3.984-9.973 13.794 <0.001 4.502-50.574
HDL 0.386 <0.001 0.251-0.591 0.312 0.042 0.097-0.935
LDL 2.673 <0.001 1.79-4.018 2.322 0.115 0.829-6.898
ApoB 2.176 <0.001 1.458-3.261 4.175 0.008 1.516-12.756
CA125 5.543 <0.001 3.524-8.923 5.284 0.003 1.845-16.516
CA199 6.246 <0.001 4.051-9.791 3.754 0.013 1.355-11.212
HE-4 31.19 <0.001 17.539-59.083 24.416 <0.001 8.341-85.142
AUB 4.984 <0.001 3.279-7.657 3.656 0.012 1.359-10.402
Menstrual cycle regularity 1.662 0.031 1.047-2.64 1.771 0.408 0.468-7.183
Polycystic features 5.079 <0.001 2.259-13.605 12.867 0.014 1.851-109.103
Note: OR, odds ratio; CI, confidence interval; ET, endometrial thickness; FBG, fasting blood glucose; ALT, alanine aminotrans-
ferase; AST, aspartate aminotransferase; TG, triglycerides; HDL/LDL, high-/low-density lipoprotein; ApoB, apolipoprotein B; 
CA125/199, cancer antigen 125/199; HE-4, human epididymis protein 4; AUB, abnormal uterine bleeding.

Table 6. Interaction between endometrial cancer and risk factors
Variable name Estimate Std Error Z value Pr (>|z|)
(Intercept) -35.041 5.379 -6.514 <0.001
ET 4.472 1.129 3.963 <0.001
FBG 0.691 0.336 2.054 0.040 
ALT 0.079 0.061 1.284 0.199 
AST 0.327 0.087 3.749 <0.001
TG 3.609 1.091 3.308 0.001 
HDL -0.658 0.703 -0.936 0.349 
ApoB 0.022 0.014 1.519 0.129 
CA125 0.195 0.053 3.656 <0.001
CA199 0.252 0.071 3.568 <0.001
HE4 0.100 0.018 5.621 <0.001
AUB 2.149 0.601 3.575 <0.001
Polycystic features 3.193 1.159 2.755 0.006 
Note: ET, endometrial thickness; FBG, fasting blood glucose; ALT, alanine amino-
transferase; AST, aspartate aminotransferase; TG, triglycerides; HDL, high-/low-
density lipoprotein; ApoB, apolipoprotein B; CA125/199, cancer antigen 125/199; 
HE-4, human epididymis protein 4; AUB, abnormal uterine bleeding.

ed strong calibration and discriminatory perfor-
mance, with Dxy=0.9687, coefficient of deter-
mination (R2) =0.8735, slope =0.9855, and 
maximum calibration error (Emax) =0.0039 
(Figure 6B). Decision curve analysis (DCA) 
(Figure 6C) revealed substantial clinical net 
benefits across the entire risk threshold spec-
trum (0-99%), peaking at 39.90%, highlighting 
the model’s clinical value.

Internal validation of the 
model performance on the 
validation set

Internal validation on the inde-
pendent validation set con-
firmed the model’s robust pre-
dictive performance. ROC cur- 
ve analysis yielded an outst- 
anding AUC of 0.987, demon-
strating excellent discrimina-
tive ability in distinguishing  
EC from controls (Figure 7A). 
Calibration (based on 1,000 
bootstrap samples) indicated 
excellent agreement between 
predicted probabilities and ob- 
served outcomes, with MAE of 
0.014, MSE of 0.00038, and 
0.9 quantile absolute error of 
0.03. The GOF test further  
confirmed superior model fit 

(P=0.807), showing no significant deviation 
from ideal calibration. Other validation metrics 
included Somers’ Dxy=0.9741, R2=0.8810, ca- 
libration slope =0.9695, and Emax=0.0125, 
confirming exceptional calibration and discrimi-
nation (Figure 7B). DCA demonstrated strong 
clinical utility, with peak net benefit of 40.78% 
(Figure 7C), supporting its role in clinical de- 
cision-making.
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Figure 4. Interaction analysis of EC with associated risk factors. The predicted probability of EC in relation to: (A) ET, 
(B) FBG, (C) ALT, (D) AST, (E) TG, (F) HDL, (G) ApoB, (H) CA125, (I) CA19-9, (J) HE-4, (K) AUB, and (L) polycystic fea-
tures. Note: EC, endometrial cancer; ET, endometrial thickness; FBG, fasting blood glucose; ALT, alanine aminotrans-
ferase; AST, aspartate aminotransferase; TG, triglycerides; HDL, high-/low-density lipoprotein; ApoB, apolipoprotein 
B; CA125/199, cancer antigen 125/199; HE-4, human epididymis protein 4; AUB, abnormal uterine bleeding.

Figure 5. Nomogram for predicting endometrial cancer risk based on 12 characteristic variables. Note: HDL, high-
density lipoprotein; AUB, abnormal uterine bleeding; ApoB, apolipoprotein B; CA199, cancer antigen 199; FBG, fast-
ing blood glucose; CA125, cancer antigen 125; ALT, alanine aminotransferase; AST, aspartate aminotransferase; 
TG, triglycerides; ET, endometrial thickness; HE-4, human epididymis protein 4.
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Figure 6. Internal validation in the training set: ROC curve, calibration curve, and DCA analysis. A. The ROC curve il-
lustrates the model’s discriminative ability, with an AUC of 0.984. The x-axis represents 1-specificity, while the y-axis 
corresponds to sensitivity. B. The calibration curve, generated using 1,000 bootstrap resamples, displays the rela-
tionship between predicted probabilities and actual outcomes. The blue line represents the fitted calibration curve, 
while the red dashed line indicates the ideal calibration line, demonstrating strong agreement between predictions 
and observations. C. The DCA compares the net benefit of the model (blue line) against the “treat-all” (red line) and 
“treat-none” (green line) strategies, highlighting the model’s clinical value across different risk thresholds. Note: 
ROC, receiver operating characteristic; DCA, decision curve analysis; AUC, area under the curve.

Figure 7. Internal validation: model performance assessment. A. ROC analysis showing exceptional diagnostic ac-
curacy (AUC=0.987). Axes represent sensitivity versus 1-specificity. B. Bootstrap-corrected calibration plot (1000 it-
erations) comparing predicted probabilities (blue line) against ideal calibration (red dashed line). C. DCA quantifying 
clinical utility, with model performance (blue) superior to both “treat-all” (red) and “treat-none” (green) strategies. 
Note: ROC, receiver operating characteristic; AUC, area under the curve; DCA, decision curve analysis.

External validation of the predictive model: 
comprehensive performance assessment

The external validation on the independent 
external cohort confirmed the model’s robust 
predictive capability. ROC analysis yielded an 
AUC of 0.964 (Figure 8A), demonstrating  
strong discriminative power between EC and  
control cases. Calibration using 1,000 boot-
strap resamples revealed excellent agreement 

between predicted probabilities and observed 
outcomes, with MAE=0.011, MSE=0.00023, 
and 90th percentile absolute error of 0.025. 
The GOF test (P=0.241) indicated no sig- 
nificant miscalibration. Additional validation 
metrics reinforced the model’s performance: 
Dxy=0.9287, R2=0.7920, calibration slope 
=0.9739, and Emax=0.0078 (Figure 8B). DCA 
(Figure 8C) demonstrated superior clinical util-
ity across the entire risk threshold spectrum 
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Figure 8. Performance evaluation of the externally validated prediction model. A. ROC Curve: The model demon-
strates exceptional discriminative ability, with an AUC of 0.964. The x-axis represents 1-specificity, while the y-axis 
corresponds to sensitivity. B. Calibration Curve (Bootstrap Resampling: 1,000 iterations): The blue line depicts the 
agreement between predicted probabilities and observed outcomes, while the red dashed line indicates the ideal 
calibration reference. The close alignment confirms the model’s high predictive accuracy. C. DCA: The net clinical 
benefit of the model is represented by the blue curve, compared against two extreme strategies: treat-all (red line) 
and treat-none (green line). Note: ROC, receiver operating characteristic; AUC, area under the curve; DCA, decision 
curve analysis.

(0-99%), with peak net benefit reaching 
40.26%, significantly outperforming both 
“treat-all” and “treat-none” strategies.

Comparative analysis of the diagnostic per-
formance between tumor markers and the 
comprehensive risk model

A comparative evaluation of the diagnostic util-
ity of individual tumor markers (CA125, CA199, 
HE-4) and the composite risk model (Risk) 
across the training, validation, and external 
validation sets revealed that the comprehen-
sive risk model consistently outperformed all 
individual biomarkers in all three datasets.

Training set analysis: The Risk model demon-
strated significantly higher discriminatory ac- 
curacy than CA125 (AUC difference: -0.262; 
P<0.001), CA199 (AUC difference: -0.213; 
P<0.001), and HE-4 (AUC difference: -0.078; 
P<0.001). Among tumor markers, HE-4 signifi-
cantly outperformed both CA125 (AUC differ-
ence: -0.184; P<0.001) and CA199 (AUC differ-
ence: -0.135; P<0.001).

Validation set analysis: In the validation set, the 
Risk model showed significantly greater diag-
nostic accuracy compared to CA125 (AUC dif-
ference: -0.231; P<0.001), CA199 (AUC differ-
ence: -0.189; P<0.001), and HE-4 (AUC 
difference: -0.068; P<0.001). HE-4 outper-
formed both CA125 (AUC difference: -0.162; 

P<0.001) and CA199 (AUC difference: -0.121; 
P<0.001).

External validation set analysis: In the external 
validation cohort, the Risk model maintained 
diagnostic superiority over CA125 (AUC differ-
ence: -0.233; P<0.001) and CA199 (AUC dif- 
ference: -0.244; P<0.001). HE-4 also outper-
formed both CA125 (AUC difference: -0.218; 
P<0.001) and CA199 (AUC difference: -0.228; 
P<0.001). However, no statistically significant 
difference was observed between the Risk 
model and HE-4 (AUC difference: -0.015; 
P=0.435).

Collectively, these findings demonstrate that 
the comprehensive risk model achieves the 
highest diagnostic accuracy across all evaluat-
ed datasets (see Table 7 and Figure 9 for 
detailed comparisons).

Discussion

Among various hormone-related parameters, 
ET and PCOS-specific characteristics (such as 
hyperandrogenism and ovulatory dysfunction) 
are key determinants of EC risk [21, 22]. ET, a 
readily measurable imaging biomarker, reflects 
the proliferative status of the endometrial lin-
ing. Excessive and sustained proliferation in 
this tissue is a critical precursor to malignant 
transformation. A wealth of evidence links 
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Table 7. AUC comparisons between tumor markers and the risk model in the training, validation, and 
external validation sets
Marker1 Marker2 Z_value P_value AUC_difference CI_lower_upper
CA125 CA199 -1.444 0.149 -0.049 -0.116 - 0.018
CA125 HE-4 -6.324 <0.001 -0.184 -0.241 - -0.127
CA125 Risk -10.305 <0.001 -0.262 -0.312 - -0.212
CA199 HE-4 -4.99 <0.001 -0.135 -0.188 - -0.082
CA199 Risk -9.202 <0.001 -0.213 -0.258 - -0.167
HE-4 Risk -5.653 <0.001 -0.078 -0.105 - -0.051
CA125 CA199 -0.854 0.393 -0.041 -0.136 - 0.054
CA125 HE-4 -4.043 <0.001 -0.162 -0.241 - -0.084
CA125 Risk1 -6.497 <0.001 -0.231 -0.300 - -0.161
CA199 HE-4 -3.451 <0.001 -0.121 -0.190 - -0.052
CA199 Risk1 -5.901 <0.001 -0.189 -0.252 - -0.126
HE-4 Risk1 -3.721 <0.001 -0.068 -0.105 - -0.032
CA125 CA199 0.18 0.857 0.01 -0.103 - 0.124
CA125 HE-4 -4.689 <0.001 -0.218 -0.309 - -0.127
CA125 Risk2 -5.927 <0.001 -0.233 -0.310 - -0.156
CA199 HE-4 -4.903 <0.001 -0.228 -0.320 - -0.137
CA199 Risk2 -5.64 <0.001 -0.244 -0.328 - -0.159
HE-4 Risk2 -0.781 0.435 -0.015 -0.053 - 0.023
Note: AUC, area under the curve; CI, confidence interval; CA125, cancer antigen 125; CA199, cancer antigen 199; HE-4, hu-
man epididymis protein 4. Risk = training st, Risk1 = validation set, Risk2 = external validation set.

Figure 9. Smoothed ROC curves for the training set, validation set, and external validation set. A. Smoothed ROC 
curve for the training set. B. Smoothed ROC curve for the validation set. C. Smoothed ROC curve for the external 
validation set. Note: ROC, receiver operating characteristic; CA125, cancer antigen 125; AUC, area under the curve; 
CA199, cancer antigen 199; HE-4, human epididymis protein 4.

increased ET to heightened EC risk, particu- 
larly among PCOS patients who are not receiv-
ing hormonal interventions. In these individu-
als, unopposed estrogen exposure promotes 
endometrial hyperplasia, creating a favorable 
environment for carcinogenesis [23]. There- 
fore, ET measurement plays a pivotal role in 
early EC screening protocols, offering valuable 
diagnostic insights, especially in the PCOS  
population. Furthermore, PCOS is character-

ized by hyperandrogenism and chronic ano- 
vulation, which disrupt endocrine balance and 
lead to prolonged estrogen stimulation of the 
endometrium, thus increasing EC risk [24]. The 
common co-occurrence of PCOS with MetS 
exacerbates this risk by creating a harmful  
metabolic environment, further underscoring 
the need for close monitoring and proactive 
management of endocrine abnormalities dur-
ing early screening initiatives.
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Metabolic-related factors, including FBG, TG, 
HDL, LDL, and apolipoprotein B (ApoB), signifi-
cantly influence EC risk [25]. MetS, strongly 
associated with insulin resistance, hyperglyce-
mia, and dyslipidemia, collectively contributes 
to an elevated risk of EC. Shi et al. [13] demon-
strated that metabolic disturbances such as 
obesity and diabetes markedly increase EC risk 
through insulin resistance, a key feature of 
MetS. Notably, elevated FBG levels are often 
coupled with hyperinsulinemia, which activates 
the IGF-1 pathway, stimulating abnormal endo-
metrial cell proliferation and carcinogenesis 
[26, 27]. Thus, FBG not only serves as a bio-
marker of metabolic dysregulation in MetS but 
also as a crucial indicator for early EC screen-
ing. Additionally, other metabolic abnormalities 
- such as hypertriglyceridemia, reduced HDL, 
and elevated LDL - intensify chronic low-grade 
inflammation, further promoting endometrial 
cell proliferation and malignant transformation 
[28]. Studies have shown that PGD, a gene 
shared by both PCOS and EC, promotes endo-
metrial cell proliferation through glucose meta-
bolic pathways, mirroring the pathogenic mech-
anisms of MetS [29]. Elevated ApoB levels, 
associated with dyslipidemia and endocrine 
dysfunction, also exacerbate EC risk [30]. The- 
se findings highlight the importance of early 
identification and management of metabolic 
factors, particularly in individuals with MetS, as 
a promising strategy for reducing EC incidence.

Tumor markers, including HE-4, CA125, and 
CA199, play crucial roles in early EC detection. 
HE-4, in particular, has emerged as a highly 
promising biomarker, offering superior diagnos-
tic sensitivity and specificity compared to tradi-
tional markers. Literature reports [31] indicate 
that HE-4 is significantly overexpressed in EC 
patients’ serum, exhibiting high sensitivity and 
specificity. Combining HE-4 with other biomark-
ers significantly enhances diagnostic accuracy 
[32]. In our study, HE-4 demonstrated the high-
est AUC, underscoring its exceptional perfor-
mance in distinguishing EC patients from con-
trols. When integrated with clinical parameters 
such as ET and FBG, HE-4 significantly improved 
risk prediction accuracy. Cuesta-Guardiola et 
al. [33] found that serum HE-4 outperformed 
CA125 in EC diagnosis, as CA125 showed lim-
ited elevation in EC patients. Although CA125 
and CA199 are elevated in certain EC sub- 
types, their standalone sensitivity remains lim-

ited. Supporting evidence [34] suggests that 
HE-4 and CA125 are the most promising serum 
biomarkers for EC diagnosis, with HE-4 being 
particularly suitable for inclusion in diagnostic 
algorithms. The comprehensive risk model, whi- 
ch integrates hormonal, metabolic, and tumor 
marker profiles, effectively addresses the limi-
tations of single-marker approaches.

PCOS and MetS, as interrelated endocrine and 
metabolic disorders, often present clinically in 
overlapping populations. Their synergistic inter-
action may significantly contribute to endome-
trial carcinogenesis [35]. PCOS patients, ex- 
hibiting hyperandrogenic states, experience 
persistent endometrial proliferation, which can 
eventually progress to malignancy. Zhong et al. 
[17] identified obesity, prolonged menstrual 
cycles, and dyslipidemia as major risk factors 
for endometrial hyperplasia in PCOS popula-
tions, while demonstrating the protective ef- 
fects of metformin and hormonal therapies. 
Giordano et al. [36] showed that BMI and insu-
lin levels in PCOS patients disrupt the balance 
between endometrial proliferation and apopto-
sis, heightening carcinogenic risk. Insulin resis-
tance, a hallmark of PCOS, exacerbates hyper-
glycemia and hyperinsulinemia, creating meta- 
bolic conditions that favor the development of 
MetS [37]. In MetS pathophysiology, insulin 
resistance and chronic inflammation constitute 
key pathways [38]. MetS can drive excessive 
endometrial hyperplasia through dysregulated 
IGF-1 pathways and prolonged pro-inflamma- 
tory cytokine release [39]. This bidirectional 
PCOS-MetS interaction establishes a vicious 
cycle that substantially amplifies EC risk. Our 
interaction analysis confirms that the synergy 
between PCOS and MetS significantly influenc-
es EC development, highlighting the promi-
nence of PCOS characteristics, AUB, FBG lev-
els, and HE-4 in high-risk populations.

The nomogram model provides clinicians with a 
powerful risk assessment tool by quantitatively 
integrating predictive variables for intuitive indi-
vidual risk evaluation in EC. Key variables such 
as HE-4 and ET exhibit substantial predictive 
value, highlighting their critical role in early 
screening. Kuai et al. [18] demonstrated that 
nomograms incorporating PCOS and ET achie- 
ved AUC of 0.889-0.956 for predicting endo-
metrial hyperplasia/EC risk in young women. Li 
et al. [40] reported that nomograms combining 
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PCOS and metabolic factors yielded an AUC  
of 0.905 in premenopausal women. HE-4 
emerged as a superior tumor marker with an 
AUC of 0.907, significantly outperforming con-
ventional biomarkers such as CA125 and 
CA199. Our model showed high performance 
across training, validation, and external vali- 
dation sets. Internal validation achieved an 
impressive AUC of 0.987, while external valida-
tion yielded an AUC of 0.964, demonstrating 
robust discriminative ability. Calibration curves 
revealed excellent agreement between predict-
ed and observed outcomes, and DCA confirmed 
substantial clinical net benefits across a wide 
range of risk thresholds. Existing literature [41] 
supports the notion that nomogram models 
incorporating metabolic factors significantly 
improve EC diagnostic efficiency by optimizing 
patient selection for hysteroscopic examina-
tion. Compared to traditional single-marker 
approaches, the nomogram demonstrated su- 
perior performance in all validation sets, par-
ticularly in sensitivity and specificity for early-
stage detection. This comprehensive risk model 
enhances diagnostic precision for identifying 
high-risk populations and facilitates personal-
ized treatment strategies, improving clinical 
outcomes and survival rates.

While this study demonstrated promising re- 
sults, several limitations must be acknowl-
edged. First, the retrospective design and reli-
ance on data from a single institution may limit 
the generalizability of our findings. Future multi-
center prospective studies with larger cohorts 
are needed to validate the model’s perfor-
mance across diverse populations. Second, the 
analysis did not comprehensively account for 
other potential risk factors, such as genetic 
predisposition and environmental exposures, 
which may significantly contribute to endome-
trial carcinogenesis. Future research should 
broaden the scope to include these and other 
relevant variables to improve the model’s pre-
dictive accuracy and clinical utility. Lastly, 
although the nomogram performed well in  
our cohort, its real-world clinical application 
requires further evaluation. In resource-con-
strained settings, future studies should focus 
on optimizing the integration of this model with 
existing screening protocols to develop cost-
effective clinical decision-making strategies.

This study established a high-risk prediction 
model for EC by integrating the synergistic 

effects of PCOS and metabolic syndrome 
(MetS). The model demonstrated robust pre- 
dictive accuracy and consistent performance 
across the training, validation, and external 
validation cohorts. Its ability to reliably identify 
high-risk individuals provides a promising tool 
for enhancing early detection and screening 
strategies for EC.
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