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FAM49B suppresses ovarian cancer
cell growth through regulating MAPK signaling
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Abstract: Recently, the family with sequence similarity 49 member B (FAM49B, also called CYRI-B) has garnered
attention as a new target in cancer development. FAM49B is upregulated in ovarian cancer tissues; however, its role
and mechanism in ovarian cancer progression remain unknown. Herein, we demonstrated that FAM49B knockdown
significantly increases ovarian cancer cell viability, EJU incorporation, and clonogenic growth. In contrast, the forced
expression of FAM49B achieved opposite effects. Furthermore, an ovo model was used to assess the in vitro effects
of FAM49B depletion or overexpression on the growth of ovarian cancer. In a xenograft model, we observed that
FAM49B overexpression alleviated tumor formation. Transcriptomic analysis of FAM49B-depleted and control cells
revealed that FAM49B silencing upregulated the MAPK pathway. Consistent with the transcriptomic analysis results,
we noted that FAM49B knockdown enhanced EGFR activation and downstream MEK-ERK signaling; in contrast,
FAMA49B overexpression exhibited opposite trends. In addition, FAM49B played a role in EGF-induced sphere growth
of ovarian cancer cells. Notably, treatment with the MEK inhibitor trametinib considerably impaired the increased
cell growth by FAM49B knockdown in cell culture and ovo models. Collectively, our results suggest that FAM49B can

suppress the growth of ovarian cancer cells by regulating the MAPK signaling pathway.
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Introduction

The protein family with sequence similarity 49
member B (FAM49B), also called CYFIP-related
RAC interactor B, has recently been character-
ized as a novel regulator of actin dynamics by
interacting with and suppressing the small
GTPase RAC1 activity, thereby mediating multi-
ple essential cellular functions, including T cell
activation [1, 2], membrane protrusion, chemo-
taxis and cell migration [3-5]. FAM49B is highly
expressed in many tumors and may play a role
in tumor progression. However, both pro-tumor
and tumor suppressor functions of FAM49B
have been observed in certain tumors [6]. A
study has revealed that FAM49B suppresses

tumor metastasis in pancreatic ductal adeno-
carcinoma (PDAC) by regulating tumor mito-
chondrial redox reactions and metabolism [7].
Using colorectal cancer and liver cancer cell
models, another study revealed that FAM49B
knockdown accelerated cell proliferation, sug-
gesting the role of FAM49B as a tumor supp-
ressor [8]. However, other studies have reveal-
ed that FAM49B plays an oncogenic role in
breast, gallbladder, and gastric cancers [9-11].
Interestingly, while an in vivo study has suggest-
ed FAM49B as a tumor suppressor in live can-
cer [8], a recent study has revealed that
FAMA49B can promote liver tumor initiation in
vivo [12]. Therefore, the biological function of
FAMA49B in cancer may be context-specific.
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A recent study has revealed that FAM49B is
upregulated in both ovarian cancer patient exo-
somes and cancer tissues [13], this suggests
the role of FAM49B in ovarian cancer develop-
ment. However, the putative role of FAM49B in
ovarian cancer remains unknown.

Therefore, in the present study, we utilized
gain-of-function and loss-of-function approach-
es and demonstrated that FAM49B inhibits
ovarian cancer cell growth and tumor develop-
ment. Furthermore, we provided evidence that
the epidermal growth factor receptor (EGFR)-
MAPK signaling pathway is involved in FAM49B-
mediated effects on the growth of ovarian
cancer cells. Overall, our findings suggest the
tumor suppressor role of FAM49B in ovarian
cancer progression.

Materials and methods
Cell culture and transfection

The human ovarian cancer cell lines, OVCAR-3
and Caov3 were obtained from the American
Type Cell Culture (ATCC, Manassas, VA) and cul-
tured according to ATCC guidelines. Hey-AS8,
PEO4, Hey, OVCAR-8, OVCAR-5, TOV-112D,
COV504, ES-2, and KGN were kindly provided
by Prof. Jing Tan (Sun Yat-sen University Cancer
Center). Hey-A8 and PEO4 cell lines were cul-
tured in DMEM (Gibco), Hey, OVCAR-8, OVCAR-
5, OVCAR-3, TOV-112D, Caov3 and COV504
were cultured in RPMI-1640 (Gibco). All medi-
um were supplemented with 10% FBS. All cell
lines were maintained in an incubator at 37°C
and 5% CO,. Transfection of plasmids into all
cells was performed using Lipofectamine 2000
(Invitrogen), according to the manufacturer’s
instructions.

Antibodies and reagents

The following antibodies were purchased
from Cell Signaling Technology (America): anti-
p-AKT S473 (4060S), Anti-P38 MAPK, anti-p-
P38 MAPK (9215S), anti-p-SAPK/JNK (92515S),
anti-SAPK/JNK  (9252S). Anti-FAM49B (sc-
390478) were purchased from SantaCruz
(America). Anti-GAPDH (10494-1-AP), anti-o-
Tubulin (11224-1-AP) and anti-Ki67 (27309-1-
AP) were purchased from Proteintech (Ameri-
ca). Anti-V5-Tag (AE101), anti-ERK1/2 (A4782),
anti-p-ERK1/2 (AP0472), anti-P-C-JUN (APO1-
05) and anti-EGFR (A23381) were purchased
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from Abclonal (China). Anti-P-EGFR (Tyr1068)
(44-788G), goat anti-Rabbit 1gG (H+L) (31460)
and rabbit anti-Mouse IgG (H+L) (31480) were
purchased from Invitrogen Thermo Fisher
Scientific (America). Inhibitors Afatinib (5§1011)
and Erlotinib (targeting EGFR, S7786), PD-
98059 (S1177) and Trametinib (targeting
MEK1/2, S2673), SP600125 (targeting SAPK/
JNK, S1460) and SB203580 (S1076) were
purchased from Selleck (America). SP202190
(targeting p38MAPK, SP202190 HY-10295)
was purchased from MCE (America). Drugs
were dissolved in 0.5% dimethyl sulfoxide
(DMSO) as stock solutions and stored at -20°C.

Lentiviral constructs and stable cell lines

FAM49B shRNA-1 (target sequence: GGATGT-
ATGTTGTGTGTTT), FAM49B shRNA-2 (target
sequence: AGATGAGAAGTTGCAAGAG), FAM-
49B shRNA-3 (target sequence: CAGGTGAAT-
GTAGTATTAA), FAM49B shRNA-4 (target se-
quence: CAATTACTATCTCATTTAT), FAM49B sh-
RNA-5 (target sequence: CAATAACAATTCTGG-
AATA) and non-coding shRNA were purchased
from Thermo Scientific (America). Lentiviral
particles were used to directly infect Hey,
OVCAR-3, OVCAR-8 and TOV-112D cells and
stable clones were selected using puromycin
(Sigma). PCDNA3.1-3'V5 and FAM49B vectors
were purchased from MiaolLing Plasmid
Platform (China). V5-PCDH-FAM49B construct
was generated in this study according to the
standard molecular cloning procedures. Stable
expression of FAM49B in Hey, OVCAR-3 and
TOV-112D cell lines were established by using
lentiviruses constructs expressing FAM49B.

Ethynyl deoxyuridine (EdU) incorporation assay

EdU Cell Proliferation Assay Kit with Alexa Fluor
555 (CO075S) was used to detect cell prolifera-
tion according to manufacturer’s instructions.
Briefly, cells were seeded in 96-well plates with
complete media. 10 mM EdU was added to the
plate and incubated for 2 h. Then, the cells
were fixed, washed and stained with Hoechst
33342. The proportion of the cells incorporat-
ed EdU was determined with fluorescence
microscopy.

Colony formation assay

For the clonogenic assay, cells were seeded in
6-well plates at 100 to 500 cells per well in trip-
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licate wells. Three weeks later, cells were fixed
with 4% paraformaldehyde in PBS, stained with
0.5% crystal violet, and photographed for
counting the number of colonies (containing
50 or more cells) under light microscope, and
colonies > 1 mm were counted using Image)J
software.

Spheroid formation assay

The assays were performed as previously
described [14]. Ovarian cancer cells were tryp-
sinized and plated at (1 x 103 cells/well) in
ultra-low adhesion 96-well cell culture plates,
providing with serum-deprived DMEM/F12
medium containing 20 ng/ml basic fibroblast
growth factor (bFGF), 20 ng/mL of epidermal
growth factor (EGF), and a proportion of B27 in
medium (1:50 v/v) for 10 days. The reproduced
3D tumor microspheroids were detected and
calculated by the inverted microscope.

Immunoblotting

The assays were performed as previously
described [14, 15]. Briefly, cancer cells were
harvested using RIPA lysis buffer (10 mM Tris-
HCI, pH 8.0, 140 mM NaCl, 1 mM EDTA, 1%
Triton X-100, 0.1% sodium deoxycholate, 0.1%
SDS, pH 7.4) supplemented with a cocktail of
protease and phosphatase inhibitors. Proteins
were separated by polyacrylamide gel electro-
phoresis, subsequently transferred onto the
nitrocellulose membrane. All membranes were
blocked and incubated overnight by primary
antibodies and subsequently incubated with
anti-mouse or anti-rabbit secondary antibody.

Co-immunoprecipitation

Cells were harvested 24 hours after being
transfected with plasmids in 1% Triton X-100
lysis buffer, which was supplemented with a
mixture of protease and phosphatase inhibi-
tors. Lysates were centrifuged and superna-
tants collected. A 50 uL aliquot of the superna-
tants collected by centrifugation was taken for
Inputs detection to evaluate the quality of pro-
cedure and the remaining supernatants was
mixed with 30 ul pre-washed protein G beads.
Then, the pre-cleared supernatants collected
by centrifugation were incubated with indicated
antibody overnight at 4°C. Afterward, the mix-
ture of protein and antibody were incubated
with 30 ul pre-washed G beads for 2 h at 4°C.
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Immunoprecipitated complexes were washed
five times with cold lysis buffer before boiling
in 1X Loading Buffer. Immunoprecipitates and
2% lysate loading controls were then run on an
SDS-PAGE gel and subsequent immunoblotting
was conducted.

Immunofluorescence

Cells were plated on coverslips and treated as
indicated. Cells were fixed with 4% paraformal-
dehyde (PFA) for 20 minutes, permeabilized in
0.2% Triton X-100 for 15 min and incubated
for 60 min in 3% Bovine Serum Albumin (BSA).
Primary antibodies were diluted in blocking
buffer and cells were incubated overnight at
4°C. Cells were washed with PBS and fluores-
cently labeled secondary antibodies were dilut-
ed in blocking buffer followed by incubation for
30 minutes at room temperature. Nuclei were
stained with 5 pyg/mL DAPI (Sigma) in PBS.
Images were acquired using a fluorescence
microscope.

H&E staining and Immunohistochemical (IHC)

H&E staining and IHC were performed as
reported in previous study [16]. Briefly, H&E
staining was performed on 4 mm paraffin sec-
tions using a standard H&E staining protocol.
Tissue sections were dewaxed using a de-
creasing xylene/alcohol series and then
blocked with 3% BSA and incubated with anti-
Ki67 and anti-FAM49B. The DAB Detection Kit
was used to develop staining signal according
to the protocols provided for the streptavidin-
peroxidase system (Sangon Biotech, China).
Hematoxylin was used for counterstaining. All
sections were investigated by light microscopy.

In ovo chick embryo chorioallantoic membrane
(CAM) model

Cancer cell growth in CAM assays was per-
formed as described previously [16]. Briefly,
5 x 10° cancer cells were injected intravenous-
ly into the chicken CAM vein and then incubat-
ed at 37°C and 60% humidity for 6-8 days,
images were taken.

In vivo tumor xenograft assay

All mice experiments were carried out under
the Dalian Medical University’s Institutional
Animal Care and were approved by the
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Laboratory Animal Ethics Committee of Dalian
Medical University (Approval Number: AEE-
23027). Total 20 female nude mice (5-6 weeks)
were obtained from the Beijing Vital River
Laboratory Animal Technology Co., Ltd. and
divided into four groups randomly (n=5 per
group). Animals were four maintained in the
specific pathogen-free facility with standard 12
h light/dark cycles, allowed chow and water ad
libitum, and euthanized humanely in their
home cages with CO, followed by cervical
dislocation.

To assess subcutaneous tumor growth, female
BALB/c nude mice were subcutaneously inocu-
lated in the right dorsal flank total 10 female
nude mice (5-6 weeks) were divided into two
groups randomly (n=5 per group) and each
mouse was injected with FAM49B-over-
expressing TOV-112D or control cells (5 x 10°
cells in 100 pL PBS/mouse) to induce tumor
development and measure tumor volume every
three days. After 4 weeks, the mice were eutha-
nized, and tumors were surgically removed
from mice. The tumors were measured using a
caliper and their volume was calculated using
the following formula: m (width? x length)/6
(mm?3). Tumors were harvested 5 weeks post
inoculation, fixed in 10% neutral buffered for-
malin (NBF), embedded in paraffin, sectioned,
and stained with hematoxylin and eosin (H&E).
Immunohistochemical (IHC) staining was per-
formed with antibodies.

Statistical analysis

Statistical analysis was performed using
GraphPad Prism 9.0 (GraphPad Software,
USA), and the outcomes are displayed as the
means * standard error of the mean (SEM).
Unpaired two-tailed t-tests were employed for
statistical comparisons between the two
groups. For datasets with more than two
groups, a one-way ANOVA was performed, fol-
lowed by Tukey’s post hoc test. Results were
considered as statistically significant at **P <
0.01, ***P < 0.001, ****P < 0.0001.

Results

FAM49B suppresses ovarian cancer cell
growth in vitro

First, we investigated the relationship between
FAM49B expression and overall survival in
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patients with ovarian cancer using gene ex-
pression data from multiple datasets (https://
kmplot.com/analysis/). FAM49B expression
analysis in patients with ovarian cancer using
the Kaplan-Meier methods revealed that
patients with low FAM49B expression had a
relatively, although not significantly, decreased
overall survival compared with patients with
high FAM49B expression (Figure 1A). Next, we
examined the biological role of FAM49B in
ovarian cancer progression. We used immu-
noblotting (IB) to measure FAM49B protein lev-
els in various ovarian cancer cell lines, which
indicated a varied expression pattern (Figure
1B). Therefore, we stably knocked down
FAM49B in Hey, OVCAR-3, OVCAR-8, and TOV-
112D cell lines by transducing with lentiviral
particles encoding either FAM49B-specific
short hairpin RNAs (shRNAs) or a nontarget
control (shControl). IB was used to confirm the
knockdown efficiency (Figure 1C). In addition,
we stably overexpressed FAM49B in Hey,
OVCAR-3, and TOV-112D cell lines by transduc-
ing with lentiviruses packaged with either a
full-length human FAM49B cDNA or an empty
vector. IB confirmed the ectopic expression of
FAMA49B in these cell lines (Figure 1D). Then,
these established cell lines, with either knock-
down or overexpression of FAM49B, were used
to evaluate cell growth and proliferation via
CCK-8, EdU staining, and clonogenic growth
assays. Compared with the matched shRNA
controls, the stable depletion of FAM49B in
Hey and OVCAR-8 cells significantly increased
cell viability (Supplementary Figure 1A, CCK-8
assay), EdU incorporation (Supplementary
Figure 1B), and clonogenic growth (Figure 1E,
colony formation assay). To confirm that
FAM49B deficiency resulted in the inhibition of
growth or proliferation of FAM49B shRNA-
infected ovarian cancer cells, a rescue experi-
ment was performed by restoring FAM49B
expression by transfecting with a cDNA encod-
ing FAM49B. Figure 1F illustrates that restora-
tion of FAM49B expression significantly res-
cued the inhibitory effects of FAM49B knock-
down on clonogenic growth. To compare with
knockdown experiments, gain-of-function stud-
ies were performed. FAM49B overexpression
in Hey and TOV-112D cells decreased cell
growth or proliferation (Figure 1G, clonogenic
growth assay; Supplementary Figure 1C and
1D, CCK-8 and EdU assays, respectively),
exhibiting an opposite effect to FAM49B
knockdown.
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Figure 1. FAM49B expression inhibits ovarian cancer cell growth. (A) Kaplan-Meier overall survival (OS) of patients
created using Kaplan-Meier Plotter network. Patients were classified into FAM49B high and FAM49B low subgroups
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and analyzed as indicated. (B) Immunoblotting (IB) analyses of the abundance of FAM49B protein in different ovar-
ian cancer cell lines. o-Tubulin was used as a loading control. (C, D) IB analysis of FAM49B protein levels in the
ovarian cancer cell lines Hey, OVCAR-3, OVCAR-8, and TOV-112D after the stable knockdown of FAM49B expression
using lentivirus approaches (C), and Hey, OVCAR-3, and TOV-112D cells with stable FAM49B expression via lentivi-
rus approaches (D). (E, F) Representative images and quantification of the clonogenic growth of Hey and OVCAR-8
cells with FAM49B knockdown (E), or rescued by restoring FAM49B expression in these FAM49B knockdown cells
(F). (G) Representative images and quantification of the clonogenic growth of Hey and TOV-112D cells with stable
FAM49B expression. All experiments were performed in triplicate. All statistical data were presented as Mean + SD

(**P <0.01, ***P <0.001, ****P < 0.0001).

FAMA49B inhibits ovarian cancer growth in ovo
and in a xenograft mouse model

After confirming that elevated FAM49B expres-
sion suppresses ovarian cancer growth in vitro,
we assessed the effects of FAM49B on tumor
growth in an ovo model, which has been suc-
cessfully constructed and utilized in our previ-
ous studies [17-19]. Either FAM49B-depleted
Hey and OVCAR-8 or FAM49B-overexpressing
Hey and TOV-112D cells and their respective
control cells were implanted on the chorioallan-
toic membrane (CAM) of chicken embryos on
embryonic day 10. We observed that FAM49B
knockdown increased the number and size of
tumors in the CAM model compared to control
cells (Figure 2A); in contrast, FAM49B overex-
pression achieved an opposite result (Figure
2B).

Next, we investigated the tumor-suppressive
role of FAM49B in a xenograft model. For this,
FAM49B-overexpressing TOV-112D or control
cells were subcutaneously injected into nude
mice, and tumor growth and weight were moni-
tored. Compared with control mice, tumor
growth, weight, and volume were significantly
decreased in mice bearing FAM49B-overex-
pressing cells (Figure 2C-E). Histologic exami-
nation via hematoxylin and eosin (H&E) stain-
ing confirmed the presence of tumors (Figure
2F). In addition, Immunohistochemical (IHC)
analysis revealed a decrease in Ki-67-positive
cells in the FAM49B-overexpressed tumors
compared with control tumors (Figure 2F). As
expected, IHC staining confirmed the high lev-
els of FAM49B in FAM49B-overexpressed
tumors (Figure 2F).

FAMA49B downregulates EGFR-MAPK signaling
pathway

To determine how FAM49B exerts its propos-

ed tumor suppressor function, we subject-
ed parental OVCAR-8 and FAMA49B-depleted
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OVCAR-8 cells to RNA-Seq analysis (GEO ac-
cession number: GSE290202, Supplementary
Table 1). Volcano plot analysis revealed that
205 genes were upregulated and 843 genes
were downregulated after FAM49B knockdown
(Figure 3A). KEGG analysis revealed that the
differentially expressed genes were significant-
ly enriched in the MAPK pathway (Figure 3B).
The enriched genes, which appeared to be
associated with the EGFR-MAPK signaling path-
way, were further visualized using a clustered
heatmap of RNA-Seq analysis (Figure 3C).
Consistent with the RNA-Seq results, the phos-
phorylation levels of EGFR (pY1068, an indica-
tor of EGFR activation), mitogen-activated pro-
tein kinase (MEK), the major MAPK pathway
components (ERK1/2, JNK, and p38 MAPK),
and C-JUN (S63) were markedly increased in
FAMA49B-depleted Hey and OVCAR-3 cells com-
pared with control cells (Figure 3D). In con-
trast, FAM49B overexpression in Hey and TOV-
112D cells exhibited opposite trends (Figure
3E). Of note, while the phosphorylation levels
of AKT (S473) were not noticeably changed
after FAM49B knockdown (Figure 3D), FAM-
49B overexpression strongly downregulated
AKT phosphorylation (Figure 3E). Rescue
experiments were conducted to further confirm
the effect of FAM49B knockdown on EGFR-
MAPK activation. The ectopic expression of
FAM49B in FAM49B-depleted Hey and OVCAR-
3 cells partially weakened the increased activa-
tion of EGFR, MAPK, and C-JUN induced by
FAM49B knockdown (Figure 3F). Collectively,
our findings suggest that FAM49B downregu-
lates the EGFR-MAPK pathway in ovarian can-
cer cells.

To elucidate the underlying mechanisms by
which FAM49B regulates the EGFR-MAPK
pathway, we determined whether FAM49B
interacts with EGFR in ovarian cancer cells.
Co-immunoprecipitation (co-IP) experiments
revealed both exogenous and endogenous
interaction between FAM49B and EGFR in Hey

Am J Cancer Res 2025;15(9):4150-4164
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Figure 2. Evaluation of the effects of FAM49B expression on tumor growth in ovo and in a xenograft mouse model.
(A, B) Effects of FAM49B knockdown (A) or overexpression (B) on tumor growth were evaluated in a chick embryo
chorioallantoic membrane (CAM) model. For each embryo, 5.0 x 10° cells were inoculated. A minimum of ten em-
bryos per condition was analyzed and representative images were shown. Arrows indicate tumor. Tumor weights
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FAM49B-ovexpressing TOV-112D and control cells were subcutaneously injected into mice, and tumor images are
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ing and immunohistochemical staining for Ki67 and FAM49B in tumor sections. The magnification of the images is
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Figure 3. FAM49B expression regulates EGFR activation and ERK-MAPK pathway. (A) Volcano plot showing the RNA-
Seq analysis results of differentially expressed genes between FAM49B-depleted and control OVCAR-8 cells. (B)
KEGG enrichment analysis for the differentially expressed genes after FAM49B knockdown. (C) Clustered heatmap
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tive images were shown. In all IB experiments, a-Tubulin was used as a loading control. (G) Immunoprecipitation
followed by IB analyses of interaction between Flag-tagged EGFR and V5-tagged FAM49B in transfected TOV-112D
cells. (H) Immunoprecipitation followed by IB analyses of interaction between endogenous EGFR and FAM49B in
Hey cells. (I) Immunofluorescence staining detection of colocalization between endogenous EGFR and FAM49B in
Hey cells. DAPI was used for nuclear staining. The magnification of the images is 1000x, scale bar, 10 pym. (J) Im-
munofluorescence staining detection of colocalization between endogenous EGFR and V5-FAM49B in transfected
Hey cells. DAPI was used for nuclear staining. The magnification of the images is 1000x, scale bar, 10 ym.

cells or transfected TOV-112D cells (Figure 3G
and 3H). Consistent with co-IP results, immuno-
fluorescence imaging revealed the co-localiza-
tion of FAM49B and EGFR in transfected Hey
cells (Figure 31 and 3J).

FAMA49B plays a role in EGF-induced growth of
ovarian cancer cells

After confirming that FAM49B expression
downregulates the EGFR-MAPK signaling path-
way, we hypothesized whether FAM49B regu-
lates the EGFR-MAPK signaling pathway in
response to epidermal growth factor (EGF)
stimulation. For this, FAM49B-ovexpressing
Hey and control cells were stimulated with
EGF; IB was used to monitor the activation of
the EGFR-ERK pathway. Figure 4A illustrates
that FAM49B overexpression in Hey cells mark-
edly attenuated EGFR and ERK1/2 activation
approximately 30 min after EGF treatment,
compared with control cells. Furthermore, EGF-
induced AKT activation was strongly attenuat-
ed in FAM49B-overexpressing cells. Similar
findings were noted in EGF-stimulated TOV-
112D cells following manipulation of FAM49B
expression (Figure 4B). EGF can promote can-
cer cell growth and is an important growth fac-
tor for establishing three-dimensional (3D)
sphere cultures.

We cultured FAM49B-overexpressing Hey and
TOV-112D cells, along with their respective con-
trols, in non-adherent, serum-free conditions
supplemented with EGF, bFGF, and B27. To
avoid aggregate formation, sub-cultured spher-
oids were used throughout the study. FAM49B
overexpression resulted in smaller spheres
compared to controls (Figure 4C). In contrast,
FAM49B-depleted Hey and OVCAR-8 cells
formed larger spheres than control cells (Figure
4D).

MEK inhibitor Trametinib antagonizes the ef-
fect of FAM49B knockdown on ovarian cancer
cell growth

Our abovementioned findings suggest the
essential role of the EGFR-MAPK pathway in
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FAM49B-mediated effects on ovarian cancer
cell growth. Next, we investigated whether the
pharmacological inhibition of the EGFR-MAPK
pathway reverses the increased cell growth
after FAM49B knockdown. For this, we used
the following inhibitors: afatinib and erlotinib
(targeting EGFR), PD98059 and trametinib (tar-
geting MEK1/2), SP600125 (targeting SAPK/
JNK), and SB203580 and SP202190 (target-
ing p38MAPK). To prevent cytotoxicity, the
effective concentrations of these inhibitors
were selected via a dose-response assay for
each inhibitor (data not shown). We confirmed
the inactivation of the target pathways in Hey
cells using specific inhibitors at given concen-
trations for 24 h (Figure 5A). Notably, among
the inhibitors tested, trametinib completely
inhibited the increased phosphorylation of
ERK1/2 after FAM49B knockdown and the
basal phosphorylation of ERK1/2 in control
cells (Figure 5A). Consistently, treatment with
trametinib, but not other inhibitors, signifi-
cantly impaired increased colony formation in
both Hey and TOV-112D cells with FAM49B
knockdown (Figure 5B). Furthermore, tra-
metinib treatment suppressed tumor growth in
FAM49B-depleted Hey and OVCAR-8 cells in
the ovo model (Figure 5C).

Discussion

In the present study, we first reported that
FAMA49B acts as a tumor suppressor in ovari-
an cancer. Mechanistically, FAM49B inhibits
ovarian cancer cell growth partially by down-
regulating the EGFR-MAPK signaling pathway.
Therefore, our findings may reveal the role and
mechanism of action of FAM49B in the progres-
sion of ovarian cancer.

FAM49B (also known as CYRI-B) has recently
garnered attention as a new target in cancer
development [6]. However, recent studies have
revealed a complex, even paradoxical, role of
FAMA49B in cancer, as it can either promote or
suppress tumor progression in specific con-
texts [6]. Particularly in the case of PDAC, while
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Figure 4. FAM49B expression attenuates EGF-induced sphere growth. (A, B) Immunoblotting (IB) analyses of the
phosphorylation levels for EGFR, ERK, and AKT in FAM49B-overexpressing Hey (A) and TOV-112D (B) cells upon
exposure to EGF (20 ng/ml) for the indicated time. a-Tubulin was used as a loading control. (C, D) Representative
images of three-dimensional (3D) spheres of FAM49B-overexpressing Hey and TOV-112D cells (C) and FAM49B-
depleted Hey and OVCAR-8 cells (D). The magnification of the images is 100x, scale bars, 200um. Sphere diameter
was determined and quantified. All statistical data were presented as Mean + SD (***P < 0.001, ****P < (0.0001).

FAMA49B serves as a suppressor of cancer cell
proliferation and invasion by regulating tumor
mitochondrial redox reactions and metabolism
[7], another study has revealed that loss of
FAM49B can inhibit metastasis during PDAC
progression [6]. Notably, FAM49B deficiency
enhanced early PDAC progression [6], suggest-
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ing that FAM49B acts as a tumor suppressor in
early stages of PDAC but exhibits a pro-meta-
static function in late stages of PDAC. Therefore,
the role of FAM49B in cancer development may
be complex, and researchers should be cau-
tious when defining its role in distinct cancer
contexts.
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Figure 5. MEK inhibitor Trametinib antagonizes FAM49B-knockdown-induced cell growth. A. Immunoblotting de-
tection of the phosphorylation of MEK1/2, ERK1/2, JNK, and p38MAPK in Hey cells upon exposure to indicated
inhibitors for 24 h. PD98059 and Trametinib (10 uM/mL), SP600125 (10, 20 yM/mL), SB203580 and SB202190
(10 yuM/mL). o-Tubulin was used as a loading control. B. Representative images and quantification of clonogenic
growth of FAM49B-depleted Hey and TOV-112D cells treated with indicated inhibitors. C. Effect of the MEK inhibitor
trametinib on tumor growth in an ovo model. Arrows indicate tumor presence. Tumor weights (mg) after excision
from the CAM (upon experiment termination on the 10th day). Data show mean + SEM (n=6). All statistical data

were presented as Mean + SD (****P < 0.0001).

In addition to the complex role of FAM49Bb in
the tumorigenesis and development of PDAC,
different studies have revealed distinct differ-
ences in FAM49B expression in PDAC progres-
sion. While one study has revealed the down-
regulation of FAM49B expression in PDAC cells
by the tumor microenvironment [7], another
study has revealed high FAM49B expression in
pancreatic tumors in a mouse model of
KRAS and p53-driven pancreatic cancer [6].
Considering that FAM49B is upregulated in
ovarian cancer tissues [13], one may speculate
the oncogenic role of FAM49B in ovarian can-
cer. However, in the present study, using gain
and loss-of-function experiments and cell cul-
tures, an ovo CAM model, and a mouse model,
we demonstrated that FAM49B suppresses
ovarian cancer cell growth. This suggests the
tumor suppressor role of FAM49B in ovarian
cancer. Therefore, there are inconsistencies
between high FAM49B expression in ovarian
cancer tissues noted in a previous study and
the anti-growth effect of FAM49B noted in our
study. In addition, whether FAM49B expression
exerts an effect on the motility of ovarian can-
cer cells remains unknown. This should be
investigated in further studies because it can
provide sufficient evidence for the role of
FAMA49B in ovarian cancer progression.

To date, the mechanisms of action of FAM49B
in certain cancers have been partially explored.
As expected, FAM49B, as a newly identified
RAC1 interactor, negatively regulates RAC1
activity and signaling, thereby suppressing
PDAC tumorigenesis [6]. Interestingly, the
FAM49B-RAC1 axis acts downstream of LanC-
like protein-1 to promote liver tumor initiation
by suppressing the Rac1-NADPH oxidase-driv-
en reactive oxygen species production [12]. In
addition to regulating RAC1 activity and signal-
ing, other mechanisms of action of FAM49B in
cancer have been documented. A recent study
revealed that FAM49B stabilizes ELAVL1 pro-
tein and regulates the downstream Rabl10/
TLR4 pathway, thereby promoting breast can-
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cer progression [10]. Another observation sug-
gests that FAM49B impairs macropinocytic
uptake of the lysophosphatidic acid receptor 1,
thereby promoting PDAC metastasis [6]. In
addition, FAM49B can suppress PDAC progres-
sion by regulating tumor mitochondrial redox
reactions and metabolism [7]. Overall, these
studies suggest that the mechanisms of action
of FAM49B in cancer are not limited to regulat-
ing RAC1 activity and signaling. In the pre-
sent study, we demonstrated that elevated
FAM49B expression downregulates the ERK-
MAPK signaling pathway in ovarian cancer
cells. Our findings are consistent with those of
a previous study, which revealed that during
the early stages of PDAC development, FAM-
49B deletion enhanced ERK and JNK-induced
proliferation in precancerous lesions [6]. More-
over, we observed that the MEK inhibitor tra-
metinib can counteract the effect of FAM49B
knockdown on ovarian cancer cell growth, sup-
porting the notion that the ERK-MAPK pathway
plays a role in FAM49B-mediated effects on
ovarian cancer cell growth.

EGFR is overexpressed in more than 50% of
patients with ovarian cancer and is associated
with poor clinical outcomes [20-25]. EGFR sig-
naling promotes ovarian tumorigenesis, includ-
ing proliferation, migration, and angiogenesis
[26]. Moreover, several EGFR inhibitors, includ-
ing erlotinib, have been tested in clinical trials
[27, 28]. However, current studies have reveal-
ed that patients with ovarian cancer exhibit a
limited benefit from the EGFR inhibitors, name-
ly, erlotinib or afatinib [29-31]. The complex
regulation of EGFR signaling in ovarian cancer
can contribute to the undesirable effects of
these EGFR inhibitors. In the present study, we
reported that FAM49B knockdown enhanc-
ed EGFR activation under basal conditions; in
contrast, FAM49B overexpression markedly
attenuated EGFR and ERK1/2 activation upon
EGF treatment. Collectively, our study findings
suggest that FAM49B is a novel regulator of
EGFR signaling in ovarian cancer. It should be
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noted that in our study both EGFR inhibitors
Afatinib and Erlotinib did not attenuate the
phenotypes induced by FAM49B knockdown
effectively as Trametinib did. Previous studies
have documented that ovarian cancer might
express ERBB2 and/or ERBB3, which activate
the MAPK signaling as did EGFR [32-34]. As
both Afatinib and Erlotinib effectively target
EGFR but not ERBB2/3, the activated MAPK
pathway by ERBB2/3 might not be inhibited
sufficiently by Afatinib or Erlotinib. Trametinib
effectively targets MEK1/2 [35], which is down-
stream of EGFR and/or ERBB2/3 signaling
pathways. This might explain partially that com-
pared to Afatinib and Erlotinib, Trametinib treat-
ment achieved more potent inhibitory effects
on cell growth. Further studies should be per-
formed to examine the expression of ERBB2/3
in the tested ovarian cancer cell lines.

Conclusions

We demonstrated the anti-growth role of
FAM49B in ovarian cancer. Furthermore, our
findings suggest FAM49B as a new negative
regulator of EGFR activity, with potential clini-
cal implications in EGFR-driven ovarian cancer.
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Supplementary Figure 1. FAM49B expression
exerts an effect on ovarian cancer cell growth
(A, C) CCK-8 assay to determine the cell viability
of FAM49B-depleted Hey and OVCAR-8 cells (A),
and FAM49B-overexpressing Hey and TOV-112D
cells (C). (B, D) Representative images and the
quantification of EdU incorporation to assess the
cell proliferation of FAM49B-depleted Hey and OV-
CAR-3 cells (B), and FAM49B-overexpressing Hey
and TOV-112D cells (D). The magnification of the
images is 100x, Scale bars, 200 uym. All statistical
data were presented as Mean + SD (**P < 0.01,
***P < 0.001, ****P < 0.0001).



