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Abstract: Despite overall survival exceeding 80% in Wilms tumor (WT), approximately 15% of pediatric patients 
experience recurrence with poor post-relapse survival (~50%) and significant long-term complications, highlighting 
an unmet need for precise recurrence prediction. To address this, we developed and validated machine learning 
(ML) models for predicting postoperative WT recurrence using real-world clinical data. Among 476 pediatric WT 
patients who underwent radical surgery at our institution (June 2004-June 2024), 351 met inclusion criteria and 
were randomized into training (70%) and validation (30%) cohorts. Seven independent predictors - COG tumor 
stage, age, tumor rupture, histological subtype (COG classification), tumor thrombus, tumor volume, and Ki-67 in-
dex - were identified via feature selection intersection of Boruta, LASSO, subgroup analysis, and univariate logistic 
regression. Predictive models were constructed using nine ML algorithms (DT, LASSO, KNN, LightGBM, LR, MLP, 
RF, SVM, XGBoost), with performance evaluated using metrics such as AUC, accuracy, F1 score, specificity, posi-
tive predictive value (PPV), negative predictive value (NPV), and confusion matrix. Among the included patients, 51 
(14.53%) experienced tumor recurrence (including 7 multi-site relapses), with median time to recurrence 6 months 
(IQR 4-16 months) and 80.4% occurring within the first postoperative year. In the validation cohort, the SVM model 
demonstrated the best performance (AUC = 0.851; accuracy = 0.830; specificity = 0.856; F1 = 0.550; PPV = 0.458; 
NPV = 0.939), and SHAP analysis highlighted unfavorable histology, COG stage IV-V, tumor thrombus, and elevated 
Ki-67 index as the strongest contributors to recurrence risk. This interpretable SVM-based model confirms seven 
key predictors - especially the Ki-67 index - and serves as a practical risk stratification tool to support individualized 
follow-up planning.

Keywords: Wilms tumor, tumor recurrence prediction, machine learning, support vector machine, feature selec-
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Introduction

Wilms tumor (WT) is an embryonal malignancy 
that accounts for approximately 95% of pediat-
ric renal neoplasms and has the potential to 
metastasize to the lungs, liver, bones, and 
lymph nodes [1]. Despite significant advance-
ments in surgical techniques, chemotherapy, 
and radiotherapy - along with the integration of 

multidisciplinary treatment strategies - overall 
survival rates for WT now exceed 80%. How- 
ever, the prognosis following recurrence re- 
mains poor, with a survival rate of only around 
50%. Survivors of relapse often experience 
long-term health complications. Accurately 
identifying children at high risk of recurrence 
remains a major unresolved clinical challenge 
[2-4]. The lungs are the most common site of 
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WT recurrence, followed by the abdomen; 
metastases to the liver, brain, and bones are 
comparatively rare. Studies have reported that 
approximately 15% of pediatric patients may 
experience relapse. Of these, 50-60% involve 
isolated pulmonary or pleural recurrence, 30% 
involve abdominal recurrence (either isolated 
or in combination with other sites), and the 
remaining 10-15% present with metastases to 
the brain or bone [5].

To better assess postoperative survival and 
recurrence risk in pediatric patients, both the 
Children’s Oncology Group (COG) in the Unit- 
ed States and the International Society of 
Paediatric Oncology (SIOP) have developed  
and refined risk stratification systems. These 
approaches aim to allow for flexible adjust-
ments to treatment intensity based on individu-
al recurrence risk [6]. In a retrospective analy-
sis of patients enrolled in the United Kingdom 
Wilms Tumor Study 3 (UKW3), Irtan et al. [7] 
identified anaplastic histology and a larger 
tumor volume as significant risk factors for 
recurrence. Current evidence indicates that, 
even under standard treatment protocols, 
approximately 15% of patients with stage III dis-
ease and 25% with stage IV disease still ex- 
perience relapse. These findings underscore 
the urgent need for more precise risk stratifica-
tion and targeted interventions in high-risk 
patient populations [8].

Compared with traditional regression-based 
approaches, machine learning offers superior 
flexibility, scalability, computational power, and 
automated data-driven capabilities, enabling 
more accurate predictions across heteroge-
neous and uncorrelated datasets [9, 10]. 
Previous research on WT recurrence has pri-
marily focused on post-relapse management 
strategies - such as surveillance, repeat sur-
gery, and radiotherapy - while effective tools for 
accurately predicting the risk of recurrence 
remain lacking [11-13]. In this study, we lever-
aged clinicopathological features and routine 
laboratory parameters of pediatric WT patients 
to develop and validate nine ML-based predic-
tive models for tumor recurrence. Our objective 
was to construct a clinically applicable, effi-
cient, and accurate predictive tool based on 
readily accessible clinical data to identify chil-
dren at high risk of relapse. Such a model could 
facilitate early intervention and provide an evi-

dence-based foundation for optimizing man-
agement strategies both before and after 
relapse in pediatric WT.

Materials and methods

Clinical and pathological data

Clinical and pathological data were retrospec-
tively collected from pediatric patients diag-
nosed with Wilms tumor (WT) at the Children’s 
Hospital of Chongqing Medical University (CH- 
CMU) between June 2004 and June 2024. The 
dataset included demographic, clinical, and 
laboratory information such as age, sex, lateral-
ity of the tumor, low body weight, tumor volume, 
use of neoadjuvant chemotherapy, nephron-
sparing surgery, presence of tumor thrombus, 
tumor rupture, COG tumor stage, number of 
lymph nodes dissected, lymph node status,  
histologic subtype (COG classification), WT1 
expression, Ki-67 index, postoperative chemo-
therapy, and postoperative radiotherapy. Tumor 
volume (cm3) was calculated from preoperative 
contrast-enhanced CT three-dimensional imag-
es using the ellipsoid formula: 0.523 × length × 
width × height [14]. Low body weight was de- 
fined as a body weight below two standard devi-
ations (-2 SD) from the median reference of the 
World Health Organization (WHO) Child Growth 
Standards [15]. 

Ki-67 index was assessed by immunohisto-
chemistry (IHC) according to the guidelines of 
the International Ki-67 Working Group (IKWG) 
[16]: specifically, formalin-fixed, paraffin-em- 
bedded sections (10% neutral buffered forma-
lin) were cut at 4 µm, deparaffinized in xylene, 
rehydrated through graded alcohols, and sub-
jected to antigen retrieval in citrate buffer (pH 
6.0). Endogenous peroxidase was blocked with 
3% hydrogen peroxide for 20 minutes, followed 
by incubation with an anti-Ki-67 rabbit mono-
clonal antibody (Roche Ventana, USA) for 16 
minutes. After counterstaining with hematoxy-
lin, the slides were thoroughly dried, mounted, 
and analyzed by light microscopy or using 
ImageJ software. Tumor cell nuclei were count-
ed in four representative fields (counting at 
least 400 invasive tumor cells in total), using 
the global counting method in line with IKWG’s 
recommendation for reproducibility. The Ki-67 
proliferation index was reported as the percent-
age of positively stained nuclei over the total 
counted.
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Inclusion and exclusion criteria

The inclusion criteria were: (1) patients who 
underwent surgical treatment with postopera-
tive pathological confirmation of Wilms tumor; 
(2) less than 20% missing data in the key vari-
ables [17]; and (3) no prior history of other 
malignancies or serious systemic diseases. 
Exclusion criteria were: (1) Wilms tumors origi-
nating outside the kidney (n = 13); (2) unknown 
survival status (n = 31); (3) patients who did not 
undergo surgery (n = 15) or who underwent sur-
gery again after recurrence (n = 28); (4) cases 
with more than 20% missing data (n = 25); and 
(5) patients who received chemotherapy at our 
hospital but had surgery performed elsewhere 
(n = 13) (Figure 1). Recurrence was defined as 
tumor reappearance at least one month after 
achieving complete remission following initial 
treatment, including both local recurrence at 
the primary site and distant metastases. This 
study was conducted in accordance with the 
Declaration of Helsinki and approved by the 
Ethics Committee of the Children’s Hospital of 
Chongqing Medical University (Approval No. 
(2024) Ethics Review (Research) No. 359). As a 
retrospective study utilizing anonymized data, 
informed consent was waived.

Data preprocessing

For clinical variables with less than 20% miss-
ing values and assumed to be missing at ran-
dom (WT: 14.81%, Ki-67: 17.09%), multiple 
imputation was performed using the mice 
package (version 4.5.1) in R, based on the ran-
dom forest method (Supplementary Figure 1) 
[17]. The cohort of 351 WT patients was ran-
domly divided into a training set (70%) and a 
testing set (30%). After dataset partitioning, 
categorical clinical and pathological variables 
were converted into dummy variables prior  
to modeling using the dummy function. This 
approach transforms multi-category nominal 
variables into numerical inputs recognizable by 
machine learning algorithms, preventing erro-
neous ordinal assumptions on category codes. 
Consequently, it improves model accuracy and 
ensures appropriate interpretation of the intrin-
sic properties of variables.

Feature selection

Candidate variables were screened using four 
methods: LASSO regression, the Boruta algo-
rithm, subgroup analysis, and univariate logis-
tic regression. LASSO, an L1-regularization-
based regression technique, performs feature 

Figure 1. Visualization of data screening and clinical study design process.
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selection by shrinking the coefficients of irrele-
vant variables to zero. It is well-suited for high-
dimensional data and remains stable in the 
presence of multicollinearity, effectively identi-
fying key predictors. The Boruta algorithm, built 
on a random forest framework, assesses vari-
able importance by comparing actual features 
against randomized “shadow features”. This 
method handles high-dimensional data robust-
ly and demonstrates strong stability in varia- 
ble selection [18]. Subgroup analysis was 
employed to evaluate the consistency of vari-
able performance across different clinical pop-
ulations, thereby enhancing the model’s clinical 
generalizability. Univariate logistic regression 
served as an initial screening tool to preliminar-
ily assess the statistical association between 
each variable and the outcome. Given the dif-
fering principles and selection criteria underly-
ing these methods, this study used the in- 
tersection of variables identified by all four 
approaches as the final set for modeling. This 
strategy ensures consistency in statistical sig-
nificance, algorithmic importance, and clinical 
relevance, thereby improving the predictive 
accuracy and interpretability of the model.

Model development and validation

Clinical and pathological features such as sex, 
age, and tumor volume were used as input vari-
ables, with tumor recurrence as the prediction 
target. Nine machine learning algorithms were 
employed to build predictive models: Decision 
Tree (DT), Least Absolute Shrinkage and Se- 
lection Operator (LASSO), K-Nearest Neighbors 
(KNN), Light Gradient Boosting Machine (Light- 
GBM), Logistic Regression, Neural Network 
(single hidden layer), Random Forest (RF), 
Support Vector Machine (SVM), and Extreme 
Gradient Boosting (XGBoost). All ML analyses 
were conducted in the R environment (version 
4.5.1).

During model training, hyperparameter tuning 
was performed using grid search combined 
with 10-fold cross-validation to identify optimal 
parameter configurations, with search ranges 
appropriately set based on sample size and 
feature count (Supplementary Table 1). In the 
testing set, key performance metrics - includ- 
ing accuracy, area under the curve (AUC), spe- 
cificity, confusion matrix, recall (sensitivity), 
and F1 score - were evaluated. Additionally, 

receiver operating characteristic (ROC) curves, 
decision curve analysis (DCA), and calibration 
curves were used to further assess predictive 
performance and model stability.

Based on these performance indicators, the 
best-performing predictive model was identi-
fied. To enhance interpretability, SHapley Addi- 
tive exPlanations (SHAP) were applied to visual-
ize and explain the key contributing factors in 
the optimal model. SHAP, a game theory-based 
approach, ranks the importance of input fea-
tures and elucidates model outputs, effectively 
addressing the “black-box” nature of ML mod-
els and providing transparent interpretability 
for the optimal model.

Statistical analysis

Categorical variables were compared between 
groups using the Chi-square test or Fisher’s 
exact test, as appropriate. For continuous vari-
ables, the two-tailed Student’s t-test was used 
when data followed a normal distribution; oth-
erwise, the Mann-Whitney U test was applied. 
All statistical tests were two-sided, and a p 
value <0.05 was considered statistically signifi-
cant. The development, parameter specifica-
tion, hyperparameter tuning, and performance 
evaluation of machine learning models were 
conducted within the tidymodels framework. 
SHAP-based interpretability analyses were per-
formed using the iml and fastshap packages, 
and visualizations were generated with the 
ggbeeswarm package. All statistical analyses, 
model development, validation, and interpret-
ability were carried out in the R programming 
environment (version 4.5.1, Vienna, Austria).

Results

Patient characteristics

Based on the inclusion and exclusion criteria, 
125 patients were excluded from the initial 
cohort of 476 children, resulting in a final stu- 
dy population of 351 pediatric WT patients. 
Among these, 51 patients (14.53%) experi-
enced tumor recurrence, with 7 cases (13.73%) 
presenting with multi-site relapse. The median 
time to recurrence was 6 months (IQR: 4-16 
months), with 80.4% of relapses occurring with-
in one year. Sites of recurrence included the 
tumor bed (17 cases), lungs (16 cases), non-
tumor-bed abdominal areas (13 cases), liver (5 
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cases), pelvis (3 cases), mediastinum (2 cases), 
pancreas (1 case), and orbit (1 case). Among all 
recurrent patients, 29 received chemotherapy 
and/or radiotherapy, 21 underwent surgical 
resection of recurrent lesions, and 1 patient 
was treated with arterial embolization. The 
entire cohort of 351 patients was randomly 
split into a training set and a testing set in a 7:3 
ratio.

The training set included 245 patients, com-
prising 112 males and 133 females, with 35 
cases of WT recurrence (14.29%). Comparative 
analysis revealed that recurrence was signifi-
cantly associated with older age, larger tumor 
volume, presence of tumor thrombus, tumor 
rupture, higher COG tumor stage, positive 
lymph node status, unfavorable histology, ele-
vated Ki-67 expression, and postoperative 
radiotherapy (Table 1). No statistically signifi-
cant differences were observed between the 
training and testing sets across demographic 
and clinical variables (all P>0.05) (Table 2).

Feature selection 

A total of 17 candidate variables were initially 
considered in this study. Their predictive im- 
portance was evaluated using four methods: 
LASSO regression, the Boruta algorithm, sub-
group analysis, and univariate logistic regres-
sion. Based on the intersection of the selected 
features from all four approaches, seven key 
predictive variables were ultimately identified: 
COG tumor stage, age, tumor rupture, histologic 
type (COG classification), presence of tumor 
thrombus, tumor volume, and Ki-67 index 
(Figure 2).

ML model development and performance 
validation

The predictive performance of nine machine 
learning algorithms for pediatric WT recurrence 
is summarized in Table 3. Among them, the 
SVM model demonstrated the best overall per-
formance, achieving the highest AUC of 0.851, 
accuracy of 0.830, specificity of 0.856, posi- 
tive predictive value (PPV) of 0.458, negative 
predictive value (NPV) of 0.939, and F1 score  
of 0.550. The model also exhibited relatively 
high recall (0.688) and Matthews correlation 
coefficient (MCC) of 0.465, indicating a well-
balanced ability to distinguish between recur-

rent and non-recurrent patients. The confusion 
matrix showed that the SVM model correctly 
identified the majority of recurrent cases (11 
patients) and non-recurrent cases (77 patients), 
while maintaining reasonable false positive (13 
cases) and false negative (5 cases) rates. This 
suggests that the model effectively balances 
sensitivity and high specificity, yielding strong 
overall discriminative capability (Figure 3). DCA 
curve further demonstrated that the SVM mo- 
del provided greater net benefit across most 
threshold probabilities, and its calibration cur- 
ve closely aligned with the ideal reference line, 
indicating excellent calibration (Figure 4).

LR and LASSO regression achieved AUC values 
of 0.842 and 0.839, respectively, demonstrat-
ing high specificity and NPV, although their PPV 
and F1 scores were lower than those of the 
SVM model. Both RF and MLP showed high 
recall rates of 0.812, indicating strong ability  
to identify recurrent cases, but they exhibited 
lower accuracy and specificity. In contrast, 
XGBoost and LightGBM performed relatively 
poorly overall, with AUCs of 0.652 and 0.762, 
respectively, accompanied by low PPV and F1 
scores. Taken together, SVM achieved the best 
balance between sensitivity and specificity 
among the nine machine learning algorithms, 
demonstrating the greatest potential as a pre-
dictive model for pediatric WT recurrence.

Interpretation of the optimal ML model

The SHAP plot provides a global perspective on 
the contribution of each feature to the predic-
tions made by the SVM model, elucidating how 
the model integrates multiple variables to 
inform its decision-making. SHAP analysis iden-
tified the primary influential variables in de- 
scending order as follows: unfavorable histolo-
gy (20.8%), COG stage IV-V (18.9%), presence 
of tumor thrombus (10.1%), Ki-67 index (9.9%), 
intraoperative tumor rupture (8.2%), preopera-
tive tumor rupture (7.4%), combined preopera-
tive and intraoperative rupture (6.7%), tumor 
volume (6.2%), COG stage III (6.1%), and age 
(5.6%) (Figure 5).

Moreover, the SHAP summary bar plot high-
lights that unfavorable histology and COG sta- 
ge IV-V contribute most substantially to predict-
ing Wilms tumor recurrence risk, significantly 
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Table 1. Demographic and clinical characteristics of children with Wilms tumor in the training set
Variables Total (n = 245) No Recurrence (n = 210) Recurrence (n = 35) Statistic P
Age, M (Q1, Q3) 27.00 (15.00, 46.00) 25.50 (13.25, 43.00) 45.00 (24.00, 65.50) Z = -3.35 <.001
Gender, n (%) χ2 = 0.00 1
    Female 133 (54.29) 114 (54.29) 19 (54.29)
    Male 112 (45.71) 96 (45.71) 16 (45.71)
Laterality, n (%) χ2 = 2.98 0.226
    Left 116 (47.35) 102 (48.57) 14 (40.00)
    Right 120 (48.98) 99 (47.14) 21 (60.00)
    Bilateral 9 (3.67) 9 (4.29) 0 (0.00)
Low weight for age, n (%) χ2 = 2.54 0.111
    No 193 (78.78) 169 (80.48) 24 (68.57)
    Yes 52 (21.22) 41 (19.52) 11 (31.43)
Tumor volume, M (Q1, Q3) 502.08 (244.53, 789.08) 449.09 (212.87, 750.42) 662.04 (405.67, 1227.96) Z = -2.92 0.003
Neoadjuvant chemotherapy, n (%) χ2 = 2.16 0.142
    No 179 (73.06) 157 (74.76) 22 (62.86)
    Yes 66 (26.94) 53 (25.24) 13 (37.14)
Nephron sparing surgery, n (%) χ2 = 1.25 0.264
    No 222 (90.61) 188 (89.52) 34 (97.14)
    Yes 23 (9.39) 22 (10.48) 1 (2.86)
Tumor thrombus, n (%) χ2 = 9.70 0.002
    No 221 (90.20) 195 (92.86) 26 (74.29)
    Yes 24 (9.80) 15 (7.14) 9 (25.71)
Tumor rupture, n (%) - <.001
    No rupture 179 (73.06) 165 (78.57) 14 (40.00)
    Pre-op rupture 30 (12.24) 22 (10.48) 8 (22.86)
    Intra-op rupture 26 (10.61) 17 (8.10) 9 (25.71)
    Pre- & intra-op rupture 10 (4.08) 6 (2.86) 4 (11.43)
COG tumor stage, n (%) χ2 = 36.03 <.001
    Stage I-II 139 (56.73) 135 (64.29) 4 (11.43)
    Stage III 76 (31.02) 56 (26.67) 20 (57.14)
    Stage IV-V 30 (12.24) 19 (9.05) 11 (31.43)
Number of lymph nodes examined, M (Q1, Q3) 1.00 (0.00, 5.00) 1.00 (0.00, 4.75) 3.00 (0.00, 7.00) Z = -1.48 0.138
Lymph node status, n (%) χ2 = 16.03 <.001
    Not examined 112 (45.71) 99 (47.14) 13 (37.14)
    Negative 116 (47.35) 102 (48.57) 14 (40.00)
    Positive 17 (6.94) 9 (4.29) 8 (22.86)
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Histology type (COG), n (%) χ2 = 9.17 0.002
    Favorable Histology 216 (88.16) 191 (90.95) 25 (71.43)
    Unfavorable Histology 29 (11.84) 19 (9.05) 10 (28.57)
WT1, n (%) χ2 = 0.23 0.628
    Negative 42 (17.14) 35 (16.67) 7 (20.00)
    Positive 203 (82.86) 175 (83.33) 28 (80.00)
Ki67, M (Q1, Q3) 0.50 (0.30, 0.70) 0.40 (0.30, 0.70) 0.60 (0.40, 0.70) Z = -2.33 0.02
Adjuvant chemotherapy, n (%) - 1
    No 4 (1.63) 4 (1.90) 0 (0.00)
    Yes 241 (98.37) 206 (98.10) 35 (100.00)
Adjuvant radiotherapy, n (%) χ2 = 6.81 0.009
    No 210 (85.71) 185 (88.10) 25 (71.43)
    Yes 35 (14.29) 25 (11.90) 10 (28.57)
Z: Mann-Whitney test, χ2: Chi-square test, M: Median, Q1: 1st Quartile, Q3: 3st Quartile.

Table 2. Demographic and clinical characteristics of children with Wilms tumor
Variables Total (n = 351) Train (n = 245) Test (n = 106) P No Recurrence (n = 300) Recurrence (n = 51) P
Age, M (Q1, Q3) 27.00 (14.00, 46.00) 27.00 (15.00, 46.00) 26.00 (13.00, 45.75) 0.863 26.00 (13.00, 43.25) 42.00 (20.50, 64.50) 0.002

Gender, n (%) 0.368 0.971

    Female 185 (52.71) 133 (54.29) 52 (49.06) 158 (52.67) 27 (52.94)

    Male 166 (47.29) 112 (45.71) 54 (50.94) 142 (47.33) 24 (47.06)

Laterality, n (%) 0.159 0.648

    Left 178 (50.71) 116 (47.35) 62 (58.49) 154 (51.33) 24 (47.06)

    Right 161 (45.87) 120 (48.98) 41 (38.68) 135 (45.00) 26 (50.98)

    Bilateral 12 (3.42) 9 (3.67) 3 (2.83) 11 (3.67) 1 (1.96)

Low weight for age, n (%) 0.616 0.184

    No 279 (79.49) 193 (78.78) 86 (81.13) 242 (80.67) 37 (72.55)

    Yes 72 (20.51) 52 (21.22) 20 (18.87) 58 (19.33) 14 (27.45)

Tumor volume, M (Q1, Q3) 462.47 (250.23, 792.62) 502.08 (244.53, 789.08) 446.16 (263.97, 813.34) 0.701 448.11 (242.78, 751.71) 636.39 (353.74, 912.54) 0.01

Neoadjuvant chemotherapy, n (%) 0.248 0.148

    No 250 (71.23) 179 (73.06) 71 (66.98) 218 (72.67) 32 (62.75)

    Yes 101 (28.77) 66 (26.94) 35 (33.02) 82 (27.33) 19 (37.25)

Nephron sparing surgery, n (%) 0.989 0.234

    No 318 (90.60) 222 (90.61) 96 (90.57) 269 (89.67) 49 (96.08)

    Yes 33 (9.40) 23 (9.39) 10 (9.43) 31 (10.33) 2 (3.92)

Tumor thrombus, n (%) 0.095 <.001

    No 310 (88.32) 221 (90.20) 89 (83.96) 276 (92.00) 34 (66.67)

    Yes 41 (11.68) 24 (9.80) 17 (16.04) 24 (8.00) 17 (33.33)
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Tumor rupture, n (%) 0.183 <.001

    No rupture 248 (70.66) 179 (73.06) 69 (65.09) 229 (76.33) 19 (37.25)

    Pre-op rupture 46 (13.11) 30 (12.24) 16 (15.09) 35 (11.67) 11 (21.57)

    Intra-op rupture 37 (10.54) 26 (10.61) 11 (10.38) 24 (8.00) 13 (25.49)

    Pre- & intra-op rupture 20 (5.70) 10 (4.08) 10 (9.43) 12 (4.00) 8 (15.69)

COG tumor stage, n (%) 0.345 <.001

    Stage I-II 194 (55.27) 139 (56.73) 55 (51.89) 188 (62.67) 6 (11.76)

    Stage III 117 (33.33) 76 (31.02) 41 (38.68) 88 (29.33) 29 (56.86)

    Stage IV-V 40 (11.40) 30 (12.24) 10 (9.43) 24 (8.00) 16 (31.37)

Number of lymph nodes examined, M (Q1, Q3) 1.00 (0.00, 4.00) 1.00 (0.00, 5.00) 1.00 (0.00, 3.00) 0.423 1.00 (0.00, 4.00) 2.00 (0.00, 5.50) 0.176

Lymph node status, n (%) 0.235 0.002

    Not examined 158 (45.01) 112 (45.71) 46 (43.40) 141 (47.00) 17 (33.33)

    Negative 173 (49.29) 116 (47.35) 57 (53.77) 147 (49.00) 26 (50.98)

    Positive 20 (5.70) 17 (6.94) 3 (2.83) 12 (4.00) 8 (15.69)

Histology type (COG), n (%) 0.127 <.001

    Favorable Histology 303 (86.32) 216 (88.16) 87 (82.08) 267 (89.00) 36 (70.59)

    Unfavorable Histology 48 (13.68) 29 (11.84) 19 (17.92) 33 (11.00) 15 (29.41)

WT1, n (%) 0.485 0.768

    Negative 57 (16.24) 42 (17.14) 15 (14.15) 48 (16.00) 9 (17.65)

    Positive 294 (83.76) 203 (82.86) 91 (85.85) 252 (84.00) 42 (82.35)

Ki67, M (Q1, Q3) 0.50 (0.30, 0.70) 0.50 (0.30, 0.70) 0.50 (0.30, 0.70) 0.148 0.45 (0.30, 0.70) 0.60 (0.40, 0.75) 0.004

Adjuvant chemotherapy, n (%) 0.438 1

    No 4 (1.14) 4 (1.63) 0 (0.00) 4 (1.33) 0 (0.00)

    Yes 347 (98.86) 241 (98.37) 106 (100.00) 296 (98.67) 51 (100.00)

Adjuvant radiotherapy, n (%) 0.974 0.004

    No 301 (85.75) 210 (85.71) 91 (85.85) 264 (88.00) 37 (72.55)

    Yes 50 (14.25) 35 (14.29) 15 (14.15) 36 (12.00) 14 (27.45)
Z: Mann-Whitney test, χ2: Chi-square test, M: Median, Q1: 1st Quartile, Q3: 3st Quartile.
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Figure 2. Key feature selection by different methods. 
A, B. Nine key features selected via LASSO regres-
sion; C, D. Seven key features identified using the 
Boruta algorithm; E. Venn diagram showing the in-
tersection of features selected by LASSO regression, 
Boruta algorithm, subgroup analysis, and univariate 
logistic regression.

exceeding the predictive impact of other clini-
cal and pathological features. The distribution 
of SHAP values for individual variables is illus-
trated in Figure 6.

Discussion

Wilms tumor is the most common renal malig-
nancy in children and ranks as the fourth most 
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Figure 3. Confusion matrices of nine machine learning models on the test set. (A) Logistic Regression, (B) Least 
Absolute Shrinkage and Selection Operator, (C) Decision Tree, (D) Random Forest, (E) Extreme Gradient Boosting, 
(F) Support Vector Machine, (G) Single-Layer Neural Network, (H) Light Gradient Boosting Machine, and (I) K-Nearest 
Neighbors.

Table 3. Comparison of parameters among 9 machine learning algorithms for predicting recurrence 
of pediatric Wilms tumor
Model AUC Accuracy Specificity PPV NPV MCC Balanced Accuracy Recall F1 Score
LR 0.842 0.802 0.833 0.400 0.926 0.387 0.729 0.625 0.488 
LASSO 0.839 0.792 0.822 0.385 0.925 0.372 0.724 0.625 0.476 
DT 0.711 0.792 0.856 0.350 0.895 0.268 0.647 0.438 0.389 
RF 0.820 0.736 0.722 0.342 0.956 0.399 0.767 0.812 0.481 
XGBoost 0.652 0.679 0.722 0.219 0.878 0.125 0.580 0.438 0.292 
SVM 0.851 0.830 0.856 0.458 0.939 0.465 0.772 0.688 0.550 
MLP 0.821 0.679 0.656 0.295 0.952 0.340 0.734 0.812 0.433 
LightGBM 0.762 0.623 0.622 0.227 0.903 0.180 0.624 0.625 0.333 
KNN 0.747 0.717 0.744 0.281 0.905 0.239 0.653 0.562 0.375 
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Figure 4. Performance comparison of nine machine learning models for predicting pediatric Wilms tumor recur-
rence. A. Receiver Operating Characteristic curves; B. Bar plot of Area Under the Curve values; C. Clinical Decision 
Curve Analysis; D. Line plots of various performance metrics; E. Calibration curves.

Figure 5. SHAP analysis based on the Support Vec-
tor Machine (SVM) model for interpreting pediatric 
Wilms tumor recurrence risk prediction. A. SHAP 
beeswarm plot illustrating the distribution of each 
variable’s impact on the model output; B. SHAP 
bar plot displaying the mean importance ranking 
of variables; C. SHAP analysis for an individual 
sample, explaining the contribution of variables to 
the specific prediction.

frequent pediatric malignancy overall. Despite 
significant improvements in overall survival 
rates achieved through ongoing clinical trials 
and efforts by cooperative groups such as 
NWTSG, SIOP, and COG, approximately 15% of 
patients still experience disease recurrence 
[19-21]. The majority of relapses occur within 
two years after surgery and are associated with 
multiple high-risk factors, including bilateral 
WT, unfavorable histologic subtypes, and ad- 
vanced tumor staging [3, 5, 22]. Studies have 
demonstrated that over 60% of WT recurrences 
are not detectable by physical examination 
alone, necessitating reliance on imaging mo- 
dalities for diagnosis. Detecting a single sub-
clinical relapse within the first two years post-
operatively may require an average of 112 
imaging scans, increasing to as many as 500 
scans beyond two years, imposing a substan-
tial burden on both patients’ families and 
healthcare systems [5]. Therefore, developing 
precise predictive models and identifying key 

risk factors for recurrence are crucial for opti-
mizing surveillance and management of pediat-
ric WT patients. Such models can help avoid 
excessive imaging in low-risk patients, thereby 
reducing unnecessary radiation exposure, and 
alleviate psychological stress experienced by 
patients and families during the uncertain 
phases of disease progression [23].

To more accurately predict WT recurrence and 
identify the optimal predictive model, this study 
employed four complementary feature selec-
tion methods - univariate logistic regression, 
LASSO regression, Boruta feature importance 
analysis, and subgroup analysis - to enhance 
the robustness of variable selection and miti-
gate the limitations inherent to any single meth-
od, especially considering that logistic regres-
sion alone cannot fully address multicollinearity 
among predictors [24]. Variables consistently 
identified across these methods were regard- 
ed as the most reliable predictors. Ultimately, 
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Figure 6. Distribution of SHAP values for individual variables ranked by their impact strength, including (A) unfavorable histologic, (B) COG stage IV-V, (C) presence 
of tumor thrombus, (D) Ki-67 index, (E) intraoperative tumor rupture, (F) preoperative tumor rupture, (G) combined preoperative and intraoperative rupture, (H) 
tumor volume, (I) COG stage III, and (J) age.
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among 17 candidate variables, seven indepen-
dent risk factors were identified: COG tumor 
stage, age, tumor rupture, unfavorable histo-
logic subtype, tumor thrombus, tumor volume, 
and Ki-67 expression level. COG staging serves 
as a central reference for WT treatment and 
prognosis, with its correlation to recurrence 
risk well established in multiple studies [25-
27]. Age is widely recognized as a critical prog-
nostic factor; older children generally have 
poorer outcomes and higher recurrence risk, 
which is also associated with more advanced 
tumor stages and a higher prevalence of high-
risk histologic subtypes - likely reflecting dif- 
ferences in tumor biology and therapeutic 
response [8, 25, 28]. Studies report that the 
incidence of spontaneous or traumatic tumor 
rupture detected by preoperative imaging rang-
es from 3% to 23%, with up to 10% risk of intra-
operative tumor spillage in patients not re- 
ceiving preoperative chemotherapy [26]. Tumor 
rupture can facilitate dissemination of tumor 
cells and is a known risk factor for local recur-
rence. Evidence suggests that any form of intra-
operative rupture increases the risk of recur-
rence approximately threefold [29, 30].

Unfavorable histologic subtype, specifically an- 
aplastic Wilms tumor, carries a recurrence risk 
three- to fivefold higher than that of favorable 
histology and is frequently associated with 
MYCN and TP53 mutations. These mutations 
are found in approximately 5%-10% of WT 
cases and are indicative of increased tumor 
aggressiveness and chemoresistance [31, 32]. 
Irtan et al. [7], analyzing patients from the 
UKW3 trial, reported that in univariate an- 
alysis, biopsy status, unfavorable histology, 
and tumor size were associated with an 
increased risk of local recurrence, while age, 
unfavorable histology, tumor size, and lymph 
node metastasis significantly elevated the risk 
of distant relapse. The presence of tumor 
thrombus is also a critical risk factor for WT 
recurrence. Tumor extension into the renal vein 
or inferior vena cava occurs in 4% to 10% of 
cases, with 1% to 3% extending into the right 
atrium or ventricle, reflecting vascular invasion 
that serves as an important marker for system-
ic metastasis and recurrence [33, 34]. Be- 
cause preoperative imaging does not always 
reliably detect venous tumor thrombi, intraop-
erative palpation and/or intraoperative ultra-
sound are typically employed to assess renal 

vein involvement. Tumor thrombus removal is 
generally performed concurrently with tumor 
resection; failure to do so results in automatic 
upstaging to stage III pathologically [35]. 
Consequently, NWTS/COG protocols recom-
mend neoadjuvant chemotherapy when the 
thrombus extends to the hepatic veins or 
beyond [36, 37]. Additionally, tumor volume is 
an important risk factor for WT recurrence. 
Larger tumor volumes are associated with 
increased cellular heterogeneity, which may 
raise the likelihood of residual disease and 
tumor rupture [25, 38].

Ki-67 is a nuclear protein expressed during all 
active phases of the cell cycle (G1, S, G2, and M 
phases) but absent during the resting phase 
(G0). Its expression is regulated by phosphory-
lation and it is widely recognized as a classi- 
cal marker of cellular proliferation [39]. A high 
Ki-67 index reflects a large proportion of tumor 
cells in active proliferation, indicating increased 
tumor aggressiveness and malignancy, which 
correlates with a higher risk of recurrence. High 
Ki-67 expression has been demonstrated in 
numerous studies of adult and pediatric solid 
tumors to be closely associated with poor prog-
nosis [40-42]. In WT, Ki-67 has been employed 
to assess tumor proliferative activity and stag-
ing; however, previous clinical studies have not 
definitively established its independent associ-
ation with recurrence, possibly due to small 
sample sizes and nonlinear data relationships.

In this study, machine learning algorithms de- 
monstrated the independent prognostic value 
of Ki-67 in predicting WT recurrence, providing 
important clues for subsequent precision treat-
ment [43]. For example, M. Atwa et al. [44]  
conducted a retrospective analysis of 75 WT 
patients and found that cyclin A immunoposi- 
tivity correlated with higher recurrence rates, 
whereas Ki-67 showed no statistically sig- 
nificant association with adverse outcomes. 
Similarly, Jurić et al. [45] used immunohisto-
chemical analysis of Ki-67 expression in paraf-
fin-embedded tissues from 48 pediatric WT 
cases, finding correlations between Ki-67 lev-
els, histologic subtype, and stage, but empha-
sized the need for larger sample sizes and 
deeper analyses to clarify the prognostic signifi-
cance of Ki-67 in WT. Additionally, in our study, 
neither lymph node status nor the number of 
lymph node biopsies emerged as independent 
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risk factors for WT recurrence. This result may 
be attributed to two key factors. First, lymph 
node biopsy rates are inherently low in pediat-
ric populations. Second, the younger age of 
patients at our center makes intraoperative 
lymph node identification and dissection tech-
nically challenging, resulting in a limited num-
ber of harvested nodes and potentially reduc-
ing the likelihood of detecting positive nodes 
[46]. Therefore, lymph node-related variables 
may differ significantly across age groups and 
institutions, limiting their generalizability as 
predictors of recurrence.

Based on the seven selected variables, we 
developed nine machine learning-based predic-
tive models and conducted a systematic com-
parison. The SVM model emerged as the top 
performer, outperforming the traditional LR 
model - achieving higher AUC (0.851 vs. 0.842), 
accuracy (0.830 vs. 0.802), specificity (0.856 
vs. 0.833), and F1 score (0.550 vs. 0.488) - 
and surpassing all other algorithms. This supe-
riority reflects SVM’s intrinsic strengths: by 
selecting support vectors via the maximum-
margin criterion, it effectively mitigates over- 
fitting in high-dimensional, small-sample set-
tings and enhances generalizability [47]; unlike 
LR’s reliance on a log-linear relationship, SVM 
makes no strict linearity assumptions and re- 
mains stable even when the number of vari-
ables approaches sample size [48]; and its 
focus on boundary samples confers natural 
robustness to noise and outliers [49]. More- 
over, as a purely data-driven method, SVM 
retains strong discriminative power in limited-
sample contexts [50], highlighting its potential 
as a risk-stratification tool for WT recurrence 
rather than merely a “black-box” classifier.

In this study, the SVM model combined with the 
SHAP analysis clearly illustrated the global con-
tribution of each feature to recurrence predic-
tion, demonstrating inherent interpretability 
and a solid theoretical foundation. SHAP results 
revealed that unfavorable histology and COG 
stage IV-V had the greatest impact on model 
output, significantly exceeding other variables. 
This finding aligns with previous conclusions 
from the NWTS-4 and SIOP studies, indirectly 
validating the model’s predictive accuracy [29, 
51]. Additionally, factors such as tumor throm-
bus formation and Ki-67 index ranked highly, 
reflecting the combined effects of multidimen-

sional biological mechanisms on recurrence 
risk and further complementing existing re- 
search findings [26]. Moreover, the quantita- 
tive assessment provided by SHAP, which ac- 
counts for both positive and negative effects 
and their magnitudes, offers a more compre-
hensive basis for variable selection compared 
to traditional methods that rely solely on p-val-
ues, thereby better capturing the true contribu-
tion of variables within complex models and 
enhancing clinical trustworthiness.

WT commonly recurs within two years follow- 
ing nephrectomy; in this study, the median time 
to recurrence was 6 months, with approximate-
ly 80% occurring within the first postoperative 
year, consistent with previous literature. Brok 
et al. [5] retrospectively analyzed the Inter- 
national Society of Paediatric Oncology Renal 
Tumor Study Group (RTSG-SIOP) database from 
2001 and found that among 4,271 eligible WT 
patients, 538 (13%) experienced recurrence, 
with about 80% of recurrences occurring within 
two years after nephrectomy; notably, 70% of 
these recurrences were detected through 
scheduled surveillance imaging. Similarly, Fer- 
nandez et al. [52] analyzed 116 patients with 
very low-risk WT and reported a median time to 
first recurrence of 4.3 months, with 91.6% of 
recurrences occurring within two years after 
treatment. Therefore, for patients at low risk of 
recurrence, it is recommended to perform 
abdominal ultrasound and chest X-ray every 
three months during the first two years follow-
ing radical surgery, then every 4 to 6 months 
during years three to four. Follow-up frequency 
beyond five years should be tailored to clinical 
needs. For high-risk patients, shorter intervals 
between imaging studies are advised, utilizing 
higher-sensitivity modalities such as CT or MRI 
for monitoring [23].

This study has several limitations. First, the  
use of a retrospective cohort for model devel-
opment may introduce selection bias; prospec-
tive datasets are generally more suitable for 
enhancing predictive accuracy. Second, althou- 
gh we aimed to include all relevant variables, 
some early cases lacked critical genetic infor-
mation, such as 1p and 11q status. These are 
recognized prognostic biomarkers in Wilms 
tumor, and their absence may have limited the 
accuracy and generalizability of the model [26]. 
Third, chemotherapy regimens varied across 
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different periods, and differences in treat- 
ment intensity may have introduced confound-
ing effects on recurrence risk. Finally, this study 
was based on single-center data with a limited 
sample size. Although internal validation was 
performed, the lack of external or multicenter 
cohort validation limits the generalizability of 
the results. Future work will focus on multi-
center, large-scale prospective cohort studies 
to validate and improve the model’s stability, 
generalizability, and clinical utility.

Conclusions

This study identified key clinical features by 
integrating four feature selection methods and 
developed nine machine learning models to 
predict postoperative relapse in Wilms’ tumor. 
The results demonstrate that machine learn- 
ing can effectively predict Wilms’ tumor recur-
rence, with the Ki-67 index showing strong 
independent prognostic value. Among the mod-
els, the SVM model exhibited superior perfor-
mance. This model represents a reliable tool 
for forecasting postoperative relapse and can 
assist clinicians in risk stratification and plan-
ning individualized follow-up strategies for pedi-
atric WT patients.
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Supplementary Figure 1. Bar chart showing missing data patterns for clinical variables in children with Wilms tumor.
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Supplementary Table 1. Grid search range and optimal parameters for each machine learning model

Model
Range

Optimal parameters
Lower Upper

Decision Tree
    tree_depth 3 8 7
    min_n 5 15 6
    cost_complexity 1E-6 1E-1 1.89E-5
Random Forest
    mtry 2 8 2
    trees 800 1000 1000
    min_n 10 30 10
XgBoost
    mtry 2 8 2
    min_n 5 20
    tree_depth 3 6 8
    learn_rate 1E-3 1E-1 7.59E-2
    loss_reduction -3 0 0.515
    sample_prop 0.8 1 0.903
LASSO
  penalty 1E-5 1E-1 1E-1
SVM
  cost -2 3 0.25
  rbf_sigma 1E-3 1E-1 4.64E-3
MLP
    hidden_units 5 15 5
    penalty 1E-3 0 1E-3
    epochs 50 100 100
LightGBM
    tree_depth 1 4 1
    trees 100 700 245
    learn_rate 1E-3 1E-1 7.4E-2
    mtry 2 8 5
    min_n 5 20 13
    loss_reduction -3 0 0.521
KNN
    neighbors 3 12 11


