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Abstract: Despite overall survival exceeding 80% in Wilms tumor (WT), approximately 15% of pediatric patients
experience recurrence with poor post-relapse survival (~50%) and significant long-term complications, highlighting
an unmet need for precise recurrence prediction. To address this, we developed and validated machine learning
(ML) models for predicting postoperative WT recurrence using real-world clinical data. Among 476 pediatric WT
patients who underwent radical surgery at our institution (June 2004-June 2024), 351 met inclusion criteria and
were randomized into training (70%) and validation (30%) cohorts. Seven independent predictors - COG tumor
stage, age, tumor rupture, histological subtype (COG classification), tumor thrombus, tumor volume, and Ki-67 in-
dex - were identified via feature selection intersection of Boruta, LASSO, subgroup analysis, and univariate logistic
regression. Predictive models were constructed using nine ML algorithms (DT, LASSO, KNN, LightGBM, LR, MLP,
RF, SVM, XGBoost), with performance evaluated using metrics such as AUC, accuracy, F1 score, specificity, posi-
tive predictive value (PPV), negative predictive value (NPV), and confusion matrix. Among the included patients, 51
(14.53%) experienced tumor recurrence (including 7 multi-site relapses), with median time to recurrence 6 months
(IQR 4-16 months) and 80.4% occurring within the first postoperative year. In the validation cohort, the SVM model
demonstrated the best performance (AUC = 0.851; accuracy = 0.830; specificity = 0.856; F1 = 0.550; PPV = 0.458;
NPV = 0.939), and SHAP analysis highlighted unfavorable histology, COG stage IV-V, tumor thrombus, and elevated
Ki-67 index as the strongest contributors to recurrence risk. This interpretable SVM-based model confirms seven
key predictors - especially the Ki-67 index - and serves as a practical risk stratification tool to support individualized
follow-up planning.

Keywords: Wilms tumor, tumor recurrence prediction, machine learning, support vector machine, feature selec-
tion, SHAP interpretation

Introduction multidisciplinary treatment strategies - overall

survival rates for WT now exceed 80%. How-

Wilms tumor (WT) is an embryonal malignancy
that accounts for approximately 95% of pediat-
ric renal neoplasms and has the potential to
metastasize to the lungs, liver, bones, and
lymph nodes [1]. Despite significant advance-
ments in surgical techniques, chemotherapy,
and radiotherapy - along with the integration of

ever, the prognosis following recurrence re-
mains poor, with a survival rate of only around
50%. Survivors of relapse often experience
long-term health complications. Accurately
identifying children at high risk of recurrence
remains a major unresolved clinical challenge
[2-4]. The lungs are the most common site of
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WT recurrence, followed by the abdomen;
metastases to the liver, brain, and bones are
comparatively rare. Studies have reported that
approximately 15% of pediatric patients may
experience relapse. Of these, 50-60% involve
isolated pulmonary or pleural recurrence, 30%
involve abdominal recurrence (either isolated
or in combination with other sites), and the
remaining 10-15% present with metastases to
the brain or bone [5].

To better assess postoperative survival and
recurrence risk in pediatric patients, both the
Children’s Oncology Group (COG) in the Unit-
ed States and the International Society of
Paediatric Oncology (SIOP) have developed
and refined risk stratification systems. These
approaches aim to allow for flexible adjust-
ments to treatment intensity based on individu-
al recurrence risk [6]. In a retrospective analy-
sis of patients enrolled in the United Kingdom
Wilms Tumor Study 3 (UKW3), Irtan et al. [7]
identified anaplastic histology and a larger
tumor volume as significant risk factors for
recurrence. Current evidence indicates that,
even under standard treatment protocols,
approximately 15% of patients with stage Il dis-
ease and 25% with stage IV disease still ex-
perience relapse. These findings underscore
the urgent need for more precise risk stratifica-
tion and targeted interventions in high-risk
patient populations [8].

Compared with traditional regression-based
approaches, machine learning offers superior
flexibility, scalability, computational power, and
automated data-driven capabilities, enabling
more accurate predictions across heteroge-
neous and uncorrelated datasets [9, 10].
Previous research on WT recurrence has pri-
marily focused on post-relapse management
strategies - such as surveillance, repeat sur-
gery, and radiotherapy - while effective tools for
accurately predicting the risk of recurrence
remain lacking [11-13]. In this study, we lever-
aged clinicopathological features and routine
laboratory parameters of pediatric WT patients
to develop and validate nine ML-based predic-
tive models for tumor recurrence. Our objective
was to construct a clinically applicable, effi-
cient, and accurate predictive tool based on
readily accessible clinical data to identify chil-
dren at high risk of relapse. Such a model could
facilitate early intervention and provide an evi-
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dence-based foundation for optimizing man-
agement strategies both before and after
relapse in pediatric WT.

Materials and methods
Clinical and pathological data

Clinical and pathological data were retrospec-
tively collected from pediatric patients diag-
nosed with Wilms tumor (WT) at the Children’s
Hospital of Chongging Medical University (CH-
CMU) between June 2004 and June 2024. The
dataset included demographic, clinical, and
laboratory information such as age, sex, lateral-
ity of the tumor, low body weight, tumor volume,
use of neoadjuvant chemotherapy, nephron-
sparing surgery, presence of tumor thrombus,
tumor rupture, COG tumor stage, number of
lymph nodes dissected, lymph node status,
histologic subtype (COG classification), WT1
expression, Ki-67 index, postoperative chemo-
therapy, and postoperative radiotherapy. Tumor
volume (cm?) was calculated from preoperative
contrast-enhanced CT three-dimensional imag-
es using the ellipsoid formula: 0.523 x length x
width x height [14]. Low body weight was de-
fined as a body weight below two standard devi-
ations (-2 SD) from the median reference of the
World Health Organization (WHO) Child Growth
Standards [15].

Ki-67 index was assessed by immunohisto-
chemistry (IHC) according to the guidelines of
the International Ki-67 Working Group (IKWG)
[16]: specifically, formalin-fixed, paraffin-em-
bedded sections (10% neutral buffered forma-
lin) were cut at 4 uym, deparaffinized in xylene,
rehydrated through graded alcohols, and sub-
jected to antigen retrieval in citrate buffer (pH
6.0). Endogenous peroxidase was blocked with
3% hydrogen peroxide for 20 minutes, followed
by incubation with an anti-Ki-67 rabbit mono-
clonal antibody (Roche Ventana, USA) for 16
minutes. After counterstaining with hematoxy-
lin, the slides were thoroughly dried, mounted,
and analyzed by light microscopy or using
ImagelJ software. Tumor cell nuclei were count-
ed in four representative fields (counting at
least 400 invasive tumor cells in total), using
the global counting method in line with IKWG’s
recommendation for reproducibility. The Ki-67
proliferation index was reported as the percent-
age of positively stained nuclei over the total
counted.
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Patients with pathologically confirmed WT
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Figure 1. Visualization of data screening and clinical study design process.

Inclusion and exclusion criteria

The inclusion criteria were: (1) patients who
underwent surgical treatment with postopera-
tive pathological confirmation of Wilms tumor;
(2) less than 20% missing data in the key vari-
ables [17]; and (3) no prior history of other
malignancies or serious systemic diseases.
Exclusion criteria were: (1) Wilms tumors origi-
nating outside the kidney (n = 13); (2) unknown
survival status (n = 31); (3) patients who did not
undergo surgery (n = 15) or who underwent sur-
gery again after recurrence (n = 28); (4) cases
with more than 20% missing data (n = 25); and
(5) patients who received chemotherapy at our
hospital but had surgery performed elsewhere
(n = 13) (Figure 1). Recurrence was defined as
tumor reappearance at least one month after
achieving complete remission following initial
treatment, including both local recurrence at
the primary site and distant metastases. This
study was conducted in accordance with the
Declaration of Helsinki and approved by the
Ethics Committee of the Children’s Hospital of
Chongqing Medical University (Approval No.
(2024) Ethics Review (Research) No. 359). As a
retrospective study utilizing anonymized data,
informed consent was waived.
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Data preprocessing

For clinical variables with less than 20% miss-
ing values and assumed to be missing at ran-
dom (WT: 14.81%, Ki-67: 17.09%), multiple
imputation was performed using the mice
package (version 4.5.1) in R, based on the ran-
dom forest method (Supplementary Figure 1)
[17]. The cohort of 351 WT patients was ran-
domly divided into a training set (70%) and a
testing set (30%). After dataset partitioning,
categorical clinical and pathological variables
were converted into dummy variables prior
to modeling using the dummy function. This
approach transforms multi-category nominal
variables into numerical inputs recognizable by
machine learning algorithms, preventing erro-
neous ordinal assumptions on category codes.
Consequently, it improves model accuracy and
ensures appropriate interpretation of the intrin-
sic properties of variables.

Feature selection

Candidate variables were screened using four
methods: LASSO regression, the Boruta algo-
rithm, subgroup analysis, and univariate logis-
tic regression. LASSO, an L1-regularization-
based regression technique, performs feature
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selection by shrinking the coefficients of irrele-
vant variables to zero. It is well-suited for high-
dimensional data and remains stable in the
presence of multicollinearity, effectively identi-
fying key predictors. The Boruta algorithm, built
on a random forest framework, assesses vari-
able importance by comparing actual features
against randomized “shadow features”. This
method handles high-dimensional data robust-
ly and demonstrates strong stability in varia-
ble selection [18]. Subgroup analysis was
employed to evaluate the consistency of vari-
able performance across different clinical pop-
ulations, thereby enhancing the model’s clinical
generalizability. Univariate logistic regression
served as an initial screening tool to preliminar-
ily assess the statistical association between
each variable and the outcome. Given the dif-
fering principles and selection criteria underly-
ing these methods, this study used the in-
tersection of variables identified by all four
approaches as the final set for modeling. This
strategy ensures consistency in statistical sig-
nificance, algorithmic importance, and clinical
relevance, thereby improving the predictive
accuracy and interpretability of the model.

Model development and validation

Clinical and pathological features such as sex,
age, and tumor volume were used as input vari-
ables, with tumor recurrence as the prediction
target. Nine machine learning algorithms were
employed to build predictive models: Decision
Tree (DT), Least Absolute Shrinkage and Se-
lection Operator (LASSO), K-Nearest Neighbors
(KNN), Light Gradient Boosting Machine (Light-
GBM), Logistic Regression, Neural Network
(single hidden layer), Random Forest (RF),
Support Vector Machine (SVM), and Extreme
Gradient Boosting (XGBoost). All ML analyses
were conducted in the R environment (version
4.5.1).

During model training, hyperparameter tuning
was performed using grid search combined
with 10-fold cross-validation to identify optimal
parameter configurations, with search ranges
appropriately set based on sample size and
feature count (Supplementary Table 1). In the
testing set, key performance metrics - includ-
ing accuracy, area under the curve (AUC), spe-
cificity, confusion matrix, recall (sensitivity),
and F1 score - were evaluated. Additionally,
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receiver operating characteristic (ROC) curves,
decision curve analysis (DCA), and calibration
curves were used to further assess predictive
performance and model stability.

Based on these performance indicators, the
best-performing predictive model was identi-
fied. To enhance interpretability, SHapley Addi-
tive exPlanations (SHAP) were applied to visual-
ize and explain the key contributing factors in
the optimal model. SHAP, a game theory-based
approach, ranks the importance of input fea-
tures and elucidates model outputs, effectively
addressing the “black-box” nature of ML mod-
els and providing transparent interpretability
for the optimal model.

Statistical analysis

Categorical variables were compared between
groups using the Chi-square test or Fisher’s
exact test, as appropriate. For continuous vari-
ables, the two-tailed Student’s t-test was used
when data followed a normal distribution; oth-
erwise, the Mann-Whitney U test was applied.
All statistical tests were two-sided, and a p
value <0.05 was considered statistically signifi-
cant. The development, parameter specifica-
tion, hyperparameter tuning, and performance
evaluation of machine learning models were
conducted within the tidymodels framework.
SHAP-based interpretability analyses were per-
formed using the iml and fastshap packages,
and visualizations were generated with the
ggbeeswarm package. All statistical analyses,
model development, validation, and interpret-
ability were carried out in the R programming
environment (version 4.5.1, Vienna, Austria).

Results
Patient characteristics

Based on the inclusion and exclusion criteria,
125 patients were excluded from the initial
cohort of 476 children, resulting in a final stu-
dy population of 351 pediatric WT patients.
Among these, 51 patients (14.53%) experi-
enced tumor recurrence, with 7 cases (13.73%)
presenting with multi-site relapse. The median
time to recurrence was 6 months (IQR: 4-16
months), with 80.4% of relapses occurring with-
in one year. Sites of recurrence included the
tumor bed (17 cases), lungs (16 cases), non-
tumor-bed abdominal areas (13 cases), liver (5
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cases), pelvis (3 cases), mediastinum (2 cases),
pancreas (1 case), and orbit (1 case). Among all
recurrent patients, 29 received chemotherapy
and/or radiotherapy, 21 underwent surgical
resection of recurrent lesions, and 1 patient
was treated with arterial embolization. The
entire cohort of 351 patients was randomly
splitinto a training set and a testing setina 7:3
ratio.

The training set included 245 patients, com-
prising 112 males and 133 females, with 35
cases of WT recurrence (14.29%). Comparative
analysis revealed that recurrence was signifi-
cantly associated with older age, larger tumor
volume, presence of tumor thrombus, tumor
rupture, higher COG tumor stage, positive
lymph node status, unfavorable histology, ele-
vated Ki-67 expression, and postoperative
radiotherapy (Table 1). No statistically signifi-
cant differences were observed between the
training and testing sets across demographic
and clinical variables (all P>0.05) (Table 2).

Feature selection

A total of 17 candidate variables were initially
considered in this study. Their predictive im-
portance was evaluated using four methods:
LASSO regression, the Boruta algorithm, sub-
group analysis, and univariate logistic regres-
sion. Based on the intersection of the selected
features from all four approaches, seven key
predictive variables were ultimately identified:
COG tumor stage, age, tumor rupture, histologic
type (COG classification), presence of tumor
thrombus, tumor volume, and Ki-67 index
(Figure 2).

ML model development and performance
validation

The predictive performance of nine machine
learning algorithms for pediatric WT recurrence
is summarized in Table 3. Among them, the
SVM model demonstrated the best overall per-
formance, achieving the highest AUC of 0.851,
accuracy of 0.830, specificity of 0.856, posi-
tive predictive value (PPV) of 0.458, negative
predictive value (NPV) of 0.939, and F1 score
of 0.550. The model also exhibited relatively
high recall (0.688) and Matthews correlation
coefficient (MCC) of 0.465, indicating a well-
balanced ability to distinguish between recur-

3839

rent and non-recurrent patients. The confusion
matrix showed that the SVM model correctly
identified the majority of recurrent cases (11
patients) and non-recurrent cases (77 patients),
while maintaining reasonable false positive (13
cases) and false negative (5 cases) rates. This
suggests that the model effectively balances
sensitivity and high specificity, yielding strong
overall discriminative capability (Figure 3). DCA
curve further demonstrated that the SVM mo-
del provided greater net benefit across most
threshold probabilities, and its calibration cur-
ve closely aligned with the ideal reference line,
indicating excellent calibration (Figure 4).

LR and LASSO regression achieved AUC values
of 0.842 and 0.839, respectively, demonstrat-
ing high specificity and NPV, although their PPV
and F1 scores were lower than those of the
SVM model. Both RF and MLP showed high
recall rates of 0.812, indicating strong ability
to identify recurrent cases, but they exhibited
lower accuracy and specificity. In contrast,
XGBoost and LightGBM performed relatively
poorly overall, with AUCs of 0.652 and 0.762,
respectively, accompanied by low PPV and F1
scores. Taken together, SVM achieved the best
balance between sensitivity and specificity
among the nine machine learning algorithms,
demonstrating the greatest potential as a pre-
dictive model for pediatric WT recurrence.

Interpretation of the optimal ML model

The SHAP plot provides a global perspective on
the contribution of each feature to the predic-
tions made by the SVM model, elucidating how
the model integrates multiple variables to
inform its decision-making. SHAP analysis iden-
tified the primary influential variables in de-
scending order as follows: unfavorable histolo-
gy (20.8%), COG stage IV-V (18.9%), presence
of tumor thrombus (10.1%), Ki-67 index (9.9%),
intraoperative tumor rupture (8.2%), preopera-
tive tumor rupture (7.4%), combined preopera-
tive and intraoperative rupture (6.7%), tumor
volume (6.2%), COG stage Il (6.1%), and age
(5.6%) (Figure 5).

Moreover, the SHAP summary bar plot high-
lights that unfavorable histology and COG sta-
ge IV-V contribute most substantially to predict-
ing Wilms tumor recurrence risk, significantly
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Table 1. Demographic and clinical characteristics of children with Wilms tumor in the training set

Variables Total (n = 245) No Recurrence (n = 210) Recurrence (n = 35) Statistic P
Age, M (Q,; Q,) 27.00 (15.00, 46.00) 25.50 (13.25, 43.00) 45.00 (24.00, 65.50) Z=-3.35 <.001
Gender, n (%) x> =0.00 1
Female 133 (54.29) 114 (54.29) 19 (54.29)
Male 112 (45.71) 96 (45.71) 16 (45.71)
Laterality, n (%) x> =298 0.226
Left 116 (47.35) 102 (48.57) 14 (40.00)
Right 120 (48.98) 99 (47.14) 21 (60.00)
Bilateral 9 (3.67) 9 (4.29) 0 (0.00)
Low weight for age, n (%) X2 =2.54 0.111
No 193 (78.78) 169 (80.48) 24 (68.57)
Yes 52 (21.22) 41 (19.52) 11 (31.43)
Tumor volume, M (Q,, Q,) 502.08 (244.53, 789.08) 449.09 (212.87,750.42) 662.04 (405.67,1227.96) Z=-2.92 0.003
Neoadjuvant chemotherapy, n (%) x> =2.16 0.142
No 179 (73.06) 157 (74.76) 22 (62.86)
Yes 66 (26.94) 53 (25.24) 13 (37.14)
Nephron sparing surgery, n (%) x2=1.25 0.264
No 222 (90.61) 188 (89.52) 34 (97.14)
Yes 23(9.39) 22 (10.48) 1(2.86)
Tumor thrombus, n (%) x> =9.70 0.002
No 221 (90.20) 195 (92.86) 26 (74.29)
Yes 24 (9.80) 15 (7.14) 9 (25.71)
Tumor rupture, n (%) - <.001
No rupture 179 (73.06) 165 (78.57) 14 (40.00)
Pre-op rupture 30 (12.24) 22 (10.48) 8 (22.86)
Intra-op rupture 26 (10.61) 17 (8.10) 9 (25.71)
Pre- & intra-op rupture 10 (4.08) 6 (2.86) 4 (11.43)
COG tumor stage, n (%) x> =36.03 <.001
Stage Il 139 (56.73) 135 (64.29) 4(11.43)
Stage Il 76 (31.02) 56 (26.67) 20 (57.14)
Stage IV-V 30 (12.24) 19 (9.05) 11 (31.43)
Number of lymph nodes examined, M (Q,, Q,) 1.00 (0.00, 5.00) 1.00 (0.00, 4.75) 3.00 (0.00, 7.00) Z=-1.48 0.138
Lymph node status, n (%) x>=16.03 <.001
Not examined 112 (45.71) 99 (47.14) 13 (37.14)
Negative 116 (47.35) 102 (48.57) 14 (40.00)
Positive 17 (6.94) 9 (4.29) 8 (22.86)
3840 Am J Cancer Res 2025;15(9):3835-3853
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Histology type (COG), n (%) X2 =9.17 0.002
Favorable Histology 216 (88.16) 191 (90.95) 25(71.43)
Unfavorable Histology 29 (11.84) 19 (9.05) 10 (28.57)
WTZ1, n (%) x> =0.23 0.628
Negative 42 (17.14) 35 (16.67) 7 (20.00)
Positive 203 (82.86) 175 (83.33) 28 (80.00)
Ki67, M (Ql, Q3) 0.50 (0.30, 0.70) 0.40 (0.30, 0.70) 0.60 (0.40, 0.70) Z=-2.33 0.02
Adjuvant chemotherapy, n (%) - 1
No 4 (1.63) 4 (1.90) 0 (0.00)
Yes 241 (98.37) 206 (98.10) 35 (100.00)
Adjuvant radiotherapy, n (%) x?=6.81 0.009
No 210 (85.71) 185 (88.10) 25 (71.43)
Yes 35 (14.29) 25 (11.90) 10 (28.57)
Z: Mann-Whitney test, x*: Chi-square test, M: Median, Q,: 1st Quartile, Q,: 3st Quartile.
Table 2. Demographic and clinical characteristics of children with Wilms tumor
Variables Total (n = 351) Train (n = 245) Test (n = 106) P No Recurrence (n = 300) Recurrence (n = 51) P
Age, M (Q,, Q,) 27.00 (14.00, 46.00) 27.00 (15.00, 46.00) 26.00 (13.00, 45.75) 0.863 26.00 (13.00, 43.25) 42.00 (20.50, 64.50) 0.002
Gender, n (%) 0.368 0.971
Female 185 (52.71) 133 (54.29) 52 (49.06) 158 (52.67) 27 (52.94)
Male 166 (47.29) 112 (45.71) 54 (50.94) 142 (47.33) 24 (47.06)
Laterality, n (%) 0.159 0.648
Left 178 (50.71) 116 (47.35) 62 (58.49) 154 (51.33) 24 (47.06)
Right 161 (45.87) 120 (48.98) 41 (38.68) 135 (45.00) 26 (50.98)
Bilateral 12 (3.42) 9(3.67) 3(2.83) 11 (3.67) 1(1.96)
Low weight for age, n (%) 0.616 0.184
No 279 (79.49) 193 (78.78) 86 (81.13) 242 (80.67) 37 (72.55)
Yes 72 (20.51) 52 (21.22) 20 (18.87) 58 (19.33) 14 (27.45)
Tumor volume, M (Q,, Q,) 462.47 (250.23, 792.62) 502.08 (244.53, 789.08) 446.16 (263.97,813.34) 0.701 448.11 (242.78,751.71) 636.39(353.74,912.54) 0.01
Neoadjuvant chemotherapy, n (%) 0.248 0.148
No 250 (71.23) 179 (73.06) 71 (66.98) 218 (72.67) 32 (62.75)
Yes 101 (28.77) 66 (26.94) 35(33.02) 82 (27.33) 19 (37.25)
Nephron sparing surgery, n (%) 0.989 0.234
No 318 (90.60) 222 (90.61) 96 (90.57) 269 (89.67) 49 (96.08)
Yes 33(9.40) 23(9.39) 10 (9.43) 31(10.33) 2(3.92)
Tumor thrombus, n (%) 0.095 <.001
No 310 (88.32) 221 (90.20) 89 (83.96) 276 (92.00) 34 (66.67)
Yes 41 (11.68) 24 (9.80) 17 (16.04) 24 (8.00) 17 (33.33)
3841 Am J Cancer Res 2025;15(9):3835-3853
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Tumor rupture, n (%) 0.183 <.001
No rupture 248 (70.66) 179 (73.06) 69 (65.09) 229 (76.33) 19 (37.25)
Pre-op rupture 46 (13.11) 30 (12.24) 16 (15.09) 35(11.67) 11 (21.57)
Intra-op rupture 37 (10.54) 26 (10.61) 11 (10.38) 24 (8.00) 13 (25.49)
Pre- & intra-op rupture 20 (5.70) 10 (4.08) 10 (9.43) 12 (4.00) 8(15.69)
COG tumor stage, n (%) 0.345 <.001
Stage |-l 194 (55.27) 139 (56.73) 55 (51.89) 188 (62.67) 6 (11.76)
Stage Il 117 (33.33) 76 (31.02) 41 (38.68) 88 (29.33) 29 (56.86)
Stage IV-V 40 (11.40) 30 (12.24) 10 (9.43) 24 (8.00) 16 (31.37)
Number of lymph nodes examined, M (Q,, Q,) 1.00 (0.00, 4.00) 1.00 (0.00, 5.00) 1.00 (0.00, 3.00) 0.423 1.00 (0.00, 4.00) 2.00 (0.00, 5.50) 0.176
Lymph node status, n (%) 0.235 0.002
Not examined 158 (45.01) 112 (45.71) 46 (43.40) 141 (47.00) 17 (33.33)
Negative 173 (49.29) 116 (47.35) 57 (53.77) 147 (49.00) 26 (50.98)
Positive 20 (5.70) 17 (6.94) 3(2.83) 12 (4.00) 8(15.69)
Histology type (COG), n (%) 0.127 <.001
Favorable Histology 303 (86.32) 216 (88.16) 87 (82.08) 267 (89.00) 36 (70.59)
Unfavorable Histology 48 (13.68) 29 (11.84) 19 (17.92) 33(11.00) 15 (29.41)
WT1, n (%) 0.485 0.768
Negative 57 (16.24) 42 (17.14) 15 (14.15) 48 (16.00) 9 (17.65)
Positive 294 (83.76) 203 (82.86) 91 (85.85) 252 (84.00) 42 (82.35)
Ki67, M (Q,, Q,) 0.50 (0.30, 0.70) 0.50 (0.30, 0.70) 0.50 (0.30, 0.70) 0.148 0.45 (0.30, 0.70) 0.60 (0.40, 0.75) 0.004
Adjuvant chemotherapy, n (%) 0.438 1
No 4 (1.14) 4 (1.63) 0 (0.00) 4(1.33) 0 (0.00)
Yes 347 (98.86) 241 (98.37) 106 (100.00) 296 (98.67) 51 (100.00)
Adjuvant radiotherapy, n (%) 0.974 0.004
No 301 (85.75) 210 (85.71) 91 (85.85) 264 (88.00) 37 (72.55)
Yes 50 (14.25) 35 (14.29) 15 (14.15) 36 (12.00) 14 (27.45)

Z: Mann-Whitney test, x*: Chi-square test, M: Median, Q,: 1st Quartile, Q,: 3st Quartile.
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exceeding the predictive impact of other clini-
cal and pathological features. The distribution
of SHAP values for individual variables is illus-
trated in Figure 6.
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Figure 2. Key feature selection by different methods.
A, B. Nine key features selected via LASSO regres-
sion; C, D. Seven key features identified using the
Boruta algorithm; E. Venn diagram showing the in-
tersection of features selected by LASSO regression,
Boruta algorithm, subgroup analysis, and univariate
logistic regression.

Discussion

Wilms tumor is the most common renal malig-
nancy in children and ranks as the fourth most
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Table 3. Comparison of parameters among 9 machine learning algorithms for predicting recurrence
of pediatric Wilms tumor

Model AUC  Accuracy Specificity PPV NPV MCC Balanced Accuracy Recall F1 Score
LR 0.842 0.802 0.833 0.400 0.926 0.387 0.729 0.625 0.488
LASSO 0.839 0.792 0.822 0.385 0.925 0.372 0.724 0.625 0.476
DT 0.711 0.792 0.856 0.350 0.895 0.268 0.647 0.438 0.389
RF 0.820 0.736 0.722 0.342 0.956 0.399 0.767 0.812 0.481
XGBoost 0.652 0.679 0.722 0.219 0.878 0.125 0.580 0.438 0.292
SVM 0.851 0.830 0.856 0.458 0.939 0.465 0.772 0.688 0.550
MLP 0.821 0.679 0.656 0.295 0.952 0.340 0.734 0.812 0.433
LightGBM  0.762  0.623 0.622 0.227 0.903 0.180 0.624 0.625 0.333
KNN 0.747 0.717 0.744 0.281 0.905 0.239 0.653 0.562 0.375
A B C
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Figure 3. Confusion matrices of nine machine learning models on the test set. (A) Logistic Regression, (B) Least
Absolute Shrinkage and Selection Operator, (C) Decision Tree, (D) Random Forest, (E) Extreme Gradient Boosting,
(F) Support Vector Machine, (G) Single-Layer Neural Network, (H) Light Gradient Boosting Machine, and (I) K-Nearest

Neighbors.
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Figure 4. Performance comparison of nine machine learning models for predicting pediatric Wilms tumor recur-
rence. A. Receiver Operating Characteristic curves; B. Bar plot of Area Under the Curve values; C. Clinical Decision
Curve Analysis; D. Line plots of various performance metrics; E. Calibration curves.
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frequent pediatric malignancy overall. Despite
significant improvements in overall survival
rates achieved through ongoing clinical trials
and efforts by cooperative groups such as
NWTSG, SIOP, and COG, approximately 15% of
patients still experience disease recurrence
[19-21]. The majority of relapses occur within
two years after surgery and are associated with
multiple high-risk factors, including bilateral
WT, unfavorable histologic subtypes, and ad-
vanced tumor staging [3, 5, 22]. Studies have
demonstrated that over 60% of WT recurrences
are not detectable by physical examination
alone, necessitating reliance on imaging mo-
dalities for diagnosis. Detecting a single sub-
clinical relapse within the first two years post-
operatively may require an average of 112
imaging scans, increasing to as many as 500
scans beyond two years, imposing a substan-
tial burden on both patients’ families and
healthcare systems [5]. Therefore, developing
precise predictive models and identifying key
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Figure 5. SHAP analysis based on the Support Vec-
tor Machine (SVM) model for interpreting pediatric
Wilms tumor recurrence risk prediction. A. SHAP
beeswarm plot illustrating the distribution of each
variable’s impact on the model output; B. SHAP
bar plot displaying the mean importance ranking
of variables; C. SHAP analysis for an individual
sample, explaining the contribution of variables to
the specific prediction.

risk factors for recurrence are crucial for opti-
mizing surveillance and management of pediat-
ric WT patients. Such models can help avoid
excessive imaging in low-risk patients, thereby
reducing unnecessary radiation exposure, and
alleviate psychological stress experienced by
patients and families during the uncertain
phases of disease progression [23].

To more accurately predict WT recurrence and
identify the optimal predictive model, this study
employed four complementary feature selec-
tion methods - univariate logistic regression,
LASSO regression, Boruta feature importance
analysis, and subgroup analysis - to enhance
the robustness of variable selection and miti-
gate the limitations inherent to any single meth-
od, especially considering that logistic regres-
sion alone cannot fully address multicollinearity
among predictors [24]. Variables consistently
identified across these methods were regard-
ed as the most reliable predictors. Ultimately,
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Figure 6. Distribution of SHAP values for individual variables ranked by their impact strength, including (A) unfavorable histologic, (B) COG stage IV-V, (C) presence
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among 17 candidate variables, seven indepen-
dent risk factors were identified: COG tumor
stage, age, tumor rupture, unfavorable histo-
logic subtype, tumor thrombus, tumor volume,
and Ki-67 expression level. COG staging serves
as a central reference for WT treatment and
prognosis, with its correlation to recurrence
risk well established in multiple studies [25-
27]. Age is widely recognized as a critical prog-
nostic factor; older children generally have
poorer outcomes and higher recurrence risk,
which is also associated with more advanced
tumor stages and a higher prevalence of high-
risk histologic subtypes - likely reflecting dif-
ferences in tumor biology and therapeutic
response [8, 25, 28]. Studies report that the
incidence of spontaneous or traumatic tumor
rupture detected by preoperative imaging rang-
es from 3% to 23%, with up to 10% risk of intra-
operative tumor spillage in patients not re-
ceiving preoperative chemotherapy [26]. Tumor
rupture can facilitate dissemination of tumor
cells and is a known risk factor for local recur-
rence. Evidence suggests that any form of intra-
operative rupture increases the risk of recur-
rence approximately threefold [29, 30].

Unfavorable histologic subtype, specifically an-
aplastic Wilms tumor, carries a recurrence risk
three- to fivefold higher than that of favorable
histology and is frequently associated with
MYCN and TP53 mutations. These mutations
are found in approximately 5%-10% of WT
cases and are indicative of increased tumor
aggressiveness and chemoresistance [31, 32].
Irtan et al. [7], analyzing patients from the
UKW3 trial, reported that in univariate an-
alysis, biopsy status, unfavorable histology,
and tumor size were associated with an
increased risk of local recurrence, while age,
unfavorable histology, tumor size, and lymph
node metastasis significantly elevated the risk
of distant relapse. The presence of tumor
thrombus is also a critical risk factor for WT
recurrence. Tumor extension into the renal vein
or inferior vena cava occurs in 4% to 10% of
cases, with 1% to 3% extending into the right
atrium or ventricle, reflecting vascular invasion
that serves as an important marker for system-
ic metastasis and recurrence [33, 34]. Be-
cause preoperative imaging does not always
reliably detect venous tumor thrombi, intraop-
erative palpation and/or intraoperative ultra-
sound are typically employed to assess renal
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vein involvement. Tumor thrombus removal is
generally performed concurrently with tumor
resection; failure to do so results in automatic
upstaging to stage Il pathologically [35].
Consequently, NWTS/COG protocols recom-
mend neoadjuvant chemotherapy when the
thrombus extends to the hepatic veins or
beyond [36, 37]. Additionally, tumor volume is
an important risk factor for WT recurrence.
Larger tumor volumes are associated with
increased cellular heterogeneity, which may
raise the likelihood of residual disease and
tumor rupture [25, 38].

Ki-67 is a nuclear protein expressed during all
active phases of the cell cycle (G1, S, G2,and M
phases) but absent during the resting phase
(GO). Its expression is regulated by phosphory-
lation and it is widely recognized as a classi-
cal marker of cellular proliferation [39]. A high
Ki-67 index reflects a large proportion of tumor
cells in active proliferation, indicating increased
tumor aggressiveness and malignancy, which
correlates with a higher risk of recurrence. High
Ki-67 expression has been demonstrated in
numerous studies of adult and pediatric solid
tumors to be closely associated with poor prog-
nosis [40-42]. In WT, Ki-67 has been employed
to assess tumor proliferative activity and stag-
ing; however, previous clinical studies have not
definitively established its independent associ-
ation with recurrence, possibly due to small
sample sizes and nonlinear data relationships.

In this study, machine learning algorithms de-
monstrated the independent prognostic value
of Ki-67 in predicting WT recurrence, providing
important clues for subsequent precision treat-
ment [43]. For example, M. Atwa et al. [44]
conducted a retrospective analysis of 75 WT
patients and found that cyclin A immunoposi-
tivity correlated with higher recurrence rates,
whereas Ki-67 showed no statistically sig-
nificant association with adverse outcomes.
Similarly, Juri¢ et al. [45] used immunohisto-
chemical analysis of Ki-67 expression in paraf-
fin-embedded tissues from 48 pediatric WT
cases, finding correlations between Ki-67 lev-
els, histologic subtype, and stage, but empha-
sized the need for larger sample sizes and
deeper analyses to clarify the prognostic signifi-
cance of Ki-67 in WT. Additionally, in our study,
neither lymph node status nor the number of
lymph node biopsies emerged as independent
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risk factors for WT recurrence. This result may
be attributed to two key factors. First, lymph
node biopsy rates are inherently low in pediat-
ric populations. Second, the younger age of
patients at our center makes intraoperative
lymph node identification and dissection tech-
nically challenging, resulting in a limited num-
ber of harvested nodes and potentially reduc-
ing the likelihood of detecting positive nodes
[46]. Therefore, lymph node-related variables
may differ significantly across age groups and
institutions, limiting their generalizability as
predictors of recurrence.

Based on the seven selected variables, we
developed nine machine learning-based predic-
tive models and conducted a systematic com-
parison. The SVM model emerged as the top
performer, outperforming the traditional LR
model - achieving higher AUC (0.851 vs. 0.842),
accuracy (0.830 vs. 0.802), specificity (0.856
vs. 0.833), and F1 score (0.550 vs. 0.488) -
and surpassing all other algorithms. This supe-
riority reflects SVM'’s intrinsic strengths: by
selecting support vectors via the maximum-
margin criterion, it effectively mitigates over-
fitting in high-dimensional, small-sample set-
tings and enhances generalizability [47]; unlike
LR’s reliance on a log-linear relationship, SVM
makes no strict linearity assumptions and re-
mains stable even when the number of vari-
ables approaches sample size [48]; and its
focus on boundary samples confers natural
robustness to noise and outliers [49]. More-
over, as a purely data-driven method, SVM
retains strong discriminative power in limited-
sample contexts [50], highlighting its potential
as a risk-stratification tool for WT recurrence
rather than merely a “black-box” classifier.

In this study, the SVM model combined with the
SHAP analysis clearly illustrated the global con-
tribution of each feature to recurrence predic-
tion, demonstrating inherent interpretability
and a solid theoretical foundation. SHAP results
revealed that unfavorable histology and COG
stage IV-V had the greatest impact on model
output, significantly exceeding other variables.
This finding aligns with previous conclusions
from the NWTS-4 and SIOP studies, indirectly
validating the model’s predictive accuracy [29,
51]. Additionally, factors such as tumor throm-
bus formation and Ki-67 index ranked highly,
reflecting the combined effects of multidimen-
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sional biological mechanisms on recurrence
risk and further complementing existing re-
search findings [26]. Moreover, the quantita-
tive assessment provided by SHAP, which ac-
counts for both positive and negative effects
and their magnitudes, offers a more compre-
hensive basis for variable selection compared
to traditional methods that rely solely on p-val-
ues, thereby better capturing the true contribu-
tion of variables within complex models and
enhancing clinical trustworthiness.

WT commonly recurs within two years follow-
ing nephrectomy; in this study, the median time
to recurrence was 6 months, with approximate-
ly 80% occurring within the first postoperative
year, consistent with previous literature. Brok
et al. [D] retrospectively analyzed the Inter-
national Society of Paediatric Oncology Renal
Tumor Study Group (RTSG-SIOP) database from
2001 and found that among 4,271 eligible WT
patients, 538 (13%) experienced recurrence,
with about 80% of recurrences occurring within
two years after nephrectomy; notably, 70% of
these recurrences were detected through
scheduled surveillance imaging. Similarly, Fer-
nandez et al. [52] analyzed 116 patients with
very low-risk WT and reported a median time to
first recurrence of 4.3 months, with 91.6% of
recurrences occurring within two years after
treatment. Therefore, for patients at low risk of
recurrence, it is recommended to perform
abdominal ultrasound and chest X-ray every
three months during the first two years follow-
ing radical surgery, then every 4 to 6 months
during years three to four. Follow-up frequency
beyond five years should be tailored to clinical
needs. For high-risk patients, shorter intervals
between imaging studies are advised, utilizing
higher-sensitivity modalities such as CT or MRI
for monitoring [23].

This study has several limitations. First, the
use of a retrospective cohort for model devel-
opment may introduce selection bias; prospec-
tive datasets are generally more suitable for
enhancing predictive accuracy. Second, althou-
gh we aimed to include all relevant variables,
some early cases lacked critical genetic infor-
mation, such as 1p and 11q status. These are
recoghized prognostic biomarkers in Wilms
tumor, and their absence may have limited the
accuracy and generalizability of the model [26].
Third, chemotherapy regimens varied across
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different periods, and differences in treat-
ment intensity may have introduced confound-
ing effects on recurrence risk. Finally, this study
was based on single-center data with a limited
sample size. Although internal validation was
performed, the lack of external or multicenter
cohort validation limits the generalizability of
the results. Future work will focus on multi-
center, large-scale prospective cohort studies
to validate and improve the model’s stability,
generalizability, and clinical utility.

Conclusions

This study identified key clinical features by
integrating four feature selection methods and
developed nine machine learning models to
predict postoperative relapse in Wilms’ tumor.
The results demonstrate that machine learn-
ing can effectively predict Wilms’ tumor recur-
rence, with the Ki-67 index showing strong
independent prognostic value. Among the mod-
els, the SVM model exhibited superior perfor-
mance. This model represents a reliable tool
for forecasting postoperative relapse and can
assist clinicians in risk stratification and plan-
ning individualized follow-up strategies for pedi-
atric WT patients.
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Supplementary Figure 1. Bar chart showing missing data patterns for clinical variables in children with Wilms tumor.
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Supplementary Table 1. Grid search range and optimal parameters for each machine learning model

Range )
Model Optimal parameters
Lower Upper
Decision Tree
tree_depth 3 8 7
min_n 5 15 6
cost_complexity 1E-6 1E-1 1.89E-5
Random Forest
mtry 2 8 2
trees 800 1000 1000
min_n 10 30 10
XgBoost
mtry 2 8 2
min_n 5 20
tree_depth 3 6 8
learn_rate 1E-3 1E-1 7.59E-2
loss_reduction -3 0 0.515
sample_prop 0.8 1 0.903
LASSO
penalty 1E-5 1E-1 1E-1
SVM
cost -2 3 0.25
rbf_sigma 1E-3 1E-1 4.64E-3
MLP
hidden_units 5 15 5
penalty 1E-3 0 1E-3
epochs 50 100 100
LightGBM
tree_depth 1 4 1
trees 100 700 245
learn_rate 1E-3 1E-1 7.4E-2
mtry 2 8 5
min_n 5 20 13
loss_reduction -3 0 0.521
KNN
neighbors 3 12 11




