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Abstract: Hypoxia plays a crucial role in the pathogenesis of various cancers, especially lung adenocarcinoma
(LUAD), by altering cancer metabolism to promote escape mechanisms. Anoikis, a specialized form of programmed
cell death, is evaded by LUAD cells during tumor progression and metastasis through upregulation of anti-apoptotic
proteins. Investigating the impact of hypoxia-anoikis-related genes on prognosis and therapy prediction in LUAD is
essential. Gene expression and clinical data from 489 LUAD patients and 49 normal tissues in The Cancer Genome
Atlas (TCGA) dataset were used as the training set, while GSE72094, GSE31210, and GSE30219 datasets were
used for validation. Weighted Gene Co-Expression Network Analysis (WGCNA) identified genes associated with hy-
poxia and anoikis. Machine learning models were evaluated using the C-index. Kaplan-Meier survival analysis,
immune cell infiltration, tumor mutational burden (TMB), and sensitivity to therapy were assessed based on risk
scores. A total of 21 hypoxia-anoikis-related prognostic genes were identified. The Random Survival Forest (RSF)
model had the highest C-index. High-risk patients had significantly lower survival rates. Imnmune analysis showed
higher immune infiltration in the low-risk group, with lower immune escape potential in these patients. Risk scores
were correlated with sensitivity to targeted therapy and chemotherapy. MCF2 was identified as a key prognostic
gene, and its knockdown inhibited LUAD cell proliferation and metastasis. These 21 genes offer insights into LUAD
prognosis and therapy response, guiding personalized treatment strategies for LUAD patients.

Keywords: Hypoxia, anoikis, machine learning, biomarker detection, experimental validation of biomarker, tar-
geted therapy, lung adenocarcinoma

Introduction cell death. Hypoxia, a common feature of solid
malignancies, plays a critical role in tumor
development, metabolic reprogramming, and
resistance to therapy, particularly in LUAD.
Under low-oxygen conditions, cancerous cells
undergo both metabolic shifts and microenvi-
ronmental modifications, promoting immune
escape while enhancing tumor survival and dis-
semination [2].

Lung adenocarcinoma (LUAD), recognized as
both a highly prevalent and aggressive variant
of non-small cell lung cancer (NSCLC), is distin-
guished by its significant metastatic capabi-
lity and unfavorable prognosis [1]. Despite
advancements in early detection and therapeu-
tic interventions, the survival rate of LUAD
patients continues to be poor, largely due to

mechanisms such as immune system evasion
by the tumor and resistance to programmed

Anoikis, a specialized type of programmed cell
death, takes place when cells lose appropriate
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anchorage to the extracellular matrix (ECM) [3,
4]. This apoptotic process functions as a key
defensive mechanism that prevents the sp-
read of aberrant cells. However, malignant cells
have developed multiple survival strategies to
bypass anoikis, including: (1) increased activa-
tion of focal adhesion kinase (FAK) and Src
kinase, which stimulate pro-survival pathways
such as PI3K/Akt and MAPK/ERK1/2, along-
side downregulation of pro-apoptotic Bcl-2
family proteins (e.g., Bax) and simultaneous
upregulation of anti-apoptotic factors (e.g.,
Bcl-xL); (2) epithelial-mesenchymal transition
(EMT)-driven changes in cell adhesion, mark-
ed by diminished E-cadherin expression and
enhanced motility, allowing detached tumor
cells to persist in circulation and facilitate
metastasis; (3) modifications to the ECM that
generate a tumor-supportive microenviron-
ment, ultimately aiding cancer invasion and
survival. These pathways are particularly rele-
vant in LUAD progression.

Although the intricate interplay between hypox-
ia and anoikis resistance in LUAD remains
only partially understood, current findings indi-
cate a significant association. The hypoxic
tumor microenvironment promotes survival by
enabling mitochondrial translocation of phos-
phoglycerate kinase 1 (PGK1), initiating dual
protective mechanisms against anoikis: (1)
inhibition of pyruvate oxidation while fostering
aerobic glycolysis (the Warburg effect) [5, 6],
which decreases reactive oxygen species
(ROS) levels and enhances lactate accumula-
tion to sustain cellular energy homeostasis; (2)
enhancement of the homing ability of dissemi-
nated malignant cells. This metabolic and tran-
scriptional reprogramming, regulated by the
hypoxia-PGK1 axis [7], not only grants survival
advantages to LUAD cells that have detached
but also heightens their likelihood of establish-
ing distant metastases, such as peritoneal dis-
semination [8]. Previous studies have reported
that hypoxia-inducible factor (HIF)-1 activation
inhibits the expression of Bim and Bmf, reduc-
ing apoptosis and thereby preventing anoikis
[9]. Additionally, ANGPTL4 enhances the cell’'s
resistance to anoikis and promotes tumor
growth and metastasis by activating the FAK/
Src/PI3K-Akt/ERK signaling pathways [10].
Furthermore, HIF-1a inhibits the expression of
ab integrin, preventing anoikis in gastric cancer
cells and promoting cell survival and metasta-
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sis. HIF-1a-deficient cells form fewer colonies in
soft agar, indicating its importance in anchor-
age-independent proliferation [11].

Specifically, “hypoxia-anoikis-related genes”
refer to genes that are activated in a hypoxic
environment and inhibit or evade anoikis
when tumor cells lose their attachment to the
extracellular matrix (ECM). These genes help
tumor cells escape anoikis by regulating mech-
anisms such as cell survival, metabolic repro-
gramming, and cell migration, thereby promot-
ing tumor cell survival and metastasis. In this
research, Weighted Gene Co-Expression Net-
work Analysis (WGCNA) was utilized to pinpoint
genes linked to both hypoxia and anoikis, fol-
lowed by the application of 117 machine learn-
ing model combinations to select 21 progno-
stic genes [12-14]. A risk stratification model
was developed to predict patient survival out-
comes, response to targeted treatments, and
chemotherapy sensitivity, thereby providing
new insights into precision oncology and indi-
vidualized treatment approaches.

Materials and methods
Data acquisition and processing

Gene expression and clinical data from 489
LUAD patients and 59 adjacent normal tissu-
es were obtained from TCGA and used as the
test cohort. External validation datasets
(GSE72094, GSE31210, and GSE30219) were
retrieved from the Gene Expression Omnibus
(GEO). A total of 243 hypoxia-related genes
were obtained from the Molecular Signatures
Database (MSigDB), while 338 anoikis-related
genes were curated from published literature
(Supplementary Table 1) [15-17]. Single Samp-
le Gene Set Enrichment Analysis (SSGSEA) was
performed to calculate hypoxia and anoikis
scores for each patient [18].

Weighted correlation network analysis
(WGCNA) for hypoxia-anoikis gene identifica-
tion

The WGCNA package in R was used to con-
struct a gene co-expression network based on
TCGA-LUAD transcriptomic data. WGCNA invol-
ves four core steps [19]: Calculation of gene-
gene correlation coefficients. Identification of
gene modules. Construction of a co-expression
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network. Analysis of module-trait correlations.
A soft threshold power (B) of 6 was selected to
ensure network reliability, with a scale-free
topology index exceeding 0.90. All mRNA gen-
es were clustered into different modules based
on their expression patterns, with different col-
ors representing distinct modules. The correla-
tion between these modules and hypoxia and
anoikis scores was visualized using heatmaps
and correlation coefficients, leading to the
identification of core genes.

Differentially expressed genes (DEGs) and
prognostic gene identification

Differential expression analysis was conducted
using the “limma” R package with [log2FC| >
2.0 and FDR < 0.01 as cutoffs. Univariate Cox
regression analysis was performed using the
“survival” package to identify prognosis-related
genes. DEGs and prognostic genes were visual-
ized using EnhancedVolcano and forest plot
visualization.

Machine learning-based hypoxia-anoikis risk
score model

Ten machine learning algorithms (Lasso, RSF,
StepCox, Elastic Net, Ridge, GBM, CoxBoost,
plsRcox, SuperPC, survival-SVM) and 117
model combinations were used to construct
the risk model [20]. The best model was select-
ed based on the highest C-index. The model
was validated in TCGA and external datasets
(GSE72094, GSE31210, GSE30219). Risk
scores were calculated using multivariate Cox
regression, and patients were stratified into
high- and low-risk groups.

Nomogram construction and validation

Univariate and multivariate Cox regression
analyses identified independent prognostic
factors (stage, T-stage, N-stage, risk score). A
nomogram was developed using the “Regplot”
R package, and its predictive accuracy was
assessed using time-dependent ROC curves
and calibration plots.

Tumor mutation burden (TMB) analysis

The “Maftools” R package was used to analyze
gene mutation profiles in both high-risk and
low-risk groups.
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Immune infiltration analysis and prediction of
immune therapy response

Immune-related pathway activity levels were
analyzed using Single Sample Gene Set
Enrichment Analysis (ssGSEA). Comparisons of
immune expression levels between high- and
low-risk groups were conducted to assess
immune microenvironment differences. The
Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm was applied to LUAD trans-
criptomic data to evaluate immune infiltration
levels and immune dysfunction, predicting
patients’ responses to immunotherapy. A high-
er TIDE score indicates worse immunotherapy
efficacy. The “pheatmap” R package was used
to generate a correlation heatmap visualizing
the relationships among 21 prognostic genes,
28 immune pathways, immune scores, and
TIDE scores [21]. The Cibersort algorithm in
combination with the “Xcell” package was
applied to assess immune infiltration differ-
ences among patient groups and to profile the
distribution of multiple immune cell subtypes.

Prediction of potentially sensitive drugs

The half-maximal inhibitory concentration
(IC50) is a critical metric for assessing cellular
drug sensitivity [22, 23]. IC50 values for each
patient were calculated using the “oncoPre-
dict” R package based on gene expression pro-
files. A total of 198 drugs were evaluated,
and the top 30 experimental inhibitors and tar-
geted small molecules with negative correla-
tions were selected through Pearson correla-
tion coefficient analysis. The top 9 drugs with
the smallest correlation coefficients were cho-
sen for further box plot analysis to compare
sensitivity differences. Additionally, conven-
tional targeted therapies and chemotherapy
drugs were analyzed separately. The correla-
tion between these drugs and risk scores was
visualized using heatmaps.

Drug-gene network analysis

Cox regression analysis identified MCF2 as a
high-risk prognostic gene, which was visualized
using a forest plot. The DSigDB online data-
base was used to retrieve gene-drug enrich-
ment data. Further enrichment analysis was
conducted to assess the association between
MCF2 and potential therapeutic drugs. Sub-
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sequently, a drug-MCF2 network was estab-
lished to identify potential therapeutic agents
for further investigation.

Single-cell RNA-seq data analysis

Previously published single-cell RNA sequenc-
ing dataset GSE127465 was downloaded from
the GEO database [24], which includes se-
quencing data from seven patients with non-
small cell lung cancer (NSCLC). The raw data
were processed using the “Seurat” R package.
Quality control steps included retaining cells
with 500-3000 detected genes, excluding cells
with > 10% mitochondrial gene content, and
keeping genes expressed in at least three dif-
ferent cells. Cell type annotation was per-
formed based on canonical biomarkers. The
expression density of the MCF2 gene was
examined across different cell clusters.

Cell culture and transfection

The A549 and H1299 human lung adenocarci-
noma cell lines were obtained from the Cell
Bank of the Chinese Academy of Sciences
(Shanghai, China). Cells were maintained in
RPMI-1640 medium (Gibco, USA) supplement-
ed with 10% fetal bovine serum (FBS) at 37°C
in @ 5% CO, incubator. Small interfering RNA
(siRNA) targeting MCF2 (si-MCF2) and a nega-
tive control siRNA (si-NC) were synthesized
(Ribobio, China) for MCF2 knockdown. Trans-
fection was performed using Lipofectamine
2000 (Invitrogen, Carlsbad, CA, USA) following
the manufacturer’s protocol. The siRNA primer
sequences for MCF2 are as follows: 5'-
GGAAUGUCAAAGAAAGUUAAA-3’; 5-UAACUUU-
CUUUGACAUUCCUG-3..

Cell viability and proliferation assays

Cell viability was assessed using the Cell
Counting Kit-8 (CCK-8) assay [23, 25]. After
siRNA transfection (48-72 hours), 5000 cells
per well were seeded into 96-well plates and
incubated at 37°C with 5% CO, for 2, 24, 48,
and 72 hours. Subsequently, 100 uL of a
mixture containing 80 pL complete culture
medium and 20 pL CCK-8 solution (K1018-
5ml, APEXBIO, Shanghai, China) was added to
each well and incubated for 2 hours. Optical
density was measured at 450 nm every 24
hours using a spectrophotometer. Each experi-
ment was performed in triplicate.
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Migration and invasion assays

The Transwell migration and invasion assays
were conducted using H1299 and A549 cells
transfected with si-MCF2 [26]. For the migra-
tion assay, 50,000 cells per well were su-
spended in serum-free medium and seeded in
the upper chamber of Transwell inserts. The
lower chamber was filled with 600 yL of 20%
FBS-containing medium as a chemoattract-
ant. For the invasion assay, a similar procedure
was performed using Matrigel-coated inserts.
Cells were incubated for 24 or 48 hours, fol-
lowed by fixation with paraformaldehyde, stain-
ing with crystal violet, and washing with PBS
three times [27, 28]. Images were captured,
and cell counts were analyzed using GraphPad
Prism software.

Statistical analysis

All experiments were performed at least three
times. For comparisons between two groups,
Wilcoxon rank-sum tests or Student’s t-tests
were used as appropriate. WGCNA was used to
identify key gene modules. Univariate and mul-
tivariate Cox regression analyses were per-
formed to identify prognostic genes. GraphPad
Prism was used to generate PCR result visual-
izations. Statistical significance thresholds: *P
< 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001. All analyses were performed using R
software (version 4.3.5).

Databases and online tools used

(1) TCGA GDC: http://cancergenome.nih.gov/;
(2) GEO: https://www.nchi.nIm.nih.gov/geo/; (3)
TIDE: http://tide.dfci.harvard.edu; (4) DSigDB:
http://dsigdb.tanlab.org/DSigDBv1.0/.

Results
Identification of hypoxia-anoikis-related genes

In this study, we used WGCNA to identify hypox-
ia-anoikis-related gene modules. Analysis of
TCGA-LUAD transcriptomic data led to the con-
struction of a gene co-expression network and
the identification of multiple gene modules
correlated with clinical phenotypes. Network
topology analysis (Figure 1A) demonstrated a
strong correlation between different soft th-
reshold power values (range: 1-20) and scale-
free topology index. A soft threshold of B = 6
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Figure 1. Construction of co-expression network and module-phenotype association analysis. A. Network topology
analysis: Evaluating the scale-free topology of the network across different soft-thresholding powers (power range:
1-20). B. Gene module identification: A hierarchical clustering dendrogram based on the TOM illustrating gene
co-expression relationships, with modules identified using the dynamic tree-cutting algorithm and color-coded. C.
Scatter plot of genes in the magenta module. D. Module-phenotype association heatmap: Displaying correlation
coefficients and p-values between gene modules and anoikis and hypoxia. E. Volcano plot showing differentially
expressed genes in the module. F. Univariate Cox regression identifying 21 prognostic genes.
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was selected to ensure network reliability. All
MRNA genes were clustered into several mod-
ules based on hierarchical clustering of the
Topological Overlap Matrix (TOM) (Figure 1B).
Correlation heatmaps revealed significant
associations between different gene modules
and hypoxia-anoikis traits, with the magenta
module showing the highest correlation with
anoikis (correlation coefficient = 0.34) and a
moderate correlation with hypoxia (correlation
coefficient = 0.13). Overall, the magenta mod-
ule genes exhibited the strongest correlation
with both hypoxia and anoikis (Figure 1C and
1D). The volcano plot (Figure 1E) identified sig-
nificantly differentially expressed genes (]log-
2FC| > 2.0, P < 0.01). The magenta module
genes and the list of differentially expressed
genes are presented in Supplementary Table 1.
Univariate Cox analysis (Figure 1F) identified
21 genes significantly associated with LUAD
prognosis, which may serve as potential prog-
nostic biomarkers.

Construction and validation of the hypoxia-
anoikis prognostic risk model

To construct a prognostic model based on
hypoxia-anoikis-related genes, 489 LUAD pa-
tients from TCGA were used as the training
cohort, while external validation was perform-
ed using GSE72094, GSE31210, and GSE-
30219 datasets. Ten machine learning algo-
rithms and 117 model combinations were
employed to determine key genes and compute
risk scores using a 10-fold cross-validation
framework. Figure 2A shows the performance
of different machine learning models in the
training dataset, with the random survival for-
est (RSF) algorithm achieving the highest
C-index (0.726), making it the optimal model.
RSF error plots indicated model stability
(Figure 2B), with variable importance analysis
highlighting key prognostic genes, particularly
CLEC3B, FMO2, ADRB2, CD101, and FAM-
189A2 (Figure 2C). Risk stratification using the
established risk score model revealed signifi-
cant differences in survival between high-risk
and low-risk patients across TCGA, GSE72094,
GSE31210, and GSE30219 datasets. Risk
score distributions and survival outcomes were
visualized (Figure 2D-G), demonstrating that
low-risk patients consistently exhibited better
0sS.
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Construction and validation of the nomogram

Univariate and multivariate Cox regression
analyses identified clinical stage, T stage, N
stage, and risk score as independent risk fac-
tors (Figure 3A and 3B). A nomogram integrat-
ing these factors was developed to predict
patient survival probabilities (Figure 3C). The
ROC curves for 1-, 3-, 5-, and 10-year OS pre-
diction showed AUC values of 0.7011, 0.7109,
0.7213, and 0.7207, respectively (Figure 3D).
Calibration plots (Figure 3E) demonstrated
good agreement between predicted and
observed survival outcomes, supporting the
reliability of the nomogram.

TMB and risk score association

TMB analysis revealed that mutation burden
varied significantly between risk groups (Figure
4). The low-risk group (Figure 4A) exhibited a
median mutation count of 111, while the high-
risk group (Figure 4B) had a median of 233,
indicating significantly higher TMB in high-risk
patients. Mutation profiles of the top 20 most
frequently mutated genes in each group were
visualized (Figure 4C and 4D). TP53, TTN,
MUC16, RYR2, and LRP1B were the most fre-
quently mutated genes in the low-risk group,
while TP53, TTN, CSMD3, MUC16, and ZFHX4
were dominant in the high-risk group. Notably,
TP53 mutations were more prevalent in the
high-risk group, suggesting a link between
TP53 dysfunction and aggressive tumor
behavior.

Immune infiltration and immune therapy re-
sponse prediction

ssGSEA analysis revealed significant differenc-
es in 28 immune cell types between the high-
and low-risk groups (Figure 5A). Low-risk
patients exhibited higher levels of CD8* T cells,
CD4* T cells, B cells, macrophages, and den-
dritic cells, suggesting a more active immune
microenvironment.

Immune-related scores, including stromal
score, immune score, and ESTIMATE score,
were significantly higher in the low-risk group
(Figure 5B). TIDE scores were lower in the
low-risk group (Figure 5C), indicating reduced
immune evasion potential. Heatmap analysis
of immune-related gene expression (Figure 5D

Am J Cancer Res 2025;15(8):3762-3780
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Figure 2. Prognostic genes identified by 117 machine learning models. A. Highest C-index across TCGA and three
validation cohorts. B. Error plot of the RSF model. C. RSF feature importance ranking. D. Kaplan-Meier survival
curve, survival status distribution, and risk score distribution for high- and low-risk groups in the TCGA test set. E.
Kaplan-Meier survival curve, survival status distribution, and risk score distribution for high- and low-risk groups in
the GSE72094 validation set. F. Kaplan-Meier survival curve, survival status distribution, and risk score distribution
for high- and low-risk groups in the GSE31210 validation set. G. Kaplan-Meier survival curve, survival status distri-
bution, and risk score distribution for high- and low-risk groups in the GSE30219 validation set.

and 5E) showed that genes associated with low-risk patients. These findings suggest that
immune infiltration (e.g., TNFRSF17, CD52, low-risk LUAD patients may derive greater ben-
SPN, and GIMAPS8) were highly expressed in efit from immune checkpoint inhibitor therapy,
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Figure 3. Development of a nomogram for predicting prognosis in LUAD patients. A. Univariate regression analysis.
B. Multivariate Cox regression analysis identifying independent risk factors. C. Nomogram construction for predict-
ing patient survival. D. ROC curves for TCGA patients at 1, 3, 5, and 10 years. E. Calibration curves comparing pre-
dicted and actual survival probabilities. *P < 0.05, **P < 0.01, ***P < 0.001.

whereas high-risk patients may exhibit immune
resistance.

Model efficacy in predicting drug sensitivity

The IC50 values of the top 30 correlated
therapy drugs were estimated using the
oncoPredict R package (Figure 6A). High-risk
patients exhibited significantly higher sensitivi-
ty to drugs including SCH772984, BI-2536,
ERK_6604, AZD6738, AZD7762, MK-1775,
Gallibiscoquinazole, LCL161, and AZD1332
(Figure 6B). Interestingly, in traditional chemo-
therapy and targeted therapy (Supplementary
Figure 1A and 1B), the trend between risk
scores and drug sensitivity differed. High-risk
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patients may be insensitive to conventional
chemotherapy drugs or show resistance, but
exhibit certain sensitivity to some targeted
drugs.

Analysis of MCF2 in drug response and im-
mune microenvironment

MCF2 was identified as the only independent
high-risk prognostic gene, with a hazard ratio
(HR) of 1.886 (P < 0.001) (Figure 7A). Drug
enrichment analysis revealed significant asso-
ciations between MCF2 and Chromium(lll)
oxide, Chromium(ll) chloride, and Cianidanol
(p-values: 0.01, 0.02, and 0.04, respectively)
(Figure 7B). The MCF2-drug interaction net-
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Figure 4. TMB in high- and low-risk groups. A. Number and types of gene mutations in the low-risk group. B. Number
and types of gene mutations in the high-risk group. C. Top 20 mutated genes in the low-risk group. D. Top 20 mu-

tated genes in the high-risk group.

(Figure 7E). Using the Xcell algorithm, patients
with high MCF2 expression exhibited increased
abundance of immune cell subsets such as
aDCs, B cells, and cDCs, while subsets such as
Th2 cells were decreased (Figure 7F). At the
single-cell level, MCF2 expression was pre-
dominantly enriched in NK cells and CD4* Tn

work is shown in Figure 7C, suggesting that
MCF2 may be a novel therapeutic target.
Patients were divided into high and low MCF2
expression groups. Immune scores were calcu-
lated, revealing that both stromal score and
immune score were higher in patients with ele-
vated MCF2 expression (Figure 7D). CIBERSO-

RT analysis indicated differences in immune
cell infiltration proportions between groups
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cells (Figure 7G and 7H). Taken together, these
findings suggest that MCF2 influences both
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Figure 5. TME and response to immunotherapy. A. Expression levels of 28 immune cell types in high- and low-risk
groups based on the ssGSEA algorithm. B. Immune score. C. TIDE (Tumor Immune Dysfunction and Exclusion) score.
D. Heatmap of correlations between 21 prognostic genes and 28 immune cell types. E. Heatmap of correlations
between 21 prognostic genes, risk score, immune score, and TIDE score. *P < 0.05, **P < 0.01, ***P < 0.001.
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immune pathways and immune cell composi-
tion, and that changes in MCF2 expression may
affect the regulation of tumor progression or
invasion by NK cells and CD4* T cells.

Survival analysis of LUAD patients with dif-
ferent clinical characteristics based on risk
stratification

Kaplan-Meier survival analysis showed that,
across different clinical characteristics, the
survival probability of LUAD patients was sig-
nificantly affected by risk scores. For patients
aged > 65 years, the high-risk group had sig-
nificantly worse survival (Figure 8A and 8B).
Male patients in the high-risk group showed
poorer prognosis (P = 0.002), while female
patients in the high-risk group also exhibited
lower survival probability (P = 0.001) (Figure
8C and 8D). Regarding tumor staging, T1+T2
stage patients in the low-risk group had signifi-
cantly better survival (P < 0.001), whereas
T3+T4 stage patients in the high-risk group
had poorer prognosis (P = 0.013) (Figure 8E
and 8F). In terms of lymph node status, NO
stage patients in the low-risk group had signifi-
cantly better survival (P = 0.002), while N1-
3 stage patients did not show a significant dif-
ference in survival between the high- and low-
risk groups (P = 0.060) (Figure 8G and 8H). For
distant metastasis, MO stage patients in the
low-risk group had significantly better survival
(P < 0.001), whereas M1 stage patients did not
show a significant survival difference (P =
0.484) (Figure 81 and 8)). In clinical staging, I-Il
stage patients in the low-risk group exhibited
significantly better survival (P < 0.001), while
llI-IV stage patients did not show a significant
difference (P = 0.106) (Figure 8K and 8L).
Overall, patients in the low-risk group demon-
strated better survival prognosis across most
clinical subgroups, but some groups (such as
M1 and N1-3 stages) did not show a significant
difference in risk score stratification.

MCF2 knockdown suppresses LUAD cell prolif-
eration and invasion

MCF2 knockdown experiments were conduct-
ed in H1299 and A549 LUAD cell lines. CCK-8
assays demonstrated a significant reduction
in cell proliferation following MCF2 silencing
(Figure 9A and 9B). Transwell assays revealed
that MCF2 knockdown significantly inhibited
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cell migration and invasion (Figure 9C and 9D).
These findings suggest that MCF2 plays a key
role in promoting LUAD progression.

Discussion

This research primarily focuses on examining
the combined value of genes related to hypoxia
and anoikis in predicting the prognosis and
guiding targeted chemotherapy for LUAD. Using
WGCNA, we identified a range of gene modules
linked to both hypoxia and anoikis, selecting
the most strongly correlated group for further
study. Subsequently, we developed the best
risk score model by evaluating 117 different
machine learning techniques, which catego-
rized patients into high- and low-risk groups.
The ssGSEA method was then used to assess
and compare immune cell infiltration, survival
predictions, tumor genetic mutations, and
responses to targeted and chemotherapy drugs
between these two groups. Among the genes
with independent prognostic significance,
MCF2 emerged as a key risk factor, and a drug-
related molecular network for this gene was
mapped. Our findings revealed that patients in
the high-risk group had generally shorter sur-
vival rates compared to those in the low-risk
group, though they exhibited greater sensitivity
to most drugs. Thus, this risk model may play a
pivotal role in clinical decision-making regard-
ing prognosis and therapeutic strategies for
LUAD.

HIF, a crucial transcription factor in the
response to hypoxia, comprises several sub-
units that are essential for processes such as
energy intake, tumor metabolism, cell prolifera-
tion and apoptosis, and adaptation to low-oxy-
gen conditions. Under hypoxic conditions,
LUAD cells activate genes associated with
angiogenesis, like VEGF-A, while simultaneous-
ly inhibiting ECM components and CX26 con-
nexins, facilitating metastasis and invasion
[29]. Additionally, hypoxic tumor cells release
more exosomes, which enhance intercellular
communication and modify tumor cell metabo-
lism and growth. The M2 macrophage pheno-
type, which suppresses immune responses
and aids tumor growth, is promoted under
hypoxic conditions, further enhancing macro-
phage M2 expression [30]. Hypoxia also drives
tumor cells to utilize the Warburg effect, con-
verting glucose into lactate, which not only cre-
ates an acidic environment favorable for tumor
growth but also optimizes energy production.
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Figure 8. Kaplan-Meier curves for high- and low-risk groups. A. Kaplan-Meier curves for patients aged < 65. B.
Kaplan-Meier curves for patients aged > 65. C. Kaplan-Meier curves for male patients. D. Kaplan-Meier curves
for female patients. E. Kaplan-Meier curves for patients in T1+T2 stages. F. Kaplan-Meier curves for patients in
T3+T4 stages. G. Kaplan-Meier curves for patients in NO stage. H. Kaplan-Meier curves for patients in N1-3 stages.
I. Kaplan-Meier curves for patients in MO stage. J. Kaplan-Meier curves for patients in M1 stage. K. Kaplan-Meier
curves for patients in clinical stage I+Il. L. Kaplan-Meier curves for patients in clinical stage IllI+IV.

Furthermore, hypoxia promotes the accumula-
tion of LC stem cells, triggering EMT and
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increasing resistance to drugs like gefitinib and
ALK inhibitors [31].
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Figure 9. Biological function of MCF2 in LUAD cell lines. A. CCK-8 assay showing the effect of MCF2 knockdown on
H1299cell proliferation. B. CCK-8 assay showing the effect of MCF2 knockdown on A549 cell proliferation. C. Com-
parison of migration abilities between the NC group and the MCF2 knockdown group in H1299 and A549 cells. D.
Comparison of invasion abilities between the NC group and the MCF2 knockdown group in H1299 and A549 cells.

**P < 0.01, ****P < 0.0001.

A critical factor in the distant metastasis of
tumor cells is the disruption of apoptotic or reg-
ulated cell death pathways. Anoikis, a special-
ized form of programmed cell death, plays a
vital role in preventing distant metastasis in
tumors. Resistance to anoikis is a key mecha-
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nism behind tumor progression [32, 33]. This
resistance involves the activation of caspases,
nucleases, and DNA fragmentation, which typi-
cally result in cell death. However, anoikis resis-
tance can arise from multiple mechanisms,
including the overexpression of growth factor
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receptors in tumor cells. In NSCLC, anoikis
resistance and metastasis are often driven by
the upregulation of EMT, which also enhances
the production of pleural effusion and pro-
motes cancer cell invasion and metastasis
[34]. Several intracellular metabolites, such as
GDH1 and P-cadherin, are known to influence
anoikis resistance, further facilitating tumor
spread [35]. While no studies have conclusively
established the connection between hypoxia
and anoikis, identifying genes that link these
two processes is crucial for treatment stra-
tegies.

The optimal model for predicting prognosis was
developed using RSF machine learning, with
the highest C-index value of 0.726. Through
this model, 21 prognostic genes were identi-
fied, which are critical for patient survival and
treatment decisions. ROC curve analysis indi-
cated that the AUC values for 1-, 3-, 5-, and
10-year survival predictions ranged between
0.70 and 0.72, and Kaplan-Meier survival anal-
ysis showed that patients in the high-risk group
had significantly shorter survival compared to
those in the low-risk group. These 21 genes
have demonstrated substantial potential in
previous studies to affect tumor cell behavior.

In research by Dr. Zhao, VIPR1, the vasoactive
intestinal peptide receptor-1, was shown to
inhibit the progression of human lung adeno-
carcinoma cells [36]. Overexpressing VIPR1
suppressed cell growth, migration, and inva-
sion in H1299 cells. Dr. Fu’'s findings further
suggested that VIPR1 inhibits pyrimidine syn-
thesis by regulating arginine, thereby prevent-
ing liver cancer development [37]. Research
by Dr. Zhang revealed that ADAMTSS, an
enzyme with thrombospondin motifs, could
suppress breast cancer cell proliferation and
invasion while inducing apoptosis [38]. VEGFD,
when inhibited by S-nitrosylation, was found to
promote LUAD progression [39]. Dr. Cheon’s
work highlighted the role of NPR2 as a co-
receptor for VEGFR, where its inhibition dis-
rupts signaling pathways, leading to fibroblast
deactivation and preventing LUAD metastasis
[40]. Additionally, COL6A6, essential for main-
taining cellular structure, was shown to inhibit
NSCLC proliferation via the JAK signaling path-
way and could serve as a potential biomarker
for prognosis and immune therapy [41]. Dr.
Lu’s research indicated that CLEC3B, involved
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in the P53 signaling pathway, when expressed
at low levels, can enhance LUAD metastasis,
migration, and EMT [42].

Our findings revealed significant differences in
immune and stromal scores between high-
and low-risk groups. Furthermore, variations in
immune pathways and cell expression were
observed. The interaction between immune
responses, hypoxia, and anoikis plays a key
role in tumor progression, as hypoxia induc-
es the Warburg effect, suppresses immune
responses, and thereby promotes tumor metas-
tasis and invasion. This underscores the impor-
tance of our prognostic model, which analyzes
these relationships and aids in predicting
responses to immune and targeted therapies.

Abemaciclib, a targeted therapy, has been
shown to inhibit thyroid cancer’s resistance to
anoikis [43]. Similarly, AKT and MEK inhibitors,
along with multi-tyrosine kinase inhibitors, can
counteract anoikis resistance. Nanomedicine
also holds promise, with human serum albu-
min nanoparticles (tHSA-NPs) exhibiting the
ability to target and inhibit metastatic anoikis-
resistant tumor cells. In our predictions, several
chemotherapy and targeted drugs demonstrat-
ed sensitivity, particularly among high-risk
patients [44, 45]. These drugs could serve as
important indicators for evaluating patient
prognosis.

While our model presents a promising tool, it
does have limitations, including the lack of vali-
dation with a larger clinical sample. Moreover,
as this study is retrospective, further prospec-
tive studies are necessary. The nomogram
could also incorporate additional clinical fac-
tors, such as choices regarding adjuvant thera-
py and surgical intervention. Therefore, this
model requires further investigation, and we
hope that future research will validate and
expand the hypoxia-anoikis-related prognostic
model using diverse methodologies.

Conclusion

This study provides a broad and multi-dimen-
sional perspective on the involvement of hy-
poxia-anoikis-related genes in LUAD prognosis
and treatment decision-making. The risk score
model serves a dual function as both a person-
alized prognostic framework and a molecular
tool for precision oncology, linking gene expres-
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sion data with drug response predictions.
Furthermore, MCF2 has emerged as a critical
oncogenic factor and a promising therapeutic
target, offering a new avenue for future
research. By enhancing our understanding of
LUAD at a molecular level, these findings may
facilitate the development of novel treatment
strategies, ultimately contributing to the ad-
vancement of personalized medicine for lung
cancer patients.
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Supplementary Figure 1. IC50 of chemotherapy drugs and targeted drugs. A. Heatmap of correlations between
prognostic genes, risk scores, and chemotherapy drug sensitivity. B. Heatmap of correlations between prognostic
genes, risk scores, and targeted drug sensitivity. *P < 0.05, **P < 0.01, ***P < 0.001.



