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Abstract: This study developed an attention-based multi-instance deep convolutional neural network (CRPNet) for 
the early prediction of postoperative recurrence in clear cell renal cell carcinoma (ccRCC). The model was trained 
on 183 whole slide images (WSIs) from ccRCC patients and validated on an internal cohort of 75 WSIs. Its prog-
nostic performance was evaluated using Kaplan-Meier analysis, AUC, accuracy, precision, recall, false positive/
negative rates (FPR/FNR), C-index, and hazard ratio (HR), and was compared against established tools including 
the UISS, SSIGN, and Karakiewicz nomograms. Results demonstrated that CRPNet-stratified high-risk groups had 
significantly poorer prognosis in both training and validation sets (P < 0.001), with consistency across subgroups 
based on T-stage, WHO/ISUP grade, and necrosis. In the training cohort, CRPNet achieved an AUC of 0.994 (95% 
CI: 0.974-1.000), accuracy of 97.70%, precision/recall of 95.56%, FPR of 1.55%, and FNR of 4.45%. In the valida-
tion cohort, it maintained an AUC of 0.879 (95% CI: 0.783-0.943), accuracy of 88.00%, precision of 85.71%, recall 
of 63.16%, FPR of 0%, and FNR of 36.84%, outperforming all comparator models. CRPNet also yielded a superior 
C-index compared to clinical parameters and traditional nomograms, and exhibited the highest HR (12.078, 95% 
CI: 1.611-90.539). In conclusion, CRPNet surpasses conventional prognostic models in recurrence prediction ac-
curacy, AUC, precision, C-index, and risk stratification, while demonstrating lower FPR and FNR, thereby offering 
improved prognostication for metastatic ccRCC.
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Introduction

Renal cell carcinoma (RCC) is one of the most 
common tumors in the urinary system [1] and 
clear cell renal cell carcinoma (ccRCC) is the 
most frequently encountered pathological sub-
type of RCC [2]. One thirds of patients diag-
nosed with ccRCC exhibit regional or distant 
metastatic spread, and among patients with 
localized ccRCC who underwent nephrectomy, 
approximately one in four experienced recur-
rences at distant sites [3]. Despite significant 
advancements in the systemic management of 
recurrent and metastatic ccRCC over the past 
two decades, the mortality rate remains unac-
ceptably high, with more than 179,000 patients 

succumbing to RCC-related causes [4]. 
Currently, postoperative recurrence detection 
in ccRCC patients heavily relies on imaging 
examinations, however, this approach lags. 
Furthermore, there remains controversy regard-
ing which patients require postoperative adju-
vant therapy, which may lead to potential com-
plications. Therefore, the development of an 
early warning model is essential for postopera-
tive precise classification of ccRCC patients, 
especially for those with locally advanced 
tumors, facilitating individualized treatment 
strategies and follow-up protocols [5]. Although 
imaging examinations are non-invasive and 
simple, the high cost and radiation risk of 
enhanced CT and bone scintigraphy limit their 
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clinical utility during the frequent postoperative 
follow-up [6, 7]. Currently, there is a lack of 
effective predictive model to determine the risk 
of postoperative recurrence in patients with 
ccRCC.

In recent years, the development of artificial 
intelligence technology has facilitated the 
emergence of numerous deep learning-based 
pathomics studies, which involve utilizing artifi-
cial intelligence technology to extract imaging 
features from hematoxylin-eosin (HE) staining 
pathological images obtained after surgery and 
employing deep learning models to analyze and 
construct predictive models based on these 
features [8-10]. Deep neural networks have the 
ability to detect fine structures that are beyond 
the naked eye of pathologists, discern even 
subtle differences, and thereby improve the 
accuracy of distinguishing patients with differ-
ent prognosis [11]. The application of deep 
learning analysis to pathological sections has 
been extended to a range of cancer types, 
including breast cancer, colorectal cancer, lung 
cancer, liver cancer, and prostate cancer. Deep 
learning has rapidly advanced in clear cell renal 
cell carcinoma (ccRCC) research, primarily 
focusing on extracting prognostic information 
from multi-source data that surpasses tradi-
tional pathological assessments. For instance, 
Mahootiha et al. [12] developed a multimodal 
deep learning method based on a 3D CNN 
architecture, which showed promising results 
in estimating the survival probability of renal 
cell carcinoma patients using CT imaging and 
clinical data. Kawahara et al. [13] correlated 
imaging features with molecular information to 
achieve non-invasive preoperative prediction of 
two-year disease-free survival. Lu et al. [14] 
reported an interpretable weakly supervised 
deep learning method for data-efficient whole-
slide image (WSI) processing and learning, 
applied to the subtyping of renal cell carcinoma 
and non-small cell lung cancer as well as the 
detection of lymph node metastasis. This meth-
od outperformed standard weakly supervised 
classification algorithms and demonstrated 
applicability to independent validation cohorts, 
smartphone microscopy, and varying tissue 
content.

In this study, we analyzed the complete patho-
logical HE staining images of primary tumors 
from 258 ccRCC patients, developing a multi-

instance deep convolutional neural network 
based on a multi-scale attention mechanism. 
The network was then trained to predict the 
postoperative recurrence status of ccRCC 
patients. The effective predicting performance 
of our pathomics signature model provides new 
ideas for personalized treatment of ccRCC 
patients in the future.

Methods

Workflow of the study

The process of model construction is shown in 
Figure 1A. Pathological slices are collected 
from all patients, diagnosed and confirmed 
under a microscope, and then scanned into 
digital slices to obtain whole slide imaging 
(WSI). 

A total of 258 patients with ccRCC are included 
in this study. The pathological slices of each 
patient are diagnosed and confirmed by three 
pathologists, and the most typical WSIs are 
selected for inclusion in the study. We randomly 
split the dataset of WSIs from 258 patients into 
a training cohort (183, 71%) and validation 
cohort (75, 29%) (Figure 1B).

Patients and samples

The pathological specimens were collected 
from 258 patients with renal cancer who under-
went surgical treatment in Changhai Hospital, 
Naval Medical University from February 2013 
to August 2021. All the patients were diag-
nosed with ccRCC postoperatively. All slides 
are digitally scanned using the Hamamatsu 
Nano-zoomer S60 scanner to produce WSI in 
our study, as per the protocol described. The 
labels for WSIs are derived from pathological 
reports and postoperative follow-ups, and cat-
egorized as “recurrence” or “non-recurrence”. 
Each case of ccRCC is accompanied by a repre-
sentative hematoxylin and eosin (HE)-stained 
digital slide in the Nuclear Digital Pathology 
Imaging (NDPI) format. These slides encom-
pass both the ccRCC tissue and the adjacent 
normal kidney tissue for comparative analysis. 
All the 258 patients were segregated into a 
training cohort, comprising 183 patients, and a 
validation cohort, comprising 75 patients. The 
inclusion criteria for the two cohorts are delin-
eated as follows: patients who have undergone 
surgical resection but have not received antitu-
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mor therapy; patients with a postoperative 
pathological diagnosis of ccRCC; patients with-
out distant metastasis at the time of surgery; 
patients with available follow-up data; patients 
with available formalin-fixed paraffin-embed-
ded tissue sections; and patients with a clinical 
focus on postoperative recurrence. The proto-
col for this investigation was granted approval 
by the Ethics Committee of Changhai Hospital 
(No. CHEC2021-275), and each participant pro-
vided documented, informed consent. Conduct 
of the study conformed strictly to the ethical 
tenets enshrined within the Declaration of 
Helsinki.

The core of this study established an integra-
tive pathomics signature via deep learning, 
which serves as a strong predictor (P = 1). 
Based on the significant predictive signal 
observed in the training set (Cox-Snell R2 = 
0.57), calculations indicate that only approxi-
mately 10 samples are required to robustly fit 
this signature while preventing overfitting 

(shrinkage factor S ≥ 0.9). Even under the con-
ventional ‘10 Events Per Variable (EPV)’ rule, 
only 39 samples are needed. Our current train-
ing cohort of 174 samples exceeds this mini-
mum requirement by a factor of 4 to 17. The 
selection of representative FFPE tissue blocks 
and corresponding HE stained slides for digital 
scanning was performed by an experienced 
uropathologist (10 years of experience) who 
was blinded to the clinical outcomes of the 
patients. Further calculations demonstrate that 
the current sample size (N = 174, Events = 45) 
is sufficient to support the simultaneous mod-
eling of up to 17 independent predictors while 
still maintaining a shrinkage factor (S) ≥ 0.9. 
This indicates that the sample size is adequate 
not only for validating the single pathomics sig-
nature but also for constructing a multifactorial 
model that incorporates clinical variables. 
Power analysis shows that for a strong predic-
tor similar to the pathomics signature in this 
study (Odds Ratio, OR ≥ 2.0), the current sam-
ple size achieves a high statistical power of 

Figure 1. Overall flow chart of the study. (A) The process of model construction, (B) Patient cohorts grouping, (C) 
Training process of a multi-instance deep neural network (CRPNet) based on a multi-scale attention mechanism.
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97.95% (alpha = 0.05), significantly exceeding 
the conventional standard of 80%.

Data collection and comparative analysis

Retrieval of clinical data from patients’ records 
encompasses age, sex, body mass index (BMI), 
annotations regarding tobacco and alcohol use 
history, along with concomitant medical condi-
tions including hypertension, diabetes mellitus, 
and coronary artery disease. Additionally, a 
comprehensive pathological profile was com-
piled which detailed tumor dimensions, T stag-
ing, WHO/ISUP histological grade, and particu-
lars of tumor necrosis. For each patient, the 
SSIGN (Staging, Size, Grade, Necrosis) score, 
UISS (University of California, Los Angeles 
Integrated Staging System), and Karakiewicz 
nomogram were computed utilizing methodolo-
gies from extant scholarly inquiries [15-17].

Convolutional neural networks to predict recur-
rence outcome

The network’s testing phase abstains from the 
use of data augmentation, directly outputting 
the risk classification for each test WSI. Our 
computational framework is powered by Python 
(Version 3.7) and the PyTorch deep learning 
platform (Version 1.7.1), ensuring a robust and 
efficient training regimen. The model benefits 
from the Adam optimizer and cross-entropy 
loss, with a total of 300 training iterations, a 
learning rate of 1e-4, a weight decay coefficient 
of 1e-5, and a batch size of 64. The hardware 
setup for training includes the 11th Gen Intel(R) 
Core (TM) i7-11700K CPU and an Nvidia 3090 
GPU, ensuring high-performance computation 
throughout the model development process.

Statistical analysis

Statistical analysis and chart creation are con-
ducted using SPSS 26.0 and GraphPad Prism 
9.5 software. For measurement data, a test of 
normal distribution is first performed. Data  
that conformed to a normal distribution are 
expressed as “mean ± standard deviation”, 
while data that do not conform to a normal dis-
tribution were expressed as “median ± inter-
quartile range”. Unpaired t-tests are used to 
compare differences between two groups. For 
comparisons among multiple groups, different 
statistical methods were selected based on 
whether the data conformed to a normal 
distribution.

The predictive performance of the model is 
evaluated separately for the validation cohort 
and the validation cohort, including false posi-
tive rate, false negative rate, accuracy, preci-
sion, recall and Area Under the Curve (AUC) of 
the Receiver Operating Characteristic (ROC). 
Progression-free survival (PFS) curves are esti-
mated using the Kaplan Meier method (survival 
and survminer R packages). We use the concor-
dance index (C-index) to evaluate the predictive 
performance of our model, and compare it with 
clinical baseline data and other scoring models 
through hazard ratios (HRs). The p value < 0.05 
is considered to indicate a statistically signifi-
cant difference.

Results

Dataset overview

In the training cohort, the highest proportion of 
patients with recurrence was observed in T3a 
(n = 12) and T1b (n = 14) subgroups. Conversely, 
in the non-recurrence group, T1a accounted for 
the highest proportion with 100 patients, and 
the disparity between the two groups was sta-
tistically significant (P < 0.001). Similarly, there 
were also notable differences in tumor diame-
ter and N stage between the two groups (P < 
0.001). Interestingly, although disparities in 
WHO/ISUP grading system were observed 
between the recurrence and non-recurrence 
groups, grade II was the most prevalent in both 
groups. However, in the validation cohort, there 
was no statistically significant difference in N 
stage (P = 1.000) and WHO/ISUP grade (P = 
0.069) between the two patient groups. 
Nevertheless, there were still notable statisti-
cal differences in tumor diameter and T stage 
(both P < 0.001). More baseline characteristics 
of patients in the two datasets are presented in 
Supplementary Tables 1 and 2. 

Model construction

For the preprocessing of the WSI dataset, we 
cropped each WSI at 20× magnification into 
multiple small image patches using fixed-size 
windows of 224×224 pixels without overlap. To 
remove regions that contained little to no tis-
sue information, we calculated the image entro-
py for each patch and discarded those with an 
entropy value less than 5, as such patches typi-
cally correspond to slide background or large 
blank areas.
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Subsequently, we incorporat the WSIs from the 
training cohort into the neural network training 
and construct the model, naming it Changhai 
RCC Recurrence Prediction Net (CRPNet). In 
this study, we introduce CRPNet, an advanced 
architecture based on the principles of atten-
tion mechanism-driven multi-instance deep 
convolutional neural networks, specifically 
designed to enhance the accuracy of prognos-
tic predictions. The methodology underpinning 
the network’s training is depicted in Figure 1C, 
illustrating a structured approach to model 
development. Initially, the process involves cre-
ating a ‘bag’ comprising a collection of patches 
extracted from a single WSI. Prior to each train-
ing iteration, these patches undergo a series of 
randomized data augmentation techniques, 
including the introduction of random noise, 
rotation, and color adjustments, to enhance 
the model’s robustness and ability to 
generalize.

Feature extraction is conducted using a ResNet 
network pre-trained on the ImageNet dataset, 
serving as the primary mechanism for analyz-
ing each patch. This step is critical for capturing 
the nuanced features within each patch, which 
are pivotal for accurate prognostic assess-
ments. Following feature extraction, an atten-
tion module is employed to assign learnable 
weights to each patch’s features, culminating 
in a comprehensive feature representation of 
the bag through an attention pooling process. 
The attention module innovatively reduces the 
dimensionality of each feature vector to 128 
using a linear fully connected layer, followed by 
the application of a pixel-level hyperbolic tan-
gent function (tanh(.)), normalizing the outputs 
between -1 and 1. The process is further refined 
by multiplying the output with another linear 
layer, and computing the attention weights for 
each patch through a softmax function. The 
culmination of this process is the generation of 
bag-level features through the inner product of 
the feature matrix of image patches with the 
corresponding attention weight matrix.

To predict the prognostic risk associated with 
each WSI, we construct a bag-level fully con-
nected network (Multilayer Perceptron, MLP), 
which acts as a sophisticated classifier. This 
model innovatively translates the continuous 
variable of survival times into a binary classifi-
cation of high and low-risk groups, enabling a 

streamlined training process via the cross-
entropy loss function. Optimization of the net-
work parameters is achieved through the appli-
cation of stochastic gradient descent.

Predictive performance of CRPNet

The predictive performance of the CRPNet 
model in both training cohort and validation 
cohort for predicting the recurrence status of 
ccRCC was evaluated using metrics such as 
AUC, accuracy, precision, recall, false positive 
rate (FPR), and false negative rate (FNR).

The AUCs of CRPNet model are 0.994 (95% CI 
0.974-1.000) and 0.879 (95% CI 0.783-0.943) 
in training and validation cohorts, respectively. 
The accuracy (97.70% vs. 85.71%), precision 
(95.56% vs. 85.71%), and FPR (1.55% vs. 
3.57%) are consistent between training and 
validation cohorts. However, compared with 
training cohort, the recall decreases (95.56% 
vs. 63.16%) while the FNR increases (4.45% vs. 
36.84%) in validation cohort.

Subsequently, we conduct survival analysis in 
both training and validation cohort using 
CRPNet, as well as T stage, WHO/ISUP grade, 
and necrosis status, constructing PFS curves 
for each model. Based on the median score of 
CRPNet, we divide all the patients into high-risk 
and low-risk groups. In the training cohort, 
high-risk group has shorter PFS than low-risk 
group. After stratifying patients based on char-
acteristics such as T1-2 stage, T3-4 stage, 
WHO/ISUP I-II grade, WHO/ISUP III-IV grade, 
and necrosis, CRPNet was still able to predict 
survival outcomes (Figure 2). Furthermore, the 
same results could be seen in the validation 
cohort (Figure 3).

Besides, we also evaluate the performances of 
several commonly used prognostic models 
including UISS, SSIGN score and Karakiewicz 
nomogram, and compare them with the 
CRPNet. As Table 1 shows, the AUC (0.879, 
95% CI 0.783-0.943), accuracy (88.00%), pre-
cision (85.71%), recall (63.16%), FPR (3.57%), 
and FNR (36.84%) of CRPNet model significant-
ly outperform other prognostic models. The 
aforementioned performance indicators dem-
onstrate that the CRPNet model, based on 
pathological slices of primary lesions stained 
with HE, can accurately predict the postopera-
tive recurrence risk of ccRCC patients. However, 
the Karakiewicz nomogram demonstrated the 
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highest AUC (0.786, 95% CI 0.676-0.872) 
among the three commonly used prognostic 
models, with higher accuracy (82.67%) and pre-

rable FPR while a significantly lower FNR  
than UISS, SSIGN score, and Karakiewicz 
nomogram.

cision (75.00%) compared to 
the other two models. Fur- 
thermore, it exhibited the 
lowest FPR (5.36%), and its 
FNR (52.63%) was only sec-
ond to SSIGN score. Surpri- 
singly, in the validation co- 
hort, we observed a FNR of 
100% for UISS, and a FPR of 
0%, suggesting that UISS de- 
monstrates outstanding pre-
dictive capability for positive 
cases.

In addition, we perform con-
fusion matrix to further vali-
date the predictive perfor-
mance of CRPNet (Figure 4A, 
4B). In the training cohort, 
CRPNet exhibited a notably 
low number of cases where  
it predicted a negative out-
come but the actual result 
was positive, with only 3 in- 
stances. This is in stark con-
trast to UISS, SSIGN score, 
and Karakiewicz nomogram, 
which had 24, 18, and 22 
such cases, respectively. On 
the other hand, CRPNet had 
only 2 cases where it predict-
ed a positive outcome but 
the actual result was nega-
tive, a performance that was 
comparable to UISS, SSIGN 
score, and Karakiewicz no- 
mogram. In the validation co- 
hort, CRPNet again showed 
fewer cases of incorrect pre-
dictions than UISS, SSIGN 
score, and Karakiewicz no- 
mogram, with only 7 positive 
instances being predicted a 
negative outcome. Similarly, 
there was 2 negative cases 
which CRPNet predicted a 
positive outcome, similar to 
the performance of other pre- 
diction models. Overall, CRP- 
Net demonstrated a compa-

Figure 2. Kaplan-Meier survival analysis of recurrence events in training co-
hort using the CRPNet-predicted risk value. The CRPNet grade was calculated 
by dividing the CRPNet-predicted risk value into two groups using median 
of predicted risk value. A. ROC curve of the training cohort for CRPNet. B. 
Survival analysis of Lowrisk group and highrisk group. C. Survival analysis of 
pathological T1-2 stage and pathological T3-4 stage subgroup. D. Survival 
analysis of WHO I-II stage and WHO III-IV subgroup. E. Survival analysis of no-
necrosis and necrosis subgroup.
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The C-index, a key indica- 
tor for assessing predictive 
accuracy of prediction mod-
els, enables researchers to 
comprehend the model per-
formance in guiding clinical 
decision-making. Thus, we 
conduct a C-index compari-
son for the T stage, WHO/
ISUP grade, necrosis status, 
UISS, SSIGN score, Karakie- 
wicz nomogram, and CRPNet 
in both training and valida-
tion cohort (Figure 4C, 4D). In 
the training cohort, CRPNet 
exhibited the highest C-index 
of 0.937 (95% CI 0.926-
0.949), followed by SSIGN 
score, T stage, Karakiewicz 
nomogram, UISS, necrosis 
status, and WHO/ISUP grade. 
Similarly, in the validation 
cohort, CRPNet demonstrat-
ed a C-index of 0.821 (95% CI 
0.775-0.867), followed by Ka- 
rakiewicz nomogram, T stage, 
SSIGN score, necrosis sta-
tus, WHO/ISUP grade, and 
UISS. In summary, the C- 
index of CRPNet is signifi-
cantly higher than that of T 
stage, WHO/ISUP grading, 
and other commonly used 
prognostic models. 

Subsequently, we calculate 
the HR for T stage, WHO/
ISUP grade, age, gender, BMI, 
UISS, SSIGN score, Karakie- 
wicz nomogram, necrosis, 
and CRPNet, and presented 
them in a forest plot (Figure 
4E). As shown in figure, the 
HRs of T stage (HR 9.170, 
95% CI 2.929-28.711), WHO/
ISUP grade (HR 3.513, 95% 
CI 1.410-8.750), SSIGN sco- 
re (HR 3.689, 95% CI 1.327-
10.256), Karakiewicz nomo-
gram (HR 3.456, 95% CI 
1.247-9.633), necrosis (HR 
4.727, 95% CI 1.891-11.820), 
and CRPNet (HR 12.078, 

Figure 3. Kaplan-Meier survival analysis of recurrence events in validation co-
hort using the CRPNet-predicted risk value. The CRPNet grade was calculated 
by dividing the CRPNet-predicted risk value into two groups using median 
of predicted risk value. A. ROC curve of the validation cohort for CRPNet. B. 
Survival analysis of Lowrisk group and highrisk group. C. Survival analysis of 
pathological T1-2 stage and pathological T3-4 stage subgroup. D. Survival 
analysis of WHO I-II stage and WHO III-IV subgroup. E. Survival analysis of no-
necrosis and necrosis subgroup.
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Table 1. Performance metrics of CRPNet, UISS, SSIGN score, and Karakiewicz nomogram in predicting recurrence events in training and valida-
tion cohorts

Training cohort Validation cohort
CRPNet UISS SSIGN Karakiewicz CRPNet UISS SSIGN Karakiewicz

AUC (95% CI) 0.994 (0.974-1.000) 0.785 (0.716-0.843) 0.847 (0.784-0.897) 0.799 (0.731-0.856) 0.879 (0.783-0.943) 0.563 (0.444-0.678) 0.767 (0.655-0.857) 0.786 (0.676-0.872)

Accuracy 97.70% 83.91% 86.78% 84.48% 88.00% 74.67% 82.67% 82.67%

Precision 95.56% 84.00% 84.38% 82.14% 85.71% 0 71.43% 75.00%

Recall 95.56% 46.67% 60.00% 51.11% 63.16% 0 52.63% 47.37%

False-positive rate (FPR) 1.55% 3.10% 3.88% 3.88% 3.57% 0 7.14% 5.36%

False-negative rate (FNR) 4.45% 53.33% 40.00% 48.89% 36.84% 100.00% 47.37% 52.63%
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Figure 4. Comparison of CRPNet performance between the other prognostic parameters and models. (A, B) Confusion matrices of CRPNet, UISS, SSIGN score, and 
Karakiewicz nomogram for recurrence events in training and validation cohorts, (C, D) The C-index of various prognostic parameters with CRPNet-predicted risk 
value for ccRCC recurrence in training (D) and validation cohort (C), (E) Log hazard ratio (HR) of various prognostic parameters with CRPNet-predicted risk value in 
relation to recurrence events in validation cohort.
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95% CI 1.611-90.539) are statistically signifi-
cant. Additionally, the CRPNet achieved the 
highest HR, which showed that it better reflect-
ed each patient’s occurrence probability of 
recurrence event compared with the other 
prognostic parameters.

Pattern analysis of ccRCC recurrence status

We performed correlation analysis between the 
key deep learning pathomics signature (CRPNet 
score) and established clinicopathological fac-
tors (including WHO/ISUP grade, T stage and 
tumor diameter). The results are presented in 
Figure 5. We found that CRPNet showed signifi-
cant but moderate correlations with these fac-
tors, confirming it captures related yet distinct 
information. Specifically, in the training cohort, 
the CRPNet score showed positive correlations 
with the WHO/ISUP grade, T stage, and tumor 
diameter of ccRCC, suggesting that CRPNet 
may have captured these established high-risk 
factors. Similarly, in the valiadation cohort, the 
CRPNet score was positively correlated with T 
stage and tumor diameter, while its correlation 
with WHO/ISUP grade, although positive, was 
not statistically significant, which is likely attrib-
utable to the smaller sample size of the valida-
tion cohort. Therefore, we conducted a detailed 
slide review of the HE images from both cohorts 
for further analysis.

In the light microscope, the tumor cells of 
ccRCC are arranged in compact nests, sheets, 
alveolar, or acinar structures. In addition, those 
cells show rounded, polygonal and nucleus 
round or oval. We checked whether CRPNet 
reflected the local features related to prognosis 
by checking the superpatches in the high and 
low score groups. In the subgroups with low 
CRPNet scores, cells often show a low-grade 
morphology (Figure 6A, 6B). Tumor cells have 
clear cytoplasm due to loss of cytoplasmic lipid 
and glycogen during tissue processing and 
slide preparation. However, in the subgroups 
with high CRPNet scores, cells acquire granular 
eosinophilic cytoplasm (Figure 6C-F). According 
to the CRPNet, this is a similar local feature 
shared by ccRCC patients with different prog-
noses. It is worth noting that, in the subgroup 
with high CRPNet scores and recurrence, cells 
show strongly eosinophilic and presented to be 
long-spindle (Figure 6D-F). This group also 
shows high degree of atypia, and poorly differ-
entiated tumors.

Discussion

RCC outcomes, treatment options, and surveil-
lance regimens are highly dependent upon 
accurate staging, including the determination 
of nuclear grade and histologic subtype [18]. 
Other prognostic models for predicting RCC 

Figure 5. Correlation analysis of CRPNet with WHO/ISUP grade, T stage, and tumor diameter. A. Correlation analysis 
in the training cohort. B. Correlation analysis in the validation cohort.
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recurrence after surgery such as UISS, SSIGN 
score, Leibovich, which also include nuclear 
grade as one parameter. However, the histo-
pathologic analysis of RCC is subject to the 
poor interobserver reproducibility [19].

With the development of artificial intelligence, 
deep learning techniques have been intended 
to be applied in the analysis of pathological 
images. The benefit of deep learning in 
pathomics lies in its capacity to reveal nuanced 
and subtle evidence that may be easily over-
looked by pathologists when examining sam-
ples with the naked eye [20]. Therefore, the 
introduction of deep learning technology to 
improve the accuracy and efficiency of patho-
logical diagnosis has become an important 
research direction. Deep learning-based 
pathomics is capable of providing multi-param-
eter morphological information, playing an 

increasingly significant role in precision medi-
cine [21]. Furthermore, deep learning algo-
rithms can automatically extract complex fea-
tures from images, reducing the influence of 
human factors and enhancing the accuracy 
and efficiency of diagnosis [22]. By automating 
the analysis of pathological images, deep learn-
ing algorithms can alleviate the workload of 
doctors, enabling them to focus more on com-
plex cases and clinical decision-making [23]. 

Existing machine learning models related to 
pathomics have found numerous applications 
in urological tumors. Wessels et al. [24] applied 
convolutional neural network to predict the 
lymph node involvement in prostate cancer 
WSIs. Gao et al. [25] reported a deep learning-
based pathological prediction of lymph node 
metastasis for patient with RCC from primary 
WSIs. Chen et al. [26] reported a deep learning-

Figure 6. Visualization of high- and low-risk pathological patterns suggestive of recurrence (20×). (A, B) Clear cell 
renal cell carcinoma with low AI scores, (C) Clear cell renal cell carcinoma with high AI scores but without recurrence, 
(D-F) Clear cell renal cell carcinoma with high AI scores and recurrence.
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based on multi-model (WSIs, CT images, and 
clinical data) prediction for disease-free surviv-
al status of patients with ccRCC after surgery. 
Employing the rich information of WSIs, compu-
tational pathology provided insights into the 
tumor environment and resulted in changes in 
the histopathological analysis method [27]. 
Currently, the segmentation and classification 
of the different cell types in a WSI are highly 
accurate, and predicting the oncogenic variant, 
gene expression or even origin of recurrence 
and metastasis is possible [28, 29].

To demonstrate the advantages of CRPNet’s 
predictive performance across dimensions 
such as model architecture, sample size, pre-
dictive metrics, and clinical application scenar-
ios compared to similar studies, we selected 
several studies of the same type for compari-
son. He et al. [30] designed and validated a 
prediction model that employs CT radiomics 
and a deep learning approach to predict syn-
chronous distant metastasis in ccRCC. 
Different from our study, they utilized CT imag-
ing data rather than pathological images, and 
after identifying radiomic features, they applied 
LASSO regression to select predictive features 
before model construction - a methodological 
approach fundamentally different from our 
deep learning framework. Furthermore, their 
model achieved an AUC of 0.863, whereas 
CRPNet reached 0.879, indicating that the 
model developed in this study possesses supe-
rior predictive performance. Additionally, Gao 
et al. [31] obtained WSIs from formalin-fixed 
and paraffin-embedded tissues across three 
cohorts - Shanghai General Hospital (SGH), the 
Clinical Proteomic Tumor Analysis Consortium 
(CPTAC), and The Cancer Genome Atlas (TCGA) 
- as well as frozen-section WSIs from the TCGA 
dataset. Based on these WSIs, they developed 
a deep learning-based strategy for predicting 
lymph node metastasis using a cluster-con-
strained attention-based multiple instance 
learning method and validated it across the 
three cohorts. However, the AUCs for lymph 
node metastasis prediction performance in the 
TCGA, SGH, and CPTAC cohorts were 0.836, 
0.865, and 0.812, respectively, all of which are 
lower than CRPNet’s AUC of 0.879.

To summarize, the CRPNet model constructed 
in this study is specifically designed for postop-
erative recurrence prediction, enabling it to 
directly support clinical decision-making. It 

employs a multi-scale regional feature aggrega-
tion strategy to simultaneously capture local 
cellular characteristics and overall architectur-
al patterns, integrating these features into a 
clinically interpretable predictive nomogram. 
We believe these attributes form the corner-
stone of the model’s core competitiveness and 
translational potential. However, in comparison 
with similar studies, the framework used in this 
research is relatively conventional, the sample 
size is limited, and an independent external 
validation cohort is lacking. Therefore, further 
validation with an expanded sample size 
remains a necessary next step.

Our deep learning model can not only accurate-
ly predict the postoperative recurrence status 
of ccRCC patients based on HE-stained patho-
logical slides of the primary tumor, but also pro-
vide pathologists with more definitive interpre-
table pathological patterns. In our research, 
through the adaptation of traditional survival 
analysis, deep learning-based pathology ex- 
tracted the histopathological features including 
strongly eosinophilic and long-spindle, but not 
granular eosinophilic cytoplasm, to be recur-
rence risk-related. It allowed pathologists to 
review these histopathological markers associ-
ated with prognosis. Several other histological 
features have shown prognostic importance. 
Sarcomatous degeneration, present in less 
than 5% of ccRCC cases, is characterized by 
spindled elements and automatically classifies 
the tumor as nuclear grade 4 [32]. The reported 
five-year survival rate of those with and without 
sarcomatoid change was 22% and 79%, respec-
tively [33]. Tumor necrosis is another histologi-
cal feature that affects prognosis. In addition, 
the tumor necrosis was another histological 
feature that affects prognosis and associated 
with a four to five-fold increased risk of death 
among ccRCC patients [34]. In this study, we 
performed Cox regression analysis on most 
established factors that may influence postop-
erative metastasis in ccRCC. The results 
showed that CRPNet exhibited the highest haz-
ard ratio, surpassing currently widely recog-
nized predictive factors such as T stage, WHO/
ISUP grade, UISS, SSIGN, and the Karakiewicz 
nomogram. This indicates that CRPNet incorpo-
rates the strengths of these predictive models 
and integrates them. However, this also sug-
gests that in practice, constructing a model 
using a multimodal approach may yield even 
better predictive performance, which repre-
sents a direction for future research.
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Certainly, this study has some limitations. First, 
there were large differences in staining and 
scan quality between slices, which might affect 
the performance of our pathomics signature 
model. Second, the study solely focused on 
pathomics and did not integrate features from 
genetic sequencing or clinical data. As certain 
information that cannot be inferred from tissue 
images such as tumor size, the performance of 
CRPNet would be limited. While pathological 
slide selection was performed by a blinded 
pathologist, the deep learning model develop-
ment was not conducted in a fully blinded fash-
ion to the dataset partition. Although we 
employed rigorous cross-validation to mitigate 
overfitting, future prospective studies with a 
completely blinded design from slide selection 
to model evaluation would further strengthen 
the evidence. Last, as a retrospective study, 
the constructed model still requires prospec-
tive validation across multiple centers.

Conclusion

By analyzing the complete WSIs of primary 
tumors from 258 ccRCC patients, we devel-
oped a multi-instance deep convolutional neu-
ral network and trained it to predict the postop-
erative recurrence status of ccRCC patients. 
The morphologies of strongly eosinophilic and 
long-spindle, which were related to high CRPNet 
score and postoperative recurrence, would 
assist pathologists in classifying patients.  
The effective predicting performance of our 
pathomics signature model CRPNet provides 
strong support for precision medicine and per-
sonalized treatment of ccRCC patients.
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Supplementary Table 1. Baseline of Training cohort
Characteristics Non-metastasis Metastasis P value
n 135 48
Age, mean ± sd 61.37 ± 13.335 64.042 ± 9.0834 0.128
Gender, n (%) 0.061
    Male 97 (53%) 41 (22.4%)
    Female 38 (20.8%) 7 (3.8%)
BMI (kg/m2), median (IQR) 24.221 (22.258, 26.724) 24.433 (22.885, 26.618) 0.980
Smoking History, n (%) 1.000
    NO 122 (66.7%) 43 (23.5%)
    YES 13 (7.1%) 5 (2.7%)
Drinking History, n (%) 0.928
    NO 127 (69.4%) 46 (25.1%)
    YES 8 (4.4%) 2 (1.1%)
Hypertension, n (%) 0.177
    NO 72 (39.3%) 31 (16.9%)
    YES 63 (34.4%) 17 (9.3%)
Coronary Heart Disease, n (%) 0.145
    NO 132 (72.1%) 44 (24%)
    YES 3 (1.6%) 4 (2.2%)
Diabetes, n (%) 0.294
    NO 118 (64.5%) 39 (21.3%)
    YES 17 (9.3%) 9 (4.9%)
Pathological T stage, n (%) < 0.001
    T1a 100 (54.6%) 11 (6%)
    T2a 3 (1.6%) 4 (2.2%)
    T3a 3 (1.6%) 12 (6.6%)
    T1b 27 (14.8%) 14 (7.7%)
    T4 1 (0.5%) 2 (1.1%)
    T2b 1 (0.5%) 2 (1.1%)
    T3c 0 (0%) 1 (0.5%)
    T3b 0 (0%) 2 (1.1%)
Pathological N stage, n (%) < 0.001
    N0 135 (73.8%) 42 (23%)
    N1 0 (0%) 6 (3.3%)
Tumor side, n (%) 0.350
    Left 71 (38.8%) 29 (15.8%)
    Right 64 (35%) 19 (10.4%)
Tumor diameter (mm), median (IQR) 30 (23.5, 40) 60 (35, 71.25) < 0.001
WHO/ISUP stage, n (%) < 0.001
    Stage II 113 (61.7%) 27 (14.8%)
    Stage I 3 (1.6%) 1 (0.5%)
    Stage III 14 (7.7%) 12 (6.6%)
    Stage IV 5 (2.7%) 8 (4.4%)
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Supplementary Table 2. Baseline of Validation cohort
Characteristics Non-metastasis Metastasis P value
n 56 19
Age, mean ± sd 59.036 ± 11.954 59.053 ± 5.2965 0.993
Gender, n (%) 0.388
    Male 43 (57.3%) 17 (22.7%)
    Female 13 (17.3%) 2 (2.7%)
BMI (kg/m2), mean ± sd 24.94 ± 3.1616 24.514 ± 2.6147 0.599
Smoking History, n (%) 0.205
    NO 52 (69.3%) 15 (20%)
    YES 4 (5.3%) 4 (5.3%)
Drinking History, n (%) 0.507
    NO 52 (69.3%) 16 (21.3%)
    YES 4 (5.3%) 3 (4%)
Hypertension, n (%) 0.318
    YES 25 (33.3%) 6 (8%)
    NO 31 (41.3%) 13 (17.3%)
Coronary Heart Disease, n (%) 0.253
    NO 56 (74.7%) 18 (24%)
    YES 0 (0%) 1 (1.3%)
Diabetes, n (%) 1.000
    NO 52 (69.3%) 18 (24%)
    YES 4 (5.3%) 1 (1.3%)
Pathological T stage, n (%) < 0.001
    T1a 41 (54.7%) 5 (6.7%)
    T1b 12 (16%) 6 (8%)
    T2a 1 (1.3%) 2 (2.7%)
    T3a 1 (1.3%) 4 (5.3%)
    T2b 1 (1.3%) 2 (2.7%)
Pathological N stage, n (%) 1.000
    N0 55 (73.3%) 19 (25.3%)
    N1 1 (1.3%) 0 (0%)
Tumor side, n (%) 0.318
    Right 25 (33.3%) 11 (14.7%)
    Left 31 (41.3%) 8 (10.7%)
Tumor diameter (mm), median (IQR) 32 (24.25, 45) 65 (45, 82.5) < 0.001
WHO/ISUP stage, n (%) 0.069
    Stage II 43 (57.3%) 10 (13.3%)
    Stage IV 1 (1.3%) 2 (2.7%)
    Stage III 7 (9.3%) 6 (8%)
    Stage I 5 (6.7%) 1 (1.3%)


