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Abstract: This study developed an attention-based multi-instance deep convolutional neural network (CRPNet) for
the early prediction of postoperative recurrence in clear cell renal cell carcinoma (ccRCC). The model was trained
on 183 whole slide images (WSIs) from ccRCC patients and validated on an internal cohort of 75 WSIs. Its prog-
nostic performance was evaluated using Kaplan-Meier analysis, AUC, accuracy, precision, recall, false positive/
negative rates (FPR/FNR), C-index, and hazard ratio (HR), and was compared against established tools including
the UISS, SSIGN, and Karakiewicz nomograms. Results demonstrated that CRPNet-stratified high-risk groups had
significantly poorer prognosis in both training and validation sets (P < 0.001), with consistency across subgroups
based on T-stage, WHO/ISUP grade, and necrosis. In the training cohort, CRPNet achieved an AUC of 0.994 (95%
Cl: 0.974-1.000), accuracy of 97.70%, precision/recall of 95.56%, FPR of 1.55%, and FNR of 4.45%. In the valida-
tion cohort, it maintained an AUC of 0.879 (95% Cl: 0.783-0.943), accuracy of 88.00%, precision of 85.71%, recall
of 63.16%, FPR of 0%, and FNR of 36.84%, outperforming all comparator models. CRPNet also yielded a superior
C-index compared to clinical parameters and traditional nomograms, and exhibited the highest HR (12.078, 95%
Cl: 1.611-90.539). In conclusion, CRPNet surpasses conventional prognostic models in recurrence prediction ac-
curacy, AUC, precision, C-index, and risk stratification, while demonstrating lower FPR and FNR, thereby offering
improved prognostication for metastatic ccRCC.
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Introduction succumbing to RCC-related causes [4].

Currently, postoperative recurrence detection

Renal cell carcinoma (RCC) is one of the most
common tumors in the urinary system [1] and
clear cell renal cell carcinoma (ccRCC) is the
most frequently encountered pathological sub-
type of RCC [2]. One thirds of patients diag-
nosed with ccRCC exhibit regional or distant
metastatic spread, and among patients with
localized ccRCC who underwent nephrectomy,
approximately one in four experienced recur-
rences at distant sites [3]. Despite significant
advancements in the systemic management of
recurrent and metastatic ccRCC over the past
two decades, the mortality rate remains unac-
ceptably high, with more than 179,000 patients

in ccRCC patients heavily relies on imaging
examinations, however, this approach lags.
Furthermore, there remains controversy regard-
ing which patients require postoperative adju-
vant therapy, which may lead to potential com-
plications. Therefore, the development of an
early warning model is essential for postopera-
tive precise classification of ccRCC patients,
especially for those with locally advanced
tumors, facilitating individualized treatment
strategies and follow-up protocols [5]. Although
imaging examinations are non-invasive and
simple, the high cost and radiation risk of
enhanced CT and bone scintigraphy limit their
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clinical utility during the frequent postoperative
follow-up [6, 7]. Currently, there is a lack of
effective predictive model to determine the risk
of postoperative recurrence in patients with
ccRCC.

In recent years, the development of artificial
intelligence technology has facilitated the
emergence of numerous deep learning-based
pathomics studies, which involve utilizing artifi-
cial intelligence technology to extract imaging
features from hematoxylin-eosin (HE) staining
pathological images obtained after surgery and
employing deep learning models to analyze and
construct predictive models based on these
features [8-10]. Deep neural networks have the
ability to detect fine structures that are beyond
the naked eye of pathologists, discern even
subtle differences, and thereby improve the
accuracy of distinguishing patients with differ-
ent prognosis [11]. The application of deep
learning analysis to pathological sections has
been extended to a range of cancer types,
including breast cancer, colorectal cancer, lung
cancer, liver cancer, and prostate cancer. Deep
learning has rapidly advanced in clear cell renal
cell carcinoma (ccRCC) research, primarily
focusing on extracting prognostic information
from multi-source data that surpasses tradi-
tional pathological assessments. For instance,
Mahootiha et al. [12] developed a multimodal
deep learning method based on a 3D CNN
architecture, which showed promising results
in estimating the survival probability of renal
cell carcinoma patients using CT imaging and
clinical data. Kawahara et al. [13] correlated
imaging features with molecular information to
achieve non-invasive preoperative prediction of
two-year disease-free survival. Lu et al. [14]
reported an interpretable weakly supervised
deep learning method for data-efficient whole-
slide image (WSI) processing and learning,
applied to the subtyping of renal cell carcinoma
and non-small cell lung cancer as well as the
detection of lymph node metastasis. This meth-
od outperformed standard weakly supervised
classification algorithms and demonstrated
applicability to independent validation cohorts,
smartphone microscopy, and varying tissue
content.

In this study, we analyzed the complete patho-

logical HE staining images of primary tumors
from 258 ccRCC patients, developing a multi-
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instance deep convolutional neural network
based on a multi-scale attention mechanism.
The network was then trained to predict the
postoperative recurrence status of ccRCC
patients. The effective predicting performance
of our pathomics signature model provides new
ideas for personalized treatment of ccRCC
patients in the future.

Methods
Workflow of the study

The process of model construction is shown in
Figure 1A. Pathological slices are collected
from all patients, diagnosed and confirmed
under a microscope, and then scanned into
digital slices to obtain whole slide imaging
(WSI).

A total of 258 patients with ccRCC are included
in this study. The pathological slices of each
patient are diagnosed and confirmed by three
pathologists, and the most typical WSIs are
selected for inclusion in the study. We randomly
split the dataset of WSIs from 258 patients into
a training cohort (183, 71%) and validation
cohort (75, 29%) (Figure 1B).

Patients and samples

The pathological specimens were collected
from 258 patients with renal cancer who under-
went surgical treatment in Changhai Hospital,
Naval Medical University from February 2013
to August 2021. All the patients were diag-
nosed with ccRCC postoperatively. All slides
are digitally scanned using the Hamamatsu
Nano-zoomer S60 scanner to produce WSI in
our study, as per the protocol described. The
labels for WSIs are derived from pathological
reports and postoperative follow-ups, and cat-
egorized as “recurrence” or “non-recurrence”.
Each case of ccRCC is accompanied by a repre-
sentative hematoxylin and eosin (HE)-stained
digital slide in the Nuclear Digital Pathology
Imaging (NDPI) format. These slides encom-
pass both the ccRCC tissue and the adjacent
normal kidney tissue for comparative analysis.
All the 258 patients were segregated into a
training cohort, comprising 183 patients, and a
validation cohort, comprising 75 patients. The
inclusion criteria for the two cohorts are delin-
eated as follows: patients who have undergone
surgical resection but have not received antitu-
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Figure 1. Overall flow chart of the study. (A) The process of model construction, (B) Patient cohorts grouping, (C)
Training process of a multi-instance deep neural network (CRPNet) based on a multi-scale attention mechanism.

mor therapy; patients with a postoperative
pathological diagnosis of ccRCC; patients with-
out distant metastasis at the time of surgery;
patients with available follow-up data; patients
with available formalin-fixed paraffin-embed-
ded tissue sections; and patients with a clinical
focus on postoperative recurrence. The proto-
col for this investigation was granted approval
by the Ethics Committee of Changhai Hospital
(No. CHEC2021-275), and each participant pro-
vided documented, informed consent. Conduct
of the study conformed strictly to the ethical
tenets enshrined within the Declaration of
Helsinki.

The core of this study established an integra-
tive pathomics signature via deep learning,
which serves as a strong predictor (P = 1).
Based on the significant predictive signal
observed in the training set (Cox-Snell R? =
0.57), calculations indicate that only approxi-
mately 10 samples are required to robustly fit
this signature while preventing overfitting
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(shrinkage factor S > 0.9). Even under the con-
ventional ‘10 Events Per Variable (EPV)’ rule,
only 39 samples are needed. Our current train-
ing cohort of 174 samples exceeds this mini-
mum requirement by a factor of 4 to 17. The
selection of representative FFPE tissue blocks
and corresponding HE stained slides for digital
scanning was performed by an experienced
uropathologist (10 years of experience) who
was blinded to the clinical outcomes of the
patients. Further calculations demonstrate that
the current sample size (N = 174, Events = 45)
is sufficient to support the simultaneous mod-
eling of up to 17 independent predictors while
still maintaining a shrinkage factor (S) > 0.9.
This indicates that the sample size is adequate
not only for validating the single pathomics sig-
nature but also for constructing a multifactorial
model that incorporates clinical variables.
Power analysis shows that for a strong predic-
tor similar to the pathomics signature in this
study (0dds Ratio, OR > 2.0), the current sam-
ple size achieves a high statistical power of
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97.95% (alpha = 0.05), significantly exceeding
the conventional standard of 80%.

Data collection and comparative analysis

Retrieval of clinical data from patients’ records
encompasses age, sex, body mass index (BMlI),
annotations regarding tobacco and alcohol use
history, along with concomitant medical condi-
tions including hypertension, diabetes mellitus,
and coronary artery disease. Additionally, a
comprehensive pathological profile was com-
piled which detailed tumor dimensions, T stag-
ing, WHO/ISUP histological grade, and particu-
lars of tumor necrosis. For each patient, the
SSIGN (Staging, Size, Grade, Necrosis) score,
UISS (University of California, Los Angeles
Integrated Staging System), and Karakiewicz
nomogram were computed utilizing methodolo-
gies from extant scholarly inquiries [15-17].

Convolutional neural networks to predict recur-
rence outcome

The network’s testing phase abstains from the
use of data augmentation, directly outputting
the risk classification for each test WSI. Our
computational framework is powered by Python
(Version 3.7) and the PyTorch deep learning
platform (Version 1.7.1), ensuring a robust and
efficient training regimen. The model benefits
from the Adam optimizer and cross-entropy
loss, with a total of 300 training iterations, a
learning rate of 1e-4, a weight decay coefficient
of 1e-5, and a batch size of 64. The hardware
setup for training includes the 11th Gen Intel(R)
Core (TM) i7-11700K CPU and an Nvidia 3090
GPU, ensuring high-performance computation
throughout the model development process.

Statistical analysis

Statistical analysis and chart creation are con-
ducted using SPSS 26.0 and GraphPad Prism
9.5 software. For measurement data, a test of
normal distribution is first performed. Data
that conformed to a normal distribution are
expressed as “mean + standard deviation”,
while data that do not conform to a normal dis-
tribution were expressed as “median * inter-
quartile range”. Unpaired t-tests are used to
compare differences between two groups. For
comparisons among multiple groups, different
statistical methods were selected based on
whether the data conformed to a normal
distribution.
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The predictive performance of the model is
evaluated separately for the validation cohort
and the validation cohort, including false posi-
tive rate, false negative rate, accuracy, preci-
sion, recall and Area Under the Curve (AUC) of
the Receiver Operating Characteristic (ROC).
Progression-free survival (PFS) curves are esti-
mated using the Kaplan Meier method (survival
and survminer R packages). We use the concor-
dance index (C-index) to evaluate the predictive
performance of our model, and compare it with
clinical baseline data and other scoring models
through hazard ratios (HRs). The p value < 0.05
is considered to indicate a statistically signifi-
cant difference.

Results
Dataset overview

In the training cohort, the highest proportion of
patients with recurrence was observed in T3a
(n=12)and T1lb (n = 14)subgroups. Conversely,
in the non-recurrence group, T1la accounted for
the highest proportion with 100 patients, and
the disparity between the two groups was sta-
tistically significant (P < 0.001). Similarly, there
were also notable differences in tumor diame-
ter and N stage between the two groups (P <
0.001). Interestingly, although disparities in
WHO/ISUP grading system were observed
between the recurrence and non-recurrence
groups, grade Il was the most prevalent in both
groups. However, in the validation cohort, there
was no statistically significant difference in N
stage (P = 1.000) and WHO/ISUP grade (P =
0.069) between the two patient groups.
Nevertheless, there were still notable statisti-
cal differences in tumor diameter and T stage
(both P < 0.001). More baseline characteristics
of patients in the two datasets are presented in

Supplementary Tables 1 and 2.

Model construction

For the preprocessing of the WSI dataset, we
cropped each WSI at 20x magnification into
multiple small image patches using fixed-size
windows of 224x224 pixels without overlap. To
remove regions that contained little to no tis-
sue information, we calculated the image entro-
py for each patch and discarded those with an
entropy value less than 5, as such patches typi-
cally correspond to slide background or large
blank areas.
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Subsequently, we incorporat the WSIs from the
training cohort into the neural network training
and construct the model, naming it Changhai
RCC Recurrence Prediction Net (CRPNet). In
this study, we introduce CRPNet, an advanced
architecture based on the principles of atten-
tion mechanism-driven multi-instance deep
convolutional neural networks, specifically
designed to enhance the accuracy of prognos-
tic predictions. The methodology underpinning
the network’s training is depicted in Figure 1C,
illustrating a structured approach to model
development. Initially, the process involves cre-
ating a ‘bag’ comprising a collection of patches
extracted from a single WSI. Prior to each train-
ing iteration, these patches undergo a series of
randomized data augmentation techniques,
including the introduction of random noise,
rotation, and color adjustments, to enhance
the model’'s robustness and ability to
generalize.

Feature extraction is conducted using a ResNet
network pre-trained on the ImageNet dataset,
serving as the primary mechanism for analyz-
ing each patch. This step is critical for capturing
the nuanced features within each patch, which
are pivotal for accurate prognostic assess-
ments. Following feature extraction, an atten-
tion module is employed to assign learnable
weights to each patch’s features, culminating
in a comprehensive feature representation of
the bag through an attention pooling process.
The attention module innovatively reduces the
dimensionality of each feature vector to 128
using a linear fully connected layer, followed by
the application of a pixel-level hyperbolic tan-
gent function (tanh(.)), normalizing the outputs
between -1 and 1. The process is further refined
by multiplying the output with another linear
layer, and computing the attention weights for
each patch through a softmax function. The
culmination of this process is the generation of
bag-level features through the inner product of
the feature matrix of image patches with the
corresponding attention weight matrix.

To predict the prognostic risk associated with
each WSI, we construct a bag-level fully con-
nected network (Multilayer Perceptron, MLP),
which acts as a sophisticated classifier. This
model innovatively translates the continuous
variable of survival times into a binary classifi-
cation of high and low-risk groups, enabling a
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streamlined training process via the cross-
entropy loss function. Optimization of the net-
work parameters is achieved through the appli-
cation of stochastic gradient descent.

Predictive performance of CRPNet

The predictive performance of the CRPNet
model in both training cohort and validation
cohort for predicting the recurrence status of
ccRCC was evaluated using metrics such as
AUC, accuracy, precision, recall, false positive
rate (FPR), and false negative rate (FNR).

The AUCs of CRPNet model are 0.994 (95% Cl
0.974-1.000) and 0.879 (95% CI 0.783-0.943)
in training and validation cohorts, respectively.
The accuracy (97.70% vs. 85.71%), precision
(95.56% vs. 85.71%), and FPR (1.55% vs.
3.57%) are consistent between training and
validation cohorts. However, compared with
training cohort, the recall decreases (95.56%
vs. 63.16%) while the FNR increases (4.45% vs.
36.84%) in validation cohort.

Subsequently, we conduct survival analysis in
both training and validation cohort using
CRPNet, as well as T stage, WHO/ISUP grade,
and necrosis status, constructing PFS curves
for each model. Based on the median score of
CRPNet, we divide all the patients into high-risk
and low-risk groups. In the training cohort,
high-risk group has shorter PFS than low-risk
group. After stratifying patients based on char-
acteristics such as T1-2 stage, T3-4 stage,
WHO/ISUP I-1l grade, WHO/ISUP 1lI-IV grade,
and necrosis, CRPNet was still able to predict
survival outcomes (Figure 2). Furthermore, the
same results could be seen in the validation
cohort (Figure 3).

Besides, we also evaluate the performances of
several commonly used prognostic models
including UISS, SSIGN score and Karakiewicz
nomogram, and compare them with the
CRPNet. As Table 1 shows, the AUC (0.879,
95% CI 0.783-0.943), accuracy (88.00%), pre-
cision (85.71%), recall (63.16%), FPR (3.57%),
and FNR (36.84%) of CRPNet model significant-
ly outperform other prognostic models. The
aforementioned performance indicators dem-
onstrate that the CRPNet model, based on
pathological slices of primary lesions stained
with HE, can accurately predict the postopera-
tive recurrence risk of ccRCC patients. However,
the Karakiewicz nomogram demonstrated the
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Figure 2. Kaplan-Meier survival analysis of recurrence events in training co-
hort using the CRPNet-predicted risk value. The CRPNet grade was calculated
by dividing the CRPNet-predicted risk value into two groups using median
of predicted risk value. A. ROC curve of the training cohort for CRPNet. B.
Survival analysis of Lowrisk group and highrisk group. C. Survival analysis of
pathological T1-2 stage and pathological T3-4 stage subgroup. D. Survival
analysis of WHO I-Il stage and WHO IlI-IV subgroup. E. Survival analysis of no-

necrosis and necrosis subgroup.

highest AUC (0.786, 95% CI 0.676-0.872)
among the three commonly used prognostic
models, with higher accuracy (82.67%) and pre-

178

nomogram.

cision (75.00%) compared to
the other two models. Fur-
thermore, it exhibited the
lowest FPR (5.36%), and its
FNR (52.63%) was only sec-
ond to SSIGN score. Surpri-
singly, in the validation co-
hort, we observed a FNR of
100% for UISS, and a FPR of
0%, suggesting that UISS de-
monstrates outstanding pre-
dictive capability for positive
cases.

In addition, we perform con-
fusion matrix to further vali-
date the predictive perfor-
mance of CRPNet (Figure 4A,
4B). In the training cohort,
CRPNet exhibited a notably
low number of cases where
it predicted a negative out-
come but the actual result
was positive, with only 3 in-
stances. This is in stark con-
trast to UISS, SSIGN score,
and Karakiewicz nomogram,
which had 24, 18, and 22
such cases, respectively. On
the other hand, CRPNet had
only 2 cases where it predict-
ed a positive outcome but
the actual result was nega-
tive, a performance that was
comparable to UISS, SSIGN
score, and Karakiewicz no-
mogram. In the validation co-
hort, CRPNet again showed
fewer cases of incorrect pre-
dictions than UISS, SSIGN
score, and Karakiewicz no-
mogram, with only 7 positive
instances being predicted a
negative outcome. Similarly,
there was 2 negative cases
which CRPNet predicted a
positive outcome, similar to
the performance of other pre-
diction models. Overall, CRP-
Net demonstrated a compa-

rable FPR while a significantly lower FNR
than UISS, SSIGN score, and Karakiewicz
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Figure 3. Kaplan-Meier survival analysis of recurrence events in validation co-
hort using the CRPNet-predicted risk value. The CRPNet grade was calculated
by dividing the CRPNet-predicted risk value into two groups using median
of predicted risk value. A. ROC curve of the validation cohort for CRPNet. B.
Survival analysis of Lowrisk group and highrisk group. C. Survival analysis of
pathological T1-2 stage and pathological T3-4 stage subgroup. D. Survival
analysis of WHO I-Il stage and WHO III-IV subgroup. E. Survival analysis of no-
necrosis and necrosis subgroup.

The C-index, a key indica-
tor for assessing predictive
accuracy of prediction mod-
els, enables researchers to
comprehend the model per-
formance in guiding clinical
decision-making. Thus, we
conduct a C-index compari-
son for the T stage, WHO/
ISUP grade, necrosis status,
UISS, SSIGN score, Karakie-
wicz nomogram, and CRPNet
in both training and valida-
tion cohort (Figure 4C, 4D). In
the training cohort, CRPNet
exhibited the highest C-index
of 0.937 (95% Cl 0.926-
0.949), followed by SSIGN
score, T stage, Karakiewicz
nomogram, UISS, necrosis
status, and WHO/ISUP grade.
Similarly, in the validation
cohort, CRPNet demonstrat-
ed a C-index of 0.821 (95% ClI
0.775-0.867), followed by Ka-
rakiewicz nomogram, T stage,
SSIGN score, necrosis sta-
tus, WHO/ISUP grade, and
UISS. In summary, the C-
index of CRPNet is signifi-
cantly higher than that of T
stage, WHO/ISUP grading,
and other commonly used
prognostic models.

Subsequently, we calculate
the HR for T stage, WHO/
ISUP grade, age, gender, BMI,
UISS, SSIGN score, Karakie-
wicz nhomogram, hecrosis,
and CRPNet, and presented
them in a forest plot (Figure
4E). As shown in figure, the
HRs of T stage (HR 9.170,
95% Cl 2.929-28.711), WHO/
ISUP grade (HR 3.513, 95%
Cl 1.410-8.750), SSIGN sco-
re (HR 3.689, 95% CI 1.327-
10.256), Karakiewicz nomo-
gram (HR 3.456, 95% CI
1.247-9.633), necrosis (HR
4.727,95% C1 1.891-11.820),
and CRPNet (HR 12.078,
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Table 1. Performance metrics of CRPNet, UISS, SSIGN score, and Karakiewicz nomogram in predicting recurrence events in training and valida-

tion cohorts

Validation cohort

Training cohort
CRPNet UISS SSIGN Karakiewicz CRPNet UISS SSIGN Karakiewicz
AUC (95% CI) 0.994 (0.974-1.000) 0.785 (0.716-0.843) 0.847 (0.784-0.897) 0.799 (0.731-0.856) 0.879 (0.783-0.943) 0.563 (0.444-0.678) 0.767 (0.655-0.857) 0.786 (0.676-0.872)
Accuracy 97.70% 83.91% 86.78% 84.48% 88.00% 74.67% 82.67% 82.67%
Precision 95.56% 84.00% 84.38% 82.14% 85.71% 0 71.43% 75.00%
Recall 95.56% 46.67% 60.00% 51.11% 63.16% 0 52.63% 47.37%
False-positive rate (FPR) 1.55% 3.10% 3.88% 3.88% 3.57% 0 7.14% 5.36%
False-negative rate (FNR) 4.45% 53.33% 40.00% 48.89% 36.84% 100.00% 47.37% 52.63%
A Training Cohort B Validation Cohort
CRPNet on training cohort UISS on training cohort CRPNet on validation cohort UISS on validation cohort
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Figure 4. Comparison of CRPNet performance between the other prognostic parameters and models. (A, B) Confusion matrices of CRPNet, UISS, SSIGN score, and
Karakiewicz nomogram for recurrence events in training and validation cohorts, (C, D) The C-index of various prognostic parameters with CRPNet-predicted risk
value for ccRCC recurrence in training (D) and validation cohort (C), (E) Log hazard ratio (HR) of various prognostic parameters with CRPNet-predicted risk value in
relation to recurrence events in validation cohort.
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Figure 5. Correlation analysis of CRPNet with WHO/ISUP grade, T stage, and tumor diameter. A. Correlation analysis
in the training cohort. B. Correlation analysis in the validation cohort.

95% Cl 1.611-90.539) are statistically signifi-
cant. Additionally, the CRPNet achieved the
highest HR, which showed that it better reflect-
ed each patient’'s occurrence probability of
recurrence event compared with the other
prognostic parameters.

Pattern analysis of ccRCC recurrence status

We performed correlation analysis between the
key deep learning pathomics signature (CRPNet
score) and established clinicopathological fac-
tors (including WHO/ISUP grade, T stage and
tumor diameter). The results are presented in
Figure 5. We found that CRPNet showed signifi-
cant but moderate correlations with these fac-
tors, confirming it captures related yet distinct
information. Specifically, in the training cohort,
the CRPNet score showed positive correlations
with the WHO/ISUP grade, T stage, and tumor
diameter of ccRCC, suggesting that CRPNet
may have captured these established high-risk
factors. Similarly, in the valiadation cohort, the
CRPNet score was positively correlated with T
stage and tumor diameter, while its correlation
with WHO/ISUP grade, although positive, was
not statistically significant, which is likely attrib-
utable to the smaller sample size of the valida-
tion cohort. Therefore, we conducted a detailed
slide review of the HE images from both cohorts
for further analysis.
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In the light microscope, the tumor cells of
ccRCC are arranged in compact nests, sheets,
alveolar, or acinar structures. In addition, those
cells show rounded, polygonal and nucleus
round or oval. We checked whether CRPNet
reflected the local features related to prognosis
by checking the superpatches in the high and
low score groups. In the subgroups with low
CRPNet scores, cells often show a low-grade
morphology (Figure 6A, 6B). Tumor cells have
clear cytoplasm due to loss of cytoplasmic lipid
and glycogen during tissue processing and
slide preparation. However, in the subgroups
with high CRPNet scores, cells acquire granular
eosinophilic cytoplasm (Figure 6C-F). According
to the CRPNet, this is a similar local feature
shared by ccRCC patients with different prog-
noses. It is worth noting that, in the subgroup
with high CRPNet scores and recurrence, cells
show strongly eosinophilic and presented to be
long-spindle (Figure 6D-F). This group also
shows high degree of atypia, and poorly differ-
entiated tumors.

Discussion

RCC outcomes, treatment options, and surveil-
lance regimens are highly dependent upon
accurate staging, including the determination
of nuclear grade and histologic subtype [18].
Other prognostic models for predicting RCC
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Low CRPNet score

High CRPNet score

group patches

Figure 6. Visualization of high- and low-risk pathological patterns suggestive of recurrence (20x). (A, B) Clear cell
renal cell carcinoma with low Al scores, (C) Clear cell renal cell carcinoma with high Al scores but without recurrence,
(D-F) Clear cell renal cell carcinoma with high Al scores and recurrence.

recurrence after surgery such as UISS, SSIGN
score, Leibovich, which also include nuclear
grade as one parameter. However, the histo-
pathologic analysis of RCC is subject to the
poor interobserver reproducibility [19].

With the development of artificial intelligence,
deep learning techniques have been intended
to be applied in the analysis of pathological
images. The benefit of deep learning in
pathomics lies in its capacity to reveal nuanced
and subtle evidence that may be easily over-
looked by pathologists when examining sam-
ples with the naked eye [20]. Therefore, the
introduction of deep learning technology to
improve the accuracy and efficiency of patho-
logical diagnosis has become an important
research direction. Deep learning-based
pathomics is capable of providing multi-param-
eter morphological information, playing an
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increasingly significant role in precision medi-
cine [21]. Furthermore, deep learning algo-
rithms can automatically extract complex fea-
tures from images, reducing the influence of
human factors and enhancing the accuracy
and efficiency of diagnosis [22]. By automating
the analysis of pathological images, deep learn-
ing algorithms can alleviate the workload of
doctors, enabling them to focus more on com-
plex cases and clinical decision-making [23].

Existing machine learning models related to
pathomics have found numerous applications
in urological tumors. Wessels et al. [24] applied
convolutional neural network to predict the
lymph node involvement in prostate cancer
WSIs. Gao et al. [25] reported a deep learning-
based pathological prediction of lymph node
metastasis for patient with RCC from primary
WSIs. Chen et al. [26] reported a deep learning-
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based on multi-model (WSIs, CT images, and
clinical data) prediction for disease-free surviv-
al status of patients with ccRCC after surgery.
Employing the rich information of WSIs, compu-
tational pathology provided insights into the
tumor environment and resulted in changes in
the histopathological analysis method [27].
Currently, the segmentation and classification
of the different cell types in a WSI are highly
accurate, and predicting the oncogenic variant,
gene expression or even origin of recurrence
and metastasis is possible [28, 29].

To demonstrate the advantages of CRPNet’s
predictive performance across dimensions
such as model architecture, sample size, pre-
dictive metrics, and clinical application scenar-
ios compared to similar studies, we selected
several studies of the same type for compari-
son. He et al. [30] designed and validated a
prediction model that employs CT radiomics
and a deep learning approach to predict syn-
chronous distant metastasis in ccRCC.
Different from our study, they utilized CT imag-
ing data rather than pathological images, and
after identifying radiomic features, they applied
LASSO regression to select predictive features
before model construction - a methodological
approach fundamentally different from our
deep learning framework. Furthermore, their
model achieved an AUC of 0.863, whereas
CRPNet reached 0.879, indicating that the
model developed in this study possesses supe-
rior predictive performance. Additionally, Gao
et al. [31] obtained WSIs from formalin-fixed
and paraffin-embedded tissues across three
cohorts - Shanghai General Hospital (SGH), the
Clinical Proteomic Tumor Analysis Consortium
(CPTAC), and The Cancer Genome Atlas (TCGA)
- as well as frozen-section WSIs from the TCGA
dataset. Based on these WSils, they developed
a deep learning-based strategy for predicting
lymph node metastasis using a cluster-con-
strained attention-based multiple instance
learning method and validated it across the
three cohorts. However, the AUCs for lymph
node metastasis prediction performance in the
TCGA, SGH, and CPTAC cohorts were 0.836,
0.865, and 0.812, respectively, all of which are
lower than CRPNet’s AUC of 0.879.

To summarize, the CRPNet model constructed
in this study is specifically designed for postop-
erative recurrence prediction, enabling it to
directly support clinical decision-making. It
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employs a multi-scale regional feature aggrega-
tion strategy to simultaneously capture local
cellular characteristics and overall architectur-
al patterns, integrating these features into a
clinically interpretable predictive nomogram.
We believe these attributes form the corner-
stone of the model’s core competitiveness and
translational potential. However, in comparison
with similar studies, the framework used in this
research is relatively conventional, the sample
size is limited, and an independent external
validation cohort is lacking. Therefore, further
validation with an expanded sample size
remains a necessary next step.

Our deep learning model can not only accurate-
ly predict the postoperative recurrence status
of ccRCC patients based on HE-stained patho-
logical slides of the primary tumor, but also pro-
vide pathologists with more definitive interpre-
table pathological patterns. In our research,
through the adaptation of traditional survival
analysis, deep learning-based pathology ex-
tracted the histopathological features including
strongly eosinophilic and long-spindle, but not
granular eosinophilic cytoplasm, to be recur-
rence risk-related. It allowed pathologists to
review these histopathological markers associ-
ated with prognosis. Several other histological
features have shown prognostic importance.
Sarcomatous degeneration, present in less
than 5% of ccRCC cases, is characterized by
spindled elements and automatically classifies
the tumor as nuclear grade 4 [32]. The reported
five-year survival rate of those with and without
sarcomatoid change was 22% and 79%, respec-
tively [33]. Tumor necrosis is another histologi-
cal feature that affects prognosis. In addition,
the tumor necrosis was another histological
feature that affects prognosis and associated
with a four to five-fold increased risk of death
among ccRCC patients [34]. In this study, we
performed Cox regression analysis on most
established factors that may influence postop-
erative metastasis in ccRCC. The results
showed that CRPNet exhibited the highest haz-
ard ratio, surpassing currently widely recog-
nized predictive factors such as T stage, WHO/
ISUP grade, UISS, SSIGN, and the Karakiewicz
nomogram. This indicates that CRPNet incorpo-
rates the strengths of these predictive models
and integrates them. However, this also sug-
gests that in practice, constructing a model
using a multimodal approach may yield even
better predictive performance, which repre-
sents a direction for future research.

Am J Cancer Res 2026;16(1):173-187



Deep learning pathomics for ccRCC recurrence

Certainly, this study has some limitations. First,
there were large differences in staining and
scan quality between slices, which might affect
the performance of our pathomics signature
model. Second, the study solely focused on
pathomics and did not integrate features from
genetic sequencing or clinical data. As certain
information that cannot be inferred from tissue
images such as tumor size, the performance of
CRPNet would be limited. While pathological
slide selection was performed by a blinded
pathologist, the deep learning model develop-
ment was not conducted in a fully blinded fash-
ion to the dataset partition. Although we
employed rigorous cross-validation to mitigate
overfitting, future prospective studies with a
completely blinded design from slide selection
to model evaluation would further strengthen
the evidence. Last, as a retrospective study,
the constructed model still requires prospec-
tive validation across multiple centers.

Conclusion

By analyzing the complete WSIs of primary
tumors from 258 ccRCC patients, we devel-
oped a multi-instance deep convolutional neu-
ral network and trained it to predict the postop-
erative recurrence status of ccRCC patients.
The morphologies of strongly eosinophilic and
long-spindle, which were related to high CRPNet
score and postoperative recurrence, would
assist pathologists in classifying patients.
The effective predicting performance of our
pathomics signature model CRPNet provides
strong support for precision medicine and per-
sonalized treatment of ccRCC patients.
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Supplementary Table 1. Baseline of Training cohort

Characteristics Non-metastasis Metastasis P value
n 135 48
Age, mean * sd 61.37 £ 13.335 64.042 £ 9.0834 0.128
Gender, n (%) 0.061
Male 97 (53%) 41 (22.4%)
Female 38 (20.8%) 7 (3.8%)
BMI (kg/m?), median (IQR) 24,221 (22.258, 26.724) 24.433 (22.885, 26.618) 0.980
Smoking History, n (%) 1.000
NO 122 (66.7%) 43 (23.5%)
YES 13 (7.1%) 5 (2.7%)
Drinking History, n (%) 0.928
NO 127 (69.4%) 46 (25.1%)
YES 8 (4.4%) 2 (1.1%)
Hypertension, n (%) 0.177
NO 72 (39.3%) 31 (16.9%)
YES 63 (34.4%) 17 (9.3%)
Coronary Heart Disease, n (%) 0.145
NO 132 (72.1%) 44 (24%)
YES 3 (1.6%) 4 (2.2%)
Diabetes, n (%) 0.294
NO 118 (64.5%) 39 (21.3%)
YES 17 (9.3%) 9 (4.9%)
Pathological T stage, n (%) <0.001
Tla 100 (54.6%) 11 (6%)
T2a 3(1.6%) 4 (2.2%)
T3a 3(1.6%) 12 (6.6%)
T1b 27 (14.8%) 14 (7.7%)
T4 1 (0.5%) 2 (1.1%)
T2b 1 (0.5%) 2 (1.1%)
T3c 0 (0%) 1 (0.5%)
T3b 0 (0%) 2 (1.1%)
Pathological N stage, n (%) <0.001
NO 135 (73.8%) 42 (23%)
N1 0 (0%) 6 (3.3%)
Tumor side, n (%) 0.350
Left 71 (38.8%) 29 (15.8%)
Right 64 (35%) 19 (10.4%)
Tumor diameter (mm), median (IQR) 30 (23.5, 40) 60 (35, 71.25) <0.001
<0.001

WHO/ISUP stage, n (%)

Stage Il 113 (61.7%) 27 (14.8%)
Stage | 3 (1.6%) 1 (0.5%)
Stage llI 14 (7.7%) 12 (6.6%)
Stage IV 5 (2.7%) 8 (4.4%)
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Supplementary Table 2. Baseline of Validation cohort

Characteristics Non-metastasis Metastasis P value
n 56 19
Age, mean * sd 59.036 + 11.954 59.053 + 5.2965 0.993
Gender, n (%) 0.388
Male 43 (57.3%) 17 (22.7%)
Female 13 (17.3%) 2 (2.7%)
BMI (kg/m?2), mean + sd 24.94 + 3.1616 24,514 + 2.6147 0.599
Smoking History, n (%) 0.205
NO 52 (69.3%) 15 (20%)
YES 4 (5.3%) 4 (5.3%)
Drinking History, n (%) 0.507
NO 52 (69.3%) 16 (21.3%)
YES 4 (5.3%) 3 (4%)
Hypertension, n (%) 0.318
YES 25 (33.3%) 6 (8%)
NO 31 (41.3%) 13 (17.3%)
Coronary Heart Disease, n (%) 0.253
NO 56 (74.7%) 18 (24%)
YES 0 (0%) 1(1.3%)
Diabetes, n (%) 1.000
NO 52 (69.3%) 18 (24%)
YES 4 (5.3%) 1 (1.3%)
Pathological T stage, n (%) <0.001
Tla 41 (54.7%) 5 (6.7%)
T1b 12 (16%) 6 (8%)
T2a 1 (1.3%) 2 (2.7%)
T3a 1(1.3%) 4 (5.3%)
T2b 1 (1.3%) 2 (2.7%)
Pathological N stage, n (%) 1.000
NO 55 (73.3%) 19 (25.3%)
N1 1 (1.3%) 0 (0%)
Tumor side, n (%) 0.318
Right 25 (33.3%) 11 (14.7%)
Left 31 (41.3%) 8 (10.7%)
Tumor diameter (mm), median (IQR) 32 (24.25, 45) 65 (45, 82.5) <0.001
WHO/ISUP stage, n (%) 0.069

Stage I 43 (57.3%) 10 (13.3%)
Stage IV 1(1.3%) 2 (2.7%)
Stage IIl 7 (9.3%) 6 (8%)
Stage | 5 (6.7%) 1(1.3%)




