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Abstract: The advent of AlphaFold has markedly advanced structural biology by enabling highly accurate predictions 
of protein structures. This breakthrough has been further extended by AlphaFold-Multimer, which enables the pre-
diction of protein complex structures. However, currently available tools for predictions have limitations, including 
usage constraints and the need for extensive postprediction analysis to identify interface residues. To address these 
challenges, we introduce AlphaPPIweb, a comprehensive web-based platform designed to leverage AlphaPulldown, 
an AlphaFold-Multimer-based tool, for predicting protein complex structures. Users simply input amino acid se-
quences, after which AlphaPPIweb generates three-dimensional structural predictions, provides confidence scores, 
and presents results through intuitive visualizations. The platform facilitates the prediction of interactions between 
a single bait protein and multiple candidate proteins, thus aiding in the identification of potential ligand-receptor 
interactions. Furthermore, AlphaPPIweb incorporates automated interface residue analysis immediately following 
structure prediction, streamlining the workflow and providing comprehensive insights into the predicted complexes. 
This integrated approach significantly enhances the usability of AlphaPPIweb for biomedical studies and educa-
tional applications. By democratizing access to advanced structural prediction tools and enabling a comprehensive 
analysis of protein interactions, AlphaPPIweb promotes extensive exploration and understanding within the biologi-
cal research community. AlphaPPIweb is accessible at http://alphappiweb.cmu.edu.tw/.
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Introduction

Protein-protein interactions (PPIs) play ssessen-
tial roles in diverse biological processes, includ-
ing signal transduction, metabolic regulation, 
and cellular organization [1-3]. Understanding 
and predicting PPIs is therefore crucial for elu- 
cidating cellular mechanisms and identifying 
potential therapeutic targets [4-7]. While exper-
imental techniques such as yeast two-hybrid 
assays and affinity purification assays remain 

widely used [8-11], they are time-consuming 
and often fail to capture transient or weak inter-
actions, limiting their comprehensive utility in 
large-scale studies [12, 13]. 

Computational methods have significantly en- 
hanced the efficiency and accuracy of PPI pre-
dictions, complementing experimental approa- 
ches. A major breakthrough in computational 
biology was the introduction of AlphaFold [14], 
which dramatically improved the accuracy of 
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three-dimensional (3D) protein structure pre-
dictions from amino acid sequences. Alpha- 
Fold’s success facilitated further methodologi-
cal advancements, including AlphaFold-Mul- 
timer [15], ColabFold [16], AF2-Complex [17], 
AlphaPulldown [18], and AlphaFold 3 [19] - 
which have enabled highly accurate predic- 
tions of protein complex structures. Notably, 
AlphaFold 3 offers an accessible graphical user 
interface (GUI), but it primarily focuses on struc-
ture prediction without providing comprehen-
sive model evaluation or detailed post-predic-
tion analyses, which are critical for experimen- 
tal validation. 

Among these computational tools, AlphaPull- 
down is particularly notable for integrating 
high-accuracy prediction of protein complexes 
with robust post-prediction analyses, offering 
users detailed evaluations of predicted interac-
tions. However, AlphaPulldown’s command-line 
interface limits its accessibility, particularly for 
experimental researchers who may lack com-
putational expertise. To address this limitation, 
we have developed AlphaPPIweb, an intuitive 
web server that combines the powerful predic-
tive capabilities of AlphaPulldown with a user-
friendly graphical interface. AlphaPPIweb en- 
ables experimental biologists to conduct so- 
phisticated structure-based predictions effort-
lessly and gain comprehensive insights into the 
quality and reliability of predicted protein inter-
actions through detailed post-prediction evalu-
ation metrics.

To illustrate AlphaPPIweb’s practical utility, we 
demonstrate its functionality using two biologi-
cally relevant protein complexes: EphA4-RNase 
A family [20, 21] and EphA4-ephrin-A5 [22]. 
These examples underscore the platform’s 
capability to facilitate precise prediction and 
thorough analysis of PPIs, streamlining subse-
quent experimental validation steps.

In conclusion, AlphaPPIweb addresses an im- 
portant gap in current bioinformatics resourc- 
es by providing a comprehensive, user-friendly 
platform specifically tailored to experimental 
researchers. This accessible interface signifi-
cantly simplifies advanced PPI predictions and 
evaluations, empowering researchers to effi-
ciently integrate computational predictions into 
their experimental workflows, ultimately accel-
erating discoveries in molecular biology and 
therapeutic development.

Implementation

Implementation of the web interface

We employed various programming languages 
and technologies for developing the frontend 
system for our website. Specifically, PHP, Apa- 
che, Python, and JavaScript were used. PHP 
functions as a server-side scripting language, 
generating dynamic webpage content and man-
aging backend database operations. For the 
database, a file-based storage approach was 
adopted. Apache provides the foundational ser-
vices for the web server infrastructure. The 
frontend of the web page incorporates founda-
tional components such as Bootstrap 5.3.3, 
DataTables 2.0, and jQuery 3.7.1. Additionally, 
Python facilitates data integration between the 
frontend and backend processes, dynamically 
generating frontend code that is executed by 
the browser. Structural visualization packages, 
including JSmol 16.1.47 and PDBe Molstar 
3.1.2, are embedded in the frontend web page 
using JavaScript.

Queuing system

In this study, we developed a distributed queu-
ing system using PHP and a file-based approach 
to managing user-uploaded data. Upon receiv-
ing data, the system promptly creates a dedi-
cated working directory for each job where all 
meta files generated during the computation 
process are stored. Each working directory also 
includes a log file that records the entire execu-
tion process. When a job is assigned to com-
pute resources, the system documents the 
graphical processing units (GPUs) and comput-
ing nodes used within the respective directo-
ries, ensuring that no GPU is simultaneously 
allocated to other jobs during the computation 
process. During computation, users are pre-
sented with a waiting screen indicating that 
computation is in progress. Upon completion, 
the system delivers results to users via web 
pages, implemented in PHP to provide real-time 
visualization and immediate access to results. 

Tool and interface construction

The development of the AlphaPPIweb Web  
platform represents a notable advancement  
in protein structure prediction, particularly in 
the context of complex protein interactions. 
Designed to simplify the prediction process, 
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Figure 1. Workflow and web interface of AlphaPPIweb. A. The data processing workflow begins with the user up-
loading the amino acid sequences of the proteins of interest. Once uploaded, the platform’s automated pipeline, 
powered by AlphaPulldown, processes the predictions without requiring any additional configuration or specialized 
computational resources. The backend AlphaFold service then generates the 3D structures of the proteins, offering 
researchers a streamlined and efficient method for predicting complex protein interactions. B. The left panel shows 
3D structure predictions with confidence scores, presented in an interactive GUI that allows users to rotate, zoom, 
and manipulate structures, as well as display or hide table columns for detailed analysis. The right panel highlights 
AlphaPPIweb’s key feature - predicting interactions between a single bait protein and multiple candidates, providing 
insights into protein functions and interactions in complex biological systems.

AlphaPPIweb integrates AlphaPulldown, an 
AlphaFold-Multimer-based tool, within a highly 
efficient and user-friendly interface. Resear- 
chers can easily use the platform without the 
need to configure a complex execution environ-
ment or establish specialized computational 
infrastructure. The platform’s one-click auto-
mated pipeline greatly reduces the manual 
labor typically associated with protein structure 
prediction. The workflow begins with the up- 
load of amino acid sequences of interest, after 
which the platform automatically generates the 
corresponding 3D protein structures through 
the backend AlphaFold service. A visual repre-
sentation of the platform’s interface is present-
ed in Figure 1A.

Webserver

Filtering and visualization

We developed a comprehensive structural 
alignment and predicted parameter-filtering 

interface. As presented in Figure 1B, users can 
select the results for structural alignment by 
simply checking checkboxes. The interface 
allows for simultaneous alignment of multiple 
structures, facilitating the visualization of rela-
tionships between them. Furthermore, the 
table beneath the alignment section provides 
various data fields for detailed analysis. As 
illustrated in Figure 1B, users can dynamically 
toggle between displaying or hiding certain 
fields, including polarity scores, hydrophobicity, 
charge status, and contact pairs, which allows 
for customization of the viewed data. In addi-
tion, scores in the table can be sorted by click-
ing on the column header, enabling users to fil-
ter necessary metric values (Figure 1B, left). To 
further explore a single structure’s sequence 
and prediction details, users can click the but-
ton in the Jobs column of the table shown in 
Figure 1B. This action opens an interactive 3D 
molecular visualization module (Figure 1B, 
right). This module enables users to view and 
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analyze biomolecular structures and offers 
multiple viewing modes through a web inter-
face, including space-filling, ball-and-stick, and 
wireframe models. The interface also includes 
a sequence-highlighting feature, in which users 
simply mark a given sequence, and it will be 
highlighted on the corresponding structure. The 
table presented in Figure 1B displays addition-
al parameters, such as chain ID, types of non-
covalent bonds, and distances between bond-
ed atoms. This allows for quick filtering of 
relevant structural details.

Job queuing and execution

Given the increased computational time re- 
quired for processing longer sequences, whi- 
ch can extend up to several hours, we devel-
oped a distributed queuing system to optimize 
resource allocation. This system is designed to 
maximize GPU resources by allowing only one 
user to access a GPU at a time. Other users’ 
calculation tasks are added to a queue and pro-
cessed sequentially in the order they are sub-
mitted. We prioritize user data protection by 
not permanently storing input or output data. 
The calculation results are temporarily avail-
able via the unique link provided to the user. 
These results are automatically deleted after a 
predetermined period to ensure privacy and 
optimize system resources. After the expiration 
period, the data is no longer accessible. Once 
the current computation is completed, the sys-
tem automatically reallocates resources to the 
next user in line, minimizing resource conten-
tion and maximizing computational efficiency. 
This approach not only optimizes the distribu-
tion of computational resources but also reduc-
es overall waiting times, offering a practical 
and efficient solution for large-scale protein 
structure analysis.

Example analysis

Predicting EphA4-ephrin-A5 complex models 
with AlphaPPIweb close to the crystal structure

To demonstrate the capability of AlphaPPIweb 
in facilitating structural predictions, we utilized 
our web service and the AlphaFold 3 (AF3) ser- 
ver (https://alphafoldserver.com/) to predict 
the EphA4-ephrin-A5 complex and compared 
the predictions with the known crystal struc-
ture [22] (PDB ID: 4M4R) (Figures 2A and S1). 
We used ephrin-A5 (UniProt ID: P52803) as the 

candidate sequence, and the EphA4 ligand-
binding domain (residues 31-209, UniProt ID: 
P54764) was used as the bait. Upon submis-
sion of the files, a project ID was generated, 
and the web platform automatically refreshed 
to display the prediction results. Subsequently, 
we downloaded the predicted structures and 
the table from the webpage for further 
analysis.

The root mean square deviation (RMSD) of Cα 
atoms between the AlphaPPIweb model and 
the crystal structure was 1.69 Å, whereas the 
RMSD for the AF3 model was 1.20 Å. These 
results illustrate the ability of both AlphaPPIweb 
and AF3 to generate highly accurate structural 
predictions. The minor RMSD difference of 
0.49 Å between the AF3 and AlphaPPIweb mod-
els demonstrates that AlphaPPIweb can per-
form comparably to AF3 in certain cases. 
Additionally, the interface residues of the 
EphA4-ephrin-A5 complex in both models were 
highly conserved relative to the crystal struc-
ture (Figure 2B). The G-H loop (residues 118 to 
132) of ephrin-A5, responsible for receptor-rec-
ognition [23, 24], inserted into the EphA4 bind-
ing pocket, exhibited an RMSD of 0.27 Å (15 Cα 
atoms) between the predicted models and the 
crystal structure. Both AlphaPPIweb and AF3 
correctly placed ephrin-A5 within the conser- 
ved ephrin-binding pocket, demonstrating Al- 
phaPPIweb’s utility for screening virtual ligand-
receptor pairs. 

RNase A family-EphA4 complex prediction indi-
cating RNase13 as a potential EphA4 binder

Studies have identified members of the RNase 
A family as ligands for receptor tyrosine kinases 
in cancer cells [20, 25-27]. Notably, RNase1 
has been characterized as a secretory ligand 
for EphA4, promoting breast tumor initiation 
[20, 21]. Given the shared biochemical proper-
ties of the RNase A family, such as their posi-
tively charged surface regions, we investigated 
whether other RNase A family proteins could 
also act as ligands for EphA4, potentially play-
ing roles in initiating other cancer types. For the 
virtual screening of novel EphA4 ligands in the 
RNase A family, we used all 13 human RNase A 
family proteins as candidates and the EphA4 
ligand-binding domain (residues 31-209, Uni- 
Prot ID: P54764) as the bait. Following sub- 
mission, the process took 9 hours and 14 min-
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Figure 2. AlphaFold models demonstrate high structural conservation with EphA4-ephrin complexes. A. Superim-
posed AlphaFold models and the crystal structure of the EphA4-ephrin-A5 complex. The complex structure predicted 
by AlphaPPIweb is colored green for EphA4 and blue for ephrin-A5; the complex structure predicted by AlphaFold 3 
is colored red for EphA4 and pink for ephrin-A5. In the crystal structure, EphA4 is denoted by yellow and ephrin-A5 
by orange. B. Residues 121-128 of ephrin-A5, depicted in stick representation, bind to the ephrin-binding pocket of 
EphA4. The ephrin-A5 residues are colored orange, and the EphA4 residues are colored yellow.

utes to complete. All the sequences used in 
this example are listed in Tables S1 and S2, and 
the results are shown in Figure S2.

The various acronyms and scores in the output 
table provide detailed information about the 
predicted protein-protein interactions and their 
stability. The ipTM (interface Predicted Tem- 
plate Modeling score) evaluates the quality of 
the predicted interface structure, with higher 
values indicating greater confidence and accu-
racy. Values higher than 0.8 indicate confident, 
high-quality predictions, whereas values below 
0.6 suggest a likely failure in prediction. ipTM 
values ranging from 0.6 to 0.8 fall into a gray 
zone, where predictions may be either accurate 
or inaccurate [15]. The mpDockQ (multiple-
interface predicted Docking Quality score) and 
pDockQ (predicted DockQ) assess the reliabili-
ty of the docking model. A pDockQ score ≥ 0.23 
indicates acceptable quality [28]. Polar, hydro-
phobic, and charged values represent the per-
centage of their respective amino acid types 
relative to the total number of interface re- 
sidues. Additional scores include sc (shape 
complementarity), which represents geometric 

shape complementarity of protein-protein inter-
faces. sc ranges between 0 and 1, with sc=1 
indicating that two proteins mesh precisely 
[29]. hb (hydrogen bonding) and sb (salt bridg-
es) represent specific interactions at the inter-
face. The int_solv_en (interface solvation ener-
gy, kcal/mol) measures the change in solvation 
energy upon binding [30]; for instance, a value 
of -5.39 indicates that binding reduces the sol-
vation energy required to maintain the inter-
face, favoring a stable interaction. Together, 
these AlphaPulldown-based metrics provide a 
comprehensive understanding of the interac-
tion’s quality, specificity, and stability, highlight-
ing the molecular determinants of binding and 
offering a robust foundation for experimental 
validation. 

Our web server enhances AlphaPulldown with 
an automated alignment feature that organizes 
predicted models based on the bait protein, 
enabling the efficient identification of distinct 
binding sites. Utilizing these features, the pre-
dicted RNase-binding sites were grouped into 
two clusters based on their competition with 
ephrin (Figure 3A). Specifically, RNS2, RNS3, 
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Figure 3. RNase A family-EphA4 complex prediction, highlighting RNase13 as a potential EphA4 binder and as a 
competitive ligand. A. On the basis of the predicted binding positions relative to ephrin-A5 on EphA4, the RNase 
A family proteins were classified into noncompetitive, competitive, and unbound categories. EphA4 is depicted 
in green, whereas the RNases are depicted in different colors. B. Superimposed models of the RNase13-EphA4 
complex, predicted by AlphaPPIweb and AlphaFold 3 (AF3), reveal a root mean square deviation of only 0.78 Å be-
tween the main chains, demonstrating high structural similarity. A common salt bridge is observed at the interface 
between Asp18 of RNase13 and Arg76 of EphA4.

RNS4, RNS5, RNS6, RNS9, RNS12, and RNS13 
were predicted to compete as ligands for ep- 
hrin (Figure 3A, middle). Conversely, RNS1 and 
RNS7 were predicted to be noncompeting 
ligands, sharing the same binding site and 
maintaining a conserved orientation, suggest-
ing that they possess structural features re- 
cognizable by AlphaPPIweb (Figure 3A, left). 
However, RNS8 and RNS10 were predicted to 
have minimal interactions with EphA4, indicat-
ing that they may not act as potential ligands 
(Figure 3A, right). 

Notably, the pDockQ score for the EphA4-
RNase11 complex is relatively low (0.096), con-
trasting with the higher ipTM score (0.72) and 
the energetically favorable int_solv_en value 
(-22.89) (Figure S2). This inconsistency may 

arise from AlphaPPIweb predicting a disorder- 
ed structure for RNase11 within the complex 
model. The disordered model is not captured by 
the ipTM score, emphasizing the need to incor-
porate additional metrics, such as pTM and 
pDockQ, when assessing predicted models for 
a more robust evaluation. Different scores pro-
vide insight into distinct aspects of the model, 
making reliance on a single score insufficient. 
An integrated analysis of multiple scores, sup-
plemented by structural visualization, is critical 
for drawing reliable conclusions.

Next, we compared the prediction results  
of AlphaPPIweb with those of AF3. The ipTM 
scores from the two servers of AlphaFold are 
listed in Table 1. Although the RNase1-EphA4 
complex has been reported as a ligand-recep-
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Table 1. Analysis of potential interactions and binding sites of the RNase A family with EphA4 by com-
paring predictions from two web services

AlphaPPIweb model AF3 model
ephrin-binding site ipTM pDockQ ephrin-binding site ipTM

RNS1 non-competitive 0.34 0.103 competitive 0.14
RNS2 competitive 0.18 0.170 competitive 0.16
RNS3 competitive 0.2 0.162 competitive 0.17
RNS4 competitive 0.67 0.137 competitive 0.16
RNS5 competitive 0.24 0.136 competitive 0.14
RNS6 competitive 0.19 0.240 competitive 0.12
RNS7 non-competitive 0.45 0.173 competitive 0.21
RNS8 unbound 0.23 0.317 competitive 0.26
RNS9 competitive 0.2 0.117 non-competitive 0.15
RNS10 unbound 0.17 0.089 competitive 0.22
RNS11 failed* 0.72 0.096 competitive 0.45
RNS12 competitive 0.74 0.328 competitive 0.15
RNS13 competitive 0.81 0.379 competitive 0.66
*RNS11 was predicted to have a disordered structure when complexed with EphA4 by using AlphaPPIweb. The ipTM (interface 
Predicted Template Modeling score) measures the quality of a predicted interface structure, with scores above 0.8 indicating 
high confidence, below 0.6 suggesting likely failure, and 0.6-0.8 representing uncertain predictions. pDockQ (predicted DockQ) 
assesses the reliability of the docking model. A pDockQ score ≥ 0.23 indicates acceptable quality.

tor relationship, the ipTM scores predicted by 
the two servers of AlphaFold are both low. 
Scores below 0.6 may indicate failed prediction 
models, while scores above 0.8 suggest con- 
fident, high-quality predictions. Notably, the 
models predicted by AlphaPPIweb for EphA4 
complexes with RNase1, RNase4, and RNase12 
all have higher ipTM scores compared to the 
AF3 version, suggesting that AlphaPPIweb may 
be more advantageous in identifying potential 
binding partners. However, further experimen-
tal validation is required to exclude false posi-
tives. Surprisingly, both servers of AlphaFold 
predict RNase13 as a strong potential binder to 
EphA4, with AlphaPPIweb predicting an ipTM 
score of 0.81 and AF3 predicting a score of 
0.66. In addition to the ipTM score, three oth- 
er critical metrics support the potential of 
RNase13 as an EphA4 ligand (Figure S2). The 
pDockQ score (0.379), the highest among all 
RNases, indicates a high-quality model. The 
elevated sc score (0.511) reflects favorable 
geometric shape complementarity, correlating 
with interaction energies such as van der Waals 
forces and non-polar desolvation. Moreover, 
the int_solv_en value (-17.23) signifies a reduc-
tion in solvation energy upon complex forma-
tion, suggesting an energetically favorable and 
stable interaction.

When comparing the RNase13-EphA4 com- 
plexes predicted by the two AlphaFold servers, 
we found that their predictions are highly con-
sistent, with an RMSD of 0.78 Å. In both mod-
els, a salt bridge between Asp18 of RNase13 
and Arg76 of EphA4 was observed (Figure 3B). 
This consistent prediction indicates that RNa- 
se13 is likely to be a ligand for EphA4. At pres-
ent, research on RNase13 function is very lim-
ited. It has been speculated that RNase13 
lacks ribonuclease activity, and recent studies 
in male mice suggest that RNase13 may be 
related to reproductive aging [31, 32], although 
the conclusions remain unclear. Overall, the 
AlphaFold predicted models indicate a high 
structural compatibility between RNase13 and 
EphA4, necessitating experimental validation 
of their ligand-receptor relationship and the elu-
cidation of their physiological significance.

Discussion

The 3D structures of protein complexes are 
essential for understanding molecular interac-
tions, elucidating molecular functions, and driv-
ing drug development. However, comprehen-
sively investigating these complexes through 
experimental methods alone is often resource-
intensive and time-consuming, particularly for 
complex or difficult-to-study target proteins. 
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Advances in machine learning, such as the 
development of AlphaFold and other innovative 
tools, have revolutionized the landscape of  
protein structure prediction. These innovations 
have greatly increased the efficiency and accu-
racy of predicting protein complex structures, 
underscoring the need for rigorous evaluation 
methodologies. Common evaluation metrics, 
such as ipTM, pTM, and mpDockQ/pDockQ 
scores, along with detailed analyses of inter-
face residues, are now widely used to ensure 
the reliability of predictions.

The AlphaPPIweb web server is a substantial 
advancement in this domain. Powered by 
AlphaPulldown computations, the platform of- 
fers researchers a user-friendly interface for 
predicting interactions among multiple ligand-
receptor pairs. AlphaPPIweb not only auto-
mates the computation of evaluation scores 
but also provides comprehensive analyses of 
protein interface residues. Moreover, the plat-
form’s ability to visualize and align all predicted 
receptor structures enables researchers to 
identify key interface regions and potential 
binding sites with precision. We anticipate that 
AlphaPPIweb will serve as an indispensable 
tool for researchers engaged in ligand-receptor 
complex structure prediction. Its applications 
span academic research, biomedical studies, 
and educational contexts, thus facilitating the 
advancement of protein interaction studies  
and accelerating the pace of drug discovery.
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Figure S1. An example of the predicted structure of the EphA4 and ephrin-A5/B3 complex.

Table S1. Input sequences of the EphA4 example
ephrinA5 MLHVEMLTLVFLVLWMCVFSQDPGSKAVADRYAVYWNSSNPRFQRGDYHIDVCINDYLDVFCPHYEDSVPEDK-

TERYVLYMVNFDGYSACDHTSKGFKRWECNRPHSPNGPLKFSEKFQLFTPFSLGFEFRPGREYFYISSAIPDN-
GRRSCLKLKVFVRPTNSCMKTIGVHDRVFDVNDKVENSLEPADDTVHESAEPSRGENAAQTPRIPSRLLAILLFL-
LAMLLTL

ephrinB3 MGPPHSGPGGVRVGALLLLGVLGLVSGLSLEPVYWNSANKRFQAEGGYVLYPQIGDRLDLLCPRARPPG-
PHSSPNYEFYKLYLVGGAQGRRCEAPPAPNLLLTCDRPDLDLRFTIKFQEYSPNLWGHEFRSHHDYYIIATSDG-
TREGLESLQGGVCLTRGMKVLLRVGQSPRGGAVPRKPVSEMPMERDRGAAHSLEPGKENLPGDPTSNATSR-
GAEGPLPPPSMPAVAGAAGGLALLLLGVAGAGGAMCWRRRRAKPSESRHPGPGSFGRGGSLGLGGGGGMG-
PREAEPGELGIALRGGGAADPPFCPHYEKVSGDYGHPVYIVQDGPPQSPPNIYYKV

EphA4 VTLLDSRSVQGELGWIASPLEGGWEEVSIMDEKNTPIRTYQVCNVMEPSQNNWLRTDWITREGAQRVYIE-
IKFTLRDCNSLPGVMGTCKETFNLYYYESDNDKERFIRENQFVKIDTIAADESFTQVDIGDRIMKLNTEIRDVG-
PLSKKGFYLAFQDVGACIALVSVRVFYKKCPLTVR
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RNase9 QEVDTDFDFPEEDKKEEFEECLEKFFSTGPARPPTKEKVKRRVLIEPGMPLNHIEYCNHEIMGKNVYYKHRW-
VAEHYFLLMQYDELQKICYNRFVPCKNGIRKCNRSKGLVEGVYCNLTEAFEIPACKYESLYRKGYVLITC-
SWQNEMQKRIPHTINDLVEPPEHRSFLSEDGVFVISP

RNase10 LHMATAVLEESDQPLNEFWSSDSQDKAEATEEGDGTQTTETLVLSNKEVVQPGWPEDPILGEDEVGGNKMLRAS-
ALFQSNKDYLRLDQTDRECNDMMAHKMKEPSQSCIAQYAFIHEDLNTVKAVCNSPVIACELKGGKCHKSSR-
PFDLTLCELSQPDQVTPNCNYLTSVIKKHIIITCNDMKRQLPTGQ

RNase11 EASESTMKIIKEEFTDEEMQYDMAKSGQEKQTIEILMNPILLVKNTSLSMSKDDMSSTLLTFRSLHYNDPKGNS-
SGNDKECCNDMTVWRKVSEANGSCKWSNNFIRSSTEVMRRVHRAPSCKFVQNPGISCCESLELENTVCQFTT-
GKQFPRCQYHSVTSLEKILTVLTGHSLMSWLVCGSKL

RNase12 EAVMSTLEHLHVDYPQNDVPVPARYCNHMIIQRVIREPDHTCKKEHVFIHERPRKINGICISPKKVACQNLSAIF-
CFQSETKFKMTVCQLIEGTRYPACRYHYSPTEGFVLVTCDDLRPDSFLGYVK

RNase13 MDIKMQIGSRNFYTLSIDYPRVNYPKGFRGYCNGLMSYMRGKMQNSDCPKIHYVIHAPWKAIQKFCKYSDSFCE-
NYNEYCTLTQDSLPITVCSLSHQQPPTSCYYNSTLTNQKLYLLCSRKYEADPIGIAGLYSGI

Table S2. Input sequences of the RNase A family
RNase1 KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGRCKPVNTFVHEPLVDVQN-

VCFQEKVTCKNGQGNCYKSNSSMHITDCRLTNGSRYPNCAYRTSPKERHIIVACEGSPYVPVHFDASVEDST
RNase2 KPPQFTWAQWFETQHINMTSQQCTNAMQVINNYQRRCKNQNTFLLTTFANVVNVCGNPNMTCPSNK-

TRKNCHHSGSQVPLIHCNLTTPSPQNISNCRYAQTPANMFYIVACDNRDQRRDPPQYPVVPVHLDRII
RNase3 RPPQFTRAQWFAIQHISLNPPRCTIAMRAINNYRWRCKNQNTFLRTTFANVVNVCGNQSIRCPHNRTLNNCHRSR-

FRVPLLHCDLINPGAQNISNCTYADRPGRRFYVVACDNRDPRDSPRYPVVPVHLDTTI
RNase4 QDGMYQRFLRQHVHPEETGGSDRYCNLMMQRRKMTLYHCKRFNTFIHEDIWNIRSICSTTNIQCKNGKMN-

CHEGVVKVTDCRDTGSSRAPNCRYRAIASTRRVVIACEGNPQVPVHFDG
RNase5 QDNSRYTHFLTQHYDAKPQGRDDRYCESIMRRRGLTSPCKDINTFIHGNKRSIKAICENKNGNPHRENLRISKSS-

FQVTTCKLHGGSPWPPCQYRATAGFRNVVVACENGLPVHLDQSIFRRP
RNase6 WPKRLTKAHWFEIQHIQPSPLQCNRAMSGINNYTQHCKHQNTFLHDSFQNVAAVCDLLSIVCK-

NRRHNCHQSSKPVNMTDCRLTSGKYPQCRYSAAAQYKFFIVACDPPQKSDPPYKLVPVHLDSIL
RNase7 KPKGMTSSQWFKIQHMQPSPQACNSAMKNINKHTKRCKDLNTFLHEPFSSVAATCQTPKIACKNGD-

KNCHQSHGAVSLTMCKLTSGKHPNCRYKEKRQNKSYVVACKPPQKKDSQQFHLVPVHLDRVL
RNase8 KPKDMTSSQWFKTQHVQPSPQACNSAMSIINKYTERCKDLNTFLHEPFSSVAITCQTPNIACKNSCKNCHQSH-

GPMSLTMGELTSGKYPNCRYKEKHLNTPYIVACDPPQQGDPGYPLVPVHLDKVV
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Figure S2. An example of the predicted structure of the EphA4 and RNase A family complex. The table is ordered 
by the iptm_ptm score. ipTM (interface Predicted Template Modeling score) evaluates interface quality, with higher 
scores indicating greater confidence, while pTM (Predicted Template Modeling score) assesses overall model qual-
ity. mpDockQ and pDockQ estimate docking quality, with higher values reflecting better predictions. Num_intf_resi-
dues represents the number of residues involved in the interface. Polar (Ser, Thr, Asn, Gln, His and Tyr), Hydrophobic 
(Ala, Leu, Ile, Val, Phe, Trp, Cys, Met) and Charged (Asp, Glu, Lys, Arg) quantify specific types of interactions at the 
interface. contact_pairs were defined as the number of atomic contacts between the interface residues from the in-
teracting chains. sc represents the geometric shape complementarity of protein-protein interfaces, ranging between 
0 and 1, with sc=1 indicating that two proteins mesh precisely. hb and sb measure the number of hydrogen bonds 
and salt bridges, respectively. int_solv_en calculates the energy difference between the bound and unbound mono-
mers caused by the solvation effect, and int_area represents the total interfacial area. p value measures interface 
specificity, with P=0.5 indicating an average interface, P>0.5 suggesting less hydrophobicity, and P<0.5 reflecting 
high hydrophobicity and interaction specificity.


