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Abstract: The advent of AlphaFold has markedly advanced structural biology by enabling highly accurate predictions
of protein structures. This breakthrough has been further extended by AlphaFold-Multimer, which enables the pre-
diction of protein complex structures. However, currently available tools for predictions have limitations, including
usage constraints and the need for extensive postprediction analysis to identify interface residues. To address these
challenges, we introduce AlphaPPlweb, a comprehensive web-based platform designed to leverage AlphaPulldown,
an AlphaFold-Multimer-based tool, for predicting protein complex structures. Users simply input amino acid se-
quences, after which AlphaPPlweb generates three-dimensional structural predictions, provides confidence scores,
and presents results through intuitive visualizations. The platform facilitates the prediction of interactions between
a single bait protein and multiple candidate proteins, thus aiding in the identification of potential ligand-receptor
interactions. Furthermore, AlphaPPlweb incorporates automated interface residue analysis immediately following
structure prediction, streamlining the workflow and providing comprehensive insights into the predicted complexes.
This integrated approach significantly enhances the usability of AlphaPPlweb for biomedical studies and educa-
tional applications. By democratizing access to advanced structural prediction tools and enabling a comprehensive
analysis of protein interactions, AlphaPPlweb promotes extensive exploration and understanding within the biologi-
cal research community. AlphaPPlweb is accessible at http://alphappiweb.cmu.edu.tw/.
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Introduction

Protein-protein interactions (PPIs) play ssessen-
tial roles in diverse biological processes, includ-
ing signal transduction, metabolic regulation,
and cellular organization [1-3]. Understanding
and predicting PPIs is therefore crucial for elu-
cidating cellular mechanisms and identifying
potential therapeutic targets [4-7]. While exper-
imental techniques such as yeast two-hybrid
assays and affinity purification assays remain

widely used [8-11], they are time-consuming
and often fail to capture transient or weak inter-
actions, limiting their comprehensive utility in
large-scale studies [12, 13].

Computational methods have significantly en-
hanced the efficiency and accuracy of PPl pre-
dictions, complementing experimental approa-
ches. A major breakthrough in computational
biology was the introduction of AlphaFold [14],
which dramatically improved the accuracy of
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three-dimensional (3D) protein structure pre-
dictions from amino acid sequences. Alpha-
Fold’s success facilitated further methodologi-
cal advancements, including AlphaFold-Mul-
timer [15], ColabFold [16], AF2-Complex [17],
AlphaPulldown [18], and AlphaFold 3 [19] -
which have enabled highly accurate predic-
tions of protein complex structures. Notably,
AlphaFold 3 offers an accessible graphical user
interface (GUI), but it primarily focuses on struc-
ture prediction without providing comprehen-
sive model evaluation or detailed post-predic-
tion analyses, which are critical for experimen-
tal validation.

Among these computational tools, AlphaPull-
down is particularly notable for integrating
high-accuracy prediction of protein complexes
with robust post-prediction analyses, offering
users detailed evaluations of predicted interac-
tions. However, AlphaPulldown’s command-line
interface limits its accessibility, particularly for
experimental researchers who may lack com-
putational expertise. To address this limitation,
we have developed AlphaPPlweb, an intuitive
web server that combines the powerful predic-
tive capabilities of AlphaPulldown with a user-
friendly graphical interface. AlphaPPlweb en-
ables experimental biologists to conduct so-
phisticated structure-based predictions effort-
lessly and gain comprehensive insights into the
quality and reliability of predicted protein inter-
actions through detailed post-prediction evalu-
ation metrics.

To illustrate AlphaPPlweb’s practical utility, we
demonstrate its functionality using two biologi-
cally relevant protein complexes: EphA4-RNase
A family [20, 21] and EphA4-ephrin-A5 [22].
These examples underscore the platform’s
capability to facilitate precise prediction and
thorough analysis of PPIs, streamlining subse-
quent experimental validation steps.

In conclusion, AlphaPPlweb addresses an im-
portant gap in current bioinformatics resourc-
es by providing a comprehensive, user-friendly
platform specifically tailored to experimental
researchers. This accessible interface signifi-
cantly simplifies advanced PPI predictions and
evaluations, empowering researchers to effi-
ciently integrate computational predictions into
their experimental workflows, ultimately accel-
erating discoveries in molecular biology and
therapeutic development.
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Implementation
Implementation of the web interface

We employed various programming languages
and technologies for developing the frontend
system for our website. Specifically, PHP, Apa-
che, Python, and JavaScript were used. PHP
functions as a server-side scripting language,
generating dynamic webpage content and man-
aging backend database operations. For the
database, a file-based storage approach was
adopted. Apache provides the foundational ser-
vices for the web server infrastructure. The
frontend of the web page incorporates founda-
tional components such as Bootstrap 5.3.3,
DataTables 2.0, and jQuery 3.7.1. Additionally,
Python facilitates data integration between the
frontend and backend processes, dynamically
generating frontend code that is executed by
the browser. Structural visualization packages,
including JSmol 16.1.47 and PDBe Molstar
3.1.2, are embedded in the frontend web page
using JavaScript.

Queuing system

In this study, we developed a distributed queu-
ing system using PHP and a file-based approach
to managing user-uploaded data. Upon receiv-
ing data, the system promptly creates a dedi-
cated working directory for each job where all
meta files generated during the computation
process are stored. Each working directory also
includes a log file that records the entire execu-
tion process. When a job is assigned to com-
pute resources, the system documents the
graphical processing units (GPUs) and comput-
ing nodes used within the respective directo-
ries, ensuring that no GPU is simultaneously
allocated to other jobs during the computation
process. During computation, users are pre-
sented with a waiting screen indicating that
computation is in progress. Upon completion,
the system delivers results to users via web
pages, implemented in PHP to provide real-time
visualization and immediate access to results.

Tool and interface construction

The development of the AlphaPPlweb Web
platform represents a notable advancement
in protein structure prediction, particularly in
the context of complex protein interactions.
Designed to simplify the prediction process,
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Figure 1. Workflow and web interface of AlphaPPlweb. A. The data processing workflow begins with the user up-
loading the amino acid sequences of the proteins of interest. Once uploaded, the platform’s automated pipeline,
powered by AlphaPulldown, processes the predictions without requiring any additional configuration or specialized
computational resources. The backend AlphaFold service then generates the 3D structures of the proteins, offering
researchers a streamlined and efficient method for predicting complex protein interactions. B. The left panel shows
3D structure predictions with confidence scores, presented in an interactive GUI that allows users to rotate, zoom,
and manipulate structures, as well as display or hide table columns for detailed analysis. The right panel highlights
AlphaPPlweb’s key feature - predicting interactions between a single bait protein and multiple candidates, providing
insights into protein functions and interactions in complex biological systems.

AlphaPPlweb integrates AlphaPulldown, an interface. As presented in Figure 1B, users can
AlphaFold-Multimer-based tool, within a highly select the results for structural alignment by
efficient and user-friendly interface. Resear- simply checking checkboxes. The interface
chers can easily use the platform without the allows for simultaneous alignment of multiple
need to configure a complex execution environ- structures, facilitating the visualization of rela-
ment or establish specialized computational tionships between them. Furthermore, the
infrastructure. The platform’s one-click auto- table beneath the alignment section provides
mated pipeline greatly reduces the manual various data fields for detailed analysis. As
labor typically associated with protein structure illustrated in Figure 1B, users can dynamically
prediction. The workflow begins with the up- toggle between displaying or hiding certain
load of amino acid sequences of interest, after fields, including polarity scores, hydrophobicity,

which the platform automatically generates the
corresponding 3D protein structures through
the backend AlphaFold service. A visual repre-
sentation of the platform’s interface is present-
ed in Figure 1A.

charge status, and contact pairs, which allows
for customization of the viewed data. In addi-
tion, scores in the table can be sorted by click-
ing on the column header, enabling users to fil-
ter necessary metric values (Figure 1B, left). To

Webserver further explore a single structure’s sequence
and prediction details, users can click the but-
Filtering and visualization ton in the Jobs column of the table shown in
Figure 1B. This action opens an interactive 3D
We developed a comprehensive structural molecular visualization module (Figure 1B,
alignment and predicted parameter-filtering right). This module enables users to view and
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analyze biomolecular structures and offers
multiple viewing modes through a web inter-
face, including space-filling, ball-and-stick, and
wireframe models. The interface also includes
a sequence-highlighting feature, in which users
simply mark a given sequence, and it will be
highlighted on the corresponding structure. The
table presented in Figure 1B displays addition-
al parameters, such as chain ID, types of non-
covalent bonds, and distances between bond-
ed atoms. This allows for quick filtering of
relevant structural details.

Job queuing and execution

Given the increased computational time re-
quired for processing longer sequences, whi-
ch can extend up to several hours, we devel-
oped a distributed queuing system to optimize
resource allocation. This system is designed to
maximize GPU resources by allowing only one
user to access a GPU at a time. Other users’
calculation tasks are added to a queue and pro-
cessed sequentially in the order they are sub-
mitted. We prioritize user data protection by
not permanently storing input or output data.
The calculation results are temporarily avail-
able via the unique link provided to the user.
These results are automatically deleted after a
predetermined period to ensure privacy and
optimize system resources. After the expiration
period, the data is no longer accessible. Once
the current computation is completed, the sys-
tem automatically reallocates resources to the
next user in line, minimizing resource conten-
tion and maximizing computational efficiency.
This approach not only optimizes the distribu-
tion of computational resources but also reduc-
es overall waiting times, offering a practical
and efficient solution for large-scale protein
structure analysis.

Example analysis

Predicting EphA4-ephrin-A5 complex models
with AlphaPPIweb close to the crystal structure

To demonstrate the capability of AlphaPPlweb
in facilitating structural predictions, we utilized
our web service and the AlphaFold 3 (AF3) ser-
ver (https://alphafoldserver.com/) to predict
the EphA4-ephrin-A5 complex and compared
the predictions with the known crystal struc-
ture [22] (PDB ID: 4M4R) (Figures 2A and S1).
We used ephrin-A5 (UniProt ID: P52803) as the
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candidate sequence, and the EphA4 ligand-
binding domain (residues 31-209, UniProt ID:
P54764) was used as the bait. Upon submis-
sion of the files, a project ID was generated,
and the web platform automatically refreshed
to display the prediction results. Subsequently,
we downloaded the predicted structures and
the table from the webpage for further
analysis.

The root mean square deviation (RMSD) of Cx
atoms between the AlphaPPlweb model and
the crystal structure was 1.69 A, whereas the
RMSD for the AF3 model was 1.20 A. These
results illustrate the ability of both AlphaPPlweb
and AF3 to generate highly accurate structural
predictions. The minor RMSD difference of
0.49 A between the AF3 and AlphaPPlweb mod-
els demonstrates that AlphaPPlweb can per-
form comparably to AF3 in certain cases.
Additionally, the interface residues of the
EphA4-ephrin-A5 complex in both models were
highly conserved relative to the crystal struc-
ture (Figure 2B). The G-H loop (residues 118 to
132) of ephrin-A5, responsible for receptor-rec-
ognition [23, 24], inserted into the EphA4 bind-
ing pocket, exhibited an RMSD of 0.27 A (15 Ca
atoms) between the predicted models and the
crystal structure. Both AlphaPPlweb and AF3
correctly placed ephrin-A5 within the conser-
ved ephrin-binding pocket, demonstrating Al-
phaPPlweb’s utility for screening virtual ligand-
receptor pairs.

RNase A family-EphA4 complex prediction indi-
cating RNase13 as a potential EphA4 binder

Studies have identified members of the RNase
A family as ligands for receptor tyrosine kinases
in cancer cells [20, 25-27]. Notably, RNasel
has been characterized as a secretory ligand
for EphA4, promoting breast tumor initiation
[20, 21]. Given the shared biochemical proper-
ties of the RNase A family, such as their posi-
tively charged surface regions, we investigated
whether other RNase A family proteins could
also act as ligands for EphA4, potentially play-
ing roles in initiating other cancer types. For the
virtual screening of novel EphA4 ligands in the
RNase A family, we used all 13 human RNase A
family proteins as candidates and the EphA4
ligand-binding domain (residues 31-209, Uni-
Prot ID: P54764) as the bait. Following sub-
mission, the process took 9 hours and 14 min-
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ephrinA5- (AlphaPPlweb)
-EphA4 (AF3)
ephrinA5- (crystal structure)

ephrinA5- (AlphaPPlweb)
-EphA4 (AF3)
ephrinA5- (crystal structure)

Figure 2. AlphaFold models demonstrate high structural conservation with EphA4-ephrin complexes. A. Superim-
posed AlphaFold models and the crystal structure of the EphA4-ephrin-A5 complex. The complex structure predicted
by AlphaPPlweb is colored green for EphA4 and blue for ephrin-A5; the complex structure predicted by AlphaFold 3
is colored red for EphA4 and pink for ephrin-A5. In the crystal structure, EphA4 is denoted by yellow and ephrin-A5
by orange. B. Residues 121-128 of ephrin-A5, depicted in stick representation, bind to the ephrin-binding pocket of
EphA4. The ephrin-A5 residues are colored orange, and the EphA4 residues are colored yellow.

utes to complete. All the sequences used in
this example are listed in Tables S1 and S2, and
the results are shown in Figure S2.

The various acronyms and scores in the output
table provide detailed information about the
predicted protein-protein interactions and their
stability. The ipTM (interface Predicted Tem-
plate Modeling score) evaluates the quality of
the predicted interface structure, with higher
values indicating greater confidence and accu-
racy. Values higher than 0.8 indicate confident,
high-quality predictions, whereas values below
0.6 suggest a likely failure in prediction. ipTM
values ranging from 0.6 to 0.8 fall into a gray
zone, where predictions may be either accurate
or inaccurate [15]. The mpDockQ (multiple-
interface predicted Docking Quality score) and
pDockQ (predicted DockQ) assess the reliabili-
ty of the docking model. A pDockQ score > 0.23
indicates acceptable quality [28]. Polar, hydro-
phobic, and charged values represent the per-
centage of their respective amino acid types
relative to the total number of interface re-
sidues. Additional scores include sc (shape
complementarity), which represents geometric
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shape complementarity of protein-protein inter-
faces. sc ranges between 0 and 1, with sc=1
indicating that two proteins mesh precisely
[29]. hb (hydrogen bonding) and sb (salt bridg-
es) represent specific interactions at the inter-
face. The int_solv_en (interface solvation ener-
gy, kcal/mol) measures the change in solvation
energy upon binding [30]; for instance, a value
of -5.39 indicates that binding reduces the sol-
vation energy required to maintain the inter-
face, favoring a stable interaction. Together,
these AlphaPulldown-based metrics provide a
comprehensive understanding of the interac-
tion’s quality, specificity, and stability, highlight-
ing the molecular determinants of binding and
offering a robust foundation for experimental
validation.

Our web server enhances AlphaPulldown with
an automated alignment feature that organizes
predicted models based on the bait protein,
enabling the efficient identification of distinct
binding sites. Utilizing these features, the pre-
dicted RNase-binding sites were grouped into
two clusters based on their competition with
ephrin (Figure 3A). Specifically, RNS2, RNS3,
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Figure 3. RNase A family-EphA4 complex prediction, highlighting RNase13 as a potential EphA4 binder and as a
competitive ligand. A. On the basis of the predicted binding positions relative to ephrin-A5 on EphA4, the RNase
A family proteins were classified into noncompetitive, competitive, and unbound categories. EphA4 is depicted
in green, whereas the RNases are depicted in different colors. B. Superimposed models of the RNase13-EphA4
complex, predicted by AlphaPPlweb and AlphaFold 3 (AF3), reveal a root mean square deviation of only 0.78 A be-
tween the main chains, demonstrating high structural similarity. A common salt bridge is observed at the interface

between Asp18 of RNasel13 and Arg76 of EphA4.

RNS4, RNS5, RNS6, RNS9, RNS12, and RNS13
were predicted to compete as ligands for ep-
hrin (Figure 3A, middle). Conversely, RNS1 and
RNS7 were predicted to be noncompeting
ligands, sharing the same binding site and
maintaining a conserved orientation, suggest-
ing that they possess structural features re-
cognizable by AlphaPPlweb (Figure 3A, left).
However, RNS8 and RNS10 were predicted to
have minimal interactions with EphA4, indicat-
ing that they may not act as potential ligands
(Figure 3A, right).

Notably, the pDockQ score for the EphA4-
RNasell complex is relatively low (0.096), con-
trasting with the higher ipTM score (0.72) and
the energetically favorable int_solv_en value
(-22.89) (Figure S2). This inconsistency may
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arise from AlphaPPlweb predicting a disorder-
ed structure for RNasell within the complex
model. The disordered model is not captured by
the ipTM score, emphasizing the need to incor-
porate additional metrics, such as pTM and
pDockQ, when assessing predicted models for
a more robust evaluation. Different scores pro-
vide insight into distinct aspects of the model,
making reliance on a single score insufficient.
An integrated analysis of multiple scores, sup-
plemented by structural visualization, is critical
for drawing reliable conclusions.

Next, we compared the prediction results
of AlphaPPlweb with those of AF3. The ipTM
scores from the two servers of AlphaFold are
listed in Table 1. Although the RNasel-EphA4
complex has been reported as a ligand-recep-
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Table 1. Analysis of potential interactions and binding sites of the RNase A family with EphA4 by com-

paring predictions from two web services

AlphaPPlweb model AF3 model

ephrin-binding site ipT™M pDockQ ephrin-binding site ipT™M
RNS1 non-competitive 0.34 0.103 competitive 0.14
RNS2 competitive 0.18 0.170 competitive 0.16
RNS3 competitive 0.2 0.162 competitive 0.17
RNS4 competitive 0.67 0.137 competitive 0.16
RNS5 competitive 0.24 0.136 competitive 0.14
RNS6 competitive 0.19 0.240 competitive 0.12
RNS7 non-competitive 0.45 0.173 competitive 0.21
RNS8 unbound 0.23 0.317 competitive 0.26
RNS9 competitive 0.2 0.117 non-competitive 0.15
RNS10 unbound 0.17 0.089 competitive 0.22
RNS11 failed™ 0.72 0.096 competitive 0.45
RNS12 competitive 0.74 0.328 competitive 0.15
RNS13 competitive 0.81 0.379 competitive 0.66

*RNS11 was predicted to have a disordered structure when complexed with EphA4 by using AlphaPPlweb. The ipTM (interface
Predicted Template Modeling score) measures the quality of a predicted interface structure, with scores above 0.8 indicating
high confidence, below 0.6 suggesting likely failure, and 0.6-0.8 representing uncertain predictions. pDockQ (predicted DockQ)
assesses the reliability of the docking model. A pDockQ score = 0.23 indicates acceptable quality.

tor relationship, the ipTM scores predicted by
the two servers of AlphaFold are both low.
Scores below 0.6 may indicate failed prediction
models, while scores above 0.8 suggest con-
fident, high-quality predictions. Notably, the
models predicted by AlphaPPlweb for EphA4
complexes with RNasel, RNase4, and RNasel12
all have higher ipTM scores compared to the
AF3 version, suggesting that AlphaPPlweb may
be more advantageous in identifying potential
binding partners. However, further experimen-
tal validation is required to exclude false posi-
tives. Surprisingly, both servers of AlphaFold
predict RNasel13 as a strong potential binder to
EphA4, with AlphaPPlweb predicting an ipTM
score of 0.81 and AF3 predicting a score of
0.66. In addition to the ipTM score, three oth-
er critical metrics support the potential of
RNasel3 as an EphA4 ligand (Figure S2). The
pDockQ score (0.379), the highest among all
RNases, indicates a high-quality model. The
elevated sc score (0.511) reflects favorable
geometric shape complementarity, correlating
with interaction energies such as van der Waals
forces and non-polar desolvation. Moreover,
the int_solv_en value (-17.23) signifies a reduc-
tion in solvation energy upon complex forma-
tion, suggesting an energetically favorable and
stable interaction.

3986

When comparing the RNasel3-EphA4 com-
plexes predicted by the two AlphaFold servers,
we found that their predictions are highly con-
sistent, with an RMSD of 0.78 A. In both mod-
els, a salt bridge between Aspl18 of RNasel3
and Arg76 of EphA4 was observed (Figure 3B).
This consistent prediction indicates that RNa-
sel3 is likely to be a ligand for EphA4. At pres-
ent, research on RNasel3 function is very lim-
ited. It has been speculated that RNasel3
lacks ribonuclease activity, and recent studies
in male mice suggest that RNasel3 may be
related to reproductive aging [31, 32], although
the conclusions remain unclear. Overall, the
AlphaFold predicted models indicate a high
structural compatibility between RNasel3 and
EphA4, necessitating experimental validation
of their ligand-receptor relationship and the elu-
cidation of their physiological significance.

Discussion

The 3D structures of protein complexes are
essential for understanding molecular interac-
tions, elucidating molecular functions, and driv-
ing drug development. However, comprehen-
sively investigating these complexes through
experimental methods alone is often resource-
intensive and time-consuming, particularly for
complex or difficult-to-study target proteins.

Am J Cancer Res 2025;15(9):3980-3989
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Advances in machine learning, such as the
development of AlphaFold and other innovative
tools, have revolutionized the landscape of
protein structure prediction. These innovations
have greatly increased the efficiency and accu-
racy of predicting protein complex structures,
underscoring the need for rigorous evaluation
methodologies. Common evaluation metrics,
such as ipTM, pTM, and mpDockQ/pDockQ
scores, along with detailed analyses of inter-
face residues, are now widely used to ensure
the reliability of predictions.

The AlphaPPlweb web server is a substantial
advancement in this domain. Powered by
AlphaPulldown computations, the platform of-
fers researchers a user-friendly interface for
predicting interactions among multiple ligand-
receptor pairs. AlphaPPlweb not only auto-
mates the computation of evaluation scores
but also provides comprehensive analyses of
protein interface residues. Moreover, the plat-
form’s ability to visualize and align all predicted
receptor structures enables researchers to
identify key interface regions and potential
binding sites with precision. We anticipate that
AlphaPPlweb will serve as an indispensable
tool for researchers engaged in ligand-receptor
complex structure prediction. Its applications
span academic research, biomedical studies,
and educational contexts, thus facilitating the
advancement of protein interaction studies
and accelerating the pace of drug discovery.
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show o Jobs v iptmptm, iptm, mpDockQ/pDockQ y  Num_intf_residues  Polar Hydrophobhlc =~ Charged ~  contact pairs  se, hb  sb  intsolven  intarea  pualue

> om EphAd_and_EphrinAS 0843 0872 0462 2 0136 0591 0227 24 0674 8 s 12.88 1024.63 029
- on Ephad_and_EphrinB3 0842 0895 0.487 8 18401 0526 0.105 36 0584 9 10 2233 1546.76 016

Figure S1. An example of the predicted structure of the EphA4 and ephrin-A5/B3 complex.

Table S1. Input sequences of the EphA4 example

ephrinA5  MLHVEMLTLVFLVLWMCVFSQDPGSKAVADRYAVYWNSSNPRFQRGDYHIDVCINDYLDVFCPHYEDSVPEDK-
TERYVLYMVNFDGYSACDHTSKGFKRWECNRPHSPNGPLKFSEKFQLFTPFSLGFEFRPGREYFYISSAIPDN-
GRRSCLKLKVFVRPTNSCMKTIGVHDRVFDVNDKVENSLEPADDTVHESAEPSRGENAAQTPRIPSRLLAILLFL-
LAMLLTL

ephrinB3 MGPPHSGPGGVRVGALLLLGVLGLVSGLSLEPVYWNSANKRFQAEGGYVLYPQIGDRLDLLCPRARPPG-
PHSSPNYEFYKLYLVGGAQGRRCEAPPAPNLLLTCDRPDLDLRFTIKFQEYSPNLWGHEFRSHHDYYIIATSDG-
TREGLESLQGGVCLTRGMKVLLRVGQSPRGGAVPRKPVSEMPMERDRGAAHSLEPGKENLPGDPTSNATSR-
GAEGPLPPPSMPAVAGAAGGLALLLLGVAGAGGAMCWRRRRAKPSESRHPGPGSFGRGGSLGLGGGGGMG-
PREAEPGELGIALRGGGAADPPFCPHYEKVSGDYGHPVYIVQDGPPQSPPNIYYKV

EphA4 VTLLDSRSVQGELGWIASPLEGGWEEVSIMDEKNTPIRTYQVCNVMEPSQNNWLRTDWITREGAQRVYIE-

IKFTLRDCNSLPGVMGTCKETFNLYYYESDNDKERFIRENQFVKIDTIAADESFTQVDIGDRIMKLNTEIRDVG-
PLSKKGFYLAFQDVGACIALVSVRVFYKKCPLTVR
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Table S2. Input sequences of the RNase A family

RNasel

RNase2

RNase3

RNase4

RNase5

RNase6

RNase7

RNase8

RNase9

RNasel0

RNasel1l

RNasel2

RNasel3

KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGRCKPVNTFVHEPLVDVQN-
VCFQEKVTCKNGQGNCYKSNSSMHITDCRLTNGSRYPNCAYRTSPKERHIIVACEGSPYVPVHFDASVEDST
KPPQFTWAQWFETQHINMTSQQCTNAMQVINNYQRRCKNQNTFLLTTFANVVNVCGNPNMTCPSNK-
TRKNCHHSGSQVPLIHCNLTTPSPQNISNCRYAQTPANMFYIVACDNRDQRRDPPQYPVVPVHLDRII
RPPQFTRAQWFAIQHISLNPPRCTIAMRAINNYRWRCKNQNTFLRTTFANVVNVCGNQSIRCPHNRTLNNCHRSR-
FRVPLLHCDLINPGAQNISNCTYADRPGRRFYVVACDNRDPRDSPRYPVVPVHLDTTI
QDGMYQRFLRQHVHPEETGGSDRYCNLMMQRRKMTLYHCKRFNTFIHEDIWNIRSICSTTNIQCKNGKMN-
CHEGVVKVTDCRDTGSSRAPNCRYRAIASTRRVVIACEGNPQVPVHFDG
QDNSRYTHFLTQHYDAKPQGRDDRYCESIMRRRGLTSPCKDINTFIHGNKRSIKAICENKNGNPHRENLRISKSS-
FQVTTCKLHGGSPWPPCQYRATAGFRNVVVACENGLPVHLDQSIFRRP
WPKRLTKAHWFEIQHIQPSPLQCNRAMSGINNYTQHCKHQNTFLHDSFQNVAAVCDLLSIVCK-
NRRHNCHQSSKPVNMTDCRLTSGKYPQCRYSAAAQYKFFIVACDPPQKSDPPYKLVPVHLDSIL
KPKGMTSSQWFKIQHMQPSPQACNSAMKNINKHTKRCKDLNTFLHEPFSSVAATCQTPKIACKNGD-
KNCHQSHGAVSLTMCKLTSGKHPNCRYKEKRQNKSYVVACKPPQKKDSQQFHLVPVHLDRVL
KPKDMTSSQWFKTQHVQPSPQACNSAMSIINKYTERCKDLNTFLHEPFSSVAITCQTPNIACKNSCKNCHQSH-
GPMSLTMGELTSGKYPNCRYKEKHLNTPYIVACDPPQQGDPGYPLVPVHLDKVV
QEVDTDFDFPEEDKKEEFEECLEKFFSTGPARPPTKEKVKRRVLIEPGMPLNHIEYCNHEIMGKNVYYKHRW-
VAEHYFLLMQYDELQKICYNRFVPCKNGIRKCNRSKGLVEGVYCNLTEAFEIPACKYESLYRKGYVLITC-
SWQNEMQKRIPHTINDLVEPPEHRSFLSEDGVFVISP
LHMATAVLEESDQPLNEFWSSDSQDKAEATEEGDGTQTTETLVLSNKEVVQPGWPEDPILGEDEVGGNKMLRAS-
ALFQSNKDYLRLDQTDRECNDMMAHKMKEPSQSCIAQYAFIHEDLNTVKAVCNSPVIACELKGGKCHKSSR-
PFDLTLCELSQPDQVTPNCNYLTSVIKKHIIITCNDMKRQLPTGQ
EASESTMKIIKEEFTDEEMQYDMAKSGQEKQTIEILMNPILLVKNTSLSMSKDDMSSTLLTFRSLHYNDPKGNS-
SGNDKECCNDMTVWRKVSEANGSCKWSNNFIRSSTEVMRRVHRAPSCKFVQNPGISCCESLELENTVCQFTT-
GKQFPRCQYHSVTSLEKILTVLTGHSLMSWLVCGSKL
EAVMSTLEHLHVDYPQNDVPVPARYCNHMIIQRVIREPDHTCKKEHVFIHERPRKINGICISPKKVACQNLSAIF-
CFQSETKFKMTVCQLIEGTRYPACRYHYSPTEGFVLVTCDDLRPDSFLGYVK
MDIKMQIGSRNFYTLSIDYPRVNYPKGFRGYCNGLMSYMRGKMQNSDCPKIHYVIHAPWKAIQKFCKYSDSFCE-
NYNEYCTLTQDSLPITVCSLSHQQPPTSCYYNSTLTNQKLYLLCSRKYEADPIGIAGLYSG
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show  jobs v iptm_ptm ,  iptm mpDockQ/pDockQ 4 Num_intf_residues Polar Hydrophobhic Charged contact_pairs sy hb b int_solv_en int_srea pvalue

> Ge 0816 0.807 0379 30 3e-01 0333 0233 27 osn 8 1 -17.23 1116.35 0.06
L 0.700 0673 0.137 8 0.125 0s 025§ 6 0525 7 13 044 830.14 053
L 0.499 0.450 0.173 21 0.381 0.19 0.381 19 0395 H 15 205 773.05 0.67
> om 0.296 0228 0317 n 0.258 0.452 0.129 49 0119 H o 5.76 71497 02
show , jobs v iptm_ptm iptm mpDockQ/pDockQ « Num_intf_residues Polar Hydrophobhic Charged contact_pairs scy hb sb int_solv_en int_area pvalue

> Ew 0267 0.203 ony 30 0.167 0.367 0.3 27 0286 12 6 -5.82 1391.81 045

Figure S2. An example of the predicted structure of the EphA4 and RNase A family complex. The table is ordered
by the iptm_ptm score. ipTM (interface Predicted Template Modeling score) evaluates interface quality, with higher
scores indicating greater confidence, while pTM (Predicted Template Modeling score) assesses overall model qual-
ity. mpDockQ and pDockQ estimate docking quality, with higher values reflecting better predictions. Num_intf_resi-
dues represents the number of residues involved in the interface. Polar (Ser, Thr, Asn, GIn, His and Tyr), Hydrophobic
(Ala, Leu, lle, Val, Phe, Trp, Cys, Met) and Charged (Asp, Glu, Lys, Arg) quantify specific types of interactions at the
interface. contact_pairs were defined as the number of atomic contacts between the interface residues from the in-
teracting chains. sc represents the geometric shape complementarity of protein-protein interfaces, ranging between
0 and 1, with sc=1 indicating that two proteins mesh precisely. hb and sb measure the number of hydrogen bonds
and salt bridges, respectively. int_solv_en calculates the energy difference between the bound and unbound mono-
mers caused by the solvation effect, and int_area represents the total interfacial area. p value measures interface
specificity, with P=0.5 indicating an average interface, P>0.5 suggesting less hydrophobicity, and P<0.5 reflecting
high hydrophobicity and interaction specificity.



