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Abstract: The properties of stem cells can be induced during the epithelial to mesenchymal transition (EMT). The 
responsible molecular mechanisms, however, remain largely undefined. Here we report the identification of the 
microRNA-146a (miR-146a) as a common target of Krüppel-like factor 8 (KLF8) and TGF-β, both of which are known 
EMT-inducers. Upon KLF8 overexpression or TGF-β treatment, a significant portion of the MCF-10A cells gained stem 
cell traits as demonstrated by an increased expression of CD44high/CD24low, activity of aldehyde dehydrogenase 
(ALDH), mammosphere formation and chemoresistance. Along with this change, the expression of miR-146a was 
highly upregulated in the cells. Importantly, we found that miR-146a was aberrantly co-overexpressed with KLF8 in 
a panel of invasive human breast cancer cell lines. Ectopic expression of KLF8 failed to induce the stem cell traits 
in the MCF-10A cells if the cells were pre-treated with miR-146a inhibitor, whereas overexpression of miR-146a 
in the MCF-10A cells alone was sufficient to induce the stem cell traits. Co-staining and luciferase reporter analy-
ses indicated that miR-146a targets the 3’-UTR of the Notch signaling inhibitor NUMB for translational inhibition. 
Overexpression of KLF8 dramatically potentiated the tumorigenecity of MCF-10A cells expressing the H-Ras onco-
gene, which was accompanied by a loss of NUMB expression in the tumors. Taken together, this study identifies a 
novel role and mechanism for KLF8 in inducing pro-tumorigenic mammary stem cells via miR-146a potentially by 
activating Notch signaling. This mechanism could be exploited as a therapeutic target against drug resistance of 
breast cancer.
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Introduction

EMT plays a key role in normal embryogenesis 
and wound healing [1]. A large body of evidence 
suggests a role of aberrantly activated EMT in 
tumor initiation and malignant progression [1, 
2]. Cancer stem cells (CSCs) are a rare subpop-
ulation of cancer cells that are able to self-
renew, differentiate and are thought to be 
responsible for tumor initiation, growth, inva-
sion, metastasis, recurrence, and resistance to 
various therapies [3]. Recent studies have 
linked EMT to induction or maintenance of 
mammary stem cells associated with malig-
nant transformation [4, 5]. MicroRNAs (miRs), a 
family of short non-coding regulatory RNAs tar-
geting mRNA 3’-untranslated region (3’-UTR) to 
regulate gene expression, have recently 
emerged as critical regulators of tumor pro-

gression and CSCs and are thus tightly regulat-
ed in the cell [6, 7]. However, how miRs regulate 
EMT-associated CSC properties remain in its 
infancy of studies.

KLF8 is among a few master EMT-promoting 
transcriptional factors [8, 9]. In addition to 
repressing E-cadherin to promote EMT [9, 10], 
KLF8 also targets other important genes such 
as cyclin D1 [9, 11-14] and MMP9 [15] that are 
associated with tumor progression of various 
cancer types including breast cancer [8-10, 
15-25]. KLF8 has also been reported to regu-
late the transcription of KLF4 [13] and Wnt sig-
naling [26] both of which are important regula-
tors of stem cells and cancer [27, 28]. Given 
these important roles of KLF8 as a dual tran-
scription factor [13-15, 29, 30], its expression 
is tightly regulated in the cells at various levels 
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including transcription [14, 16, 31, 32], post-
translational modifications [11-13, 33] and 
subcellular localization [33, 34]. Unlike other 
regulators of EMT such as Snail, TWIST and 
ZEBs which target a consensus E-box(es) at 
their target gene promoters [1], KLF8 repre-
sents a distinct family of transcription factors 
(i.e., KLFs) and targets a consensus GT-box(es) 
to regulate its target gene expression [8]. This 
difference suggests that KLF8 may regulate a 
distinct group of genes or miRs associated with 
EMT or stem cells during cancer progression.

In this study, we sought to find out the first miRs 
that are regulated by KLF8 and identified miR-
146a as one of primary target miRs of KLF8 
that links mammary stem cell induction to 
oncogenic transformation.

Material and methods

Cell culture, reagents and plasmid construc-
tion

MCF-10A, MCF-7, T47D, MDA-MB-231, Hs578T 
and BT-549 cell lines [9, 17] and the MCF-10A 
line that expresses inducible KLF8 (10A-iK8) 
and the MDA-MB-231 line that expresses 
inducible KLF8 short hairpin RNA (231-K8ikd) 
[15, 35] were described previously. The overex-
pression or knockdown of KLF8 was induced by 
doxycycline included in the culture medium. 
The Cy3 dye-labeled negative control miR inhib-
itor and miR-146a inhibitor were purchased 
from Dharmacon (Lafayette, CO, USA). Their 
transfection was done using Oligofectamine 
(Invitrogen, Grand Island, NY, USA). To construct 
pIS1-NUMB-3’-UTR luciferase reporter, we 
amplified the NUMB 3’-UTR fragment (nucleo-
tides 3-1253) by RT-PCR and ligated it into pIS1 
reporter vector (Addgene ID: 12179, Cambridge, 
MA, USA) [36] between the AgeI and XbaI sites. 
Primers used for the cloning were 5’-ATG CAC 
CGG TAA TCA TTA TGG CTA TGT ATC TTG TC (for-
ward) and 5’-ATG CTC TAG AAG ATG AGC TCT 
CTT ATT GTT ATC C (reverse). To construct the 
miR-146a-binding defective mutant reporter, 
the miR-146a binding site in the 3’-UTR was 
disabled by site-directed mutagenesis PCR 
using the pIS1-NUMB-3’-UTR luciferase report-
er as template and the primers of 5’-ata gac tac 
aga tat taa gaa g (forward) and 5’-tct gta gtc tat 
tta aaa tat tc (reverse). To construct pBabe-
mCherry-miR-146a sponge, we cloned mCherry 
into pBabe-puro vector [9] between the BamHI 

and EcoRI sites. We then cloned the annealed 
oligonucleotides for miR-146a sponge into 
pBabe-puro-mCherry vector between the EcoRI 
and SalI sites. The sequences of the sponge oli-
gos consisting of 4 tandem miR-146a binding 
sites with 4-nucleotide spacers at the bulged 
sites were 5’-AAT TCA ACC CAT GGA TGC AGT 
TCT CAA GTA ACC CAT GGA TGC AGT TCT CAT 
CAA ACC CAT GGA TGC AGT TCT CACT GAA CCC 
ATG GAT GCA GTT CTC AA (sense) and 5’-CCG 
GTT GAG AAC TGC ATC CAT GGG TTC AGT GAG 
AAC TGC ATC CAT GGG TTT GAT GAG AAC TGC 
ATC CAT GGG TTA CTT GAG AAC TGC ATC CAT 
GGG TTG (antisense). Retroviruses derived 
from the pBabe-puro-mCherry-miR-146a-spon- 
ge or pBabe-puro-mCherry vector were used to 
infect the 10A-iK8 cells. The respective 
10A-iK8-miR-146a-sponge cell line and 10A- 
iK8-miR-sponge mock cell line were estab-
lished by puromycin selection. To stably overex-
press miR-146a, we transferred the pre-miR-
146a template from pcDNA3-miR-146a vector 
(Addgene ID: 15092, Cambridge, MA, USA) [37] 
between BamHI and SalI sites into pBabe-neo 
vector (Addgene ID: 1767, Cambridge, MA, USA) 
between BamH I and XhoI sites to form the 
pBabe-neo-miR-146a retroviral vector. Viruses 
derived from this vector or pBabe-neo control 
vector were used to infect MCF-10A cells. The 
respective MCF-10A-miR-146a and MCF-10A-
miR-mock cell lines were established by G418 
selection. 10A-iK8-V12 and 10A-iK8-GFP con-
trol cell lines were generated by retroviral infec-
tion using the retroviral vector MSCV H-Ras V12 
IRES GFP (Addgene, Plasmid 18780, Cam- 
bridge, MA, USA) and control vector pMIG 
(Addgene: Plasmid 9044, Cambridge, MA, 
USA), respectively, followed by GFP-based 
96-well plate cloning. A 3’-UTR-less human 
NUMB-GFP fusion was used to replace the GFP 
in the pMIG vector to generate 10A-iK8-NUMB 
cell line similarly.

Fluorescence activated cell-sorting (FACS) 
analysis

For quantification of cells expressing the human 
breast stem cell marker proteins CD44 and 
CD24, cells were trypsinized and washed with 
PBS containing 2% of FBS. The cell surface 
marker proteins were detected by incubating 
the cells with anti-CD44-FITC (clone G44-26) 
and anti-CD24-PE (clone ML5) antibodies (BD 
Bioscience, Franklin Lakes, NJ, USA) in the 
manufacturer-recommended dilutions at 4°C 
for 30 minutes. After washing three times, anal-
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ysis was performed using a flow cytometer 
(FACScalibur, BD Biosciences, Franklin Lakes, 
NJ, USA). Ten thousand events were acquired 
for each sample and analyzed with FlowJo 
software.

ALDEFLUOR assay

The ALDEFLUOR kit (StemCell Technologies, 
Vancouver, BC, Canada) was used to isolate the 
aldehyde dehydrogenase (ALDH) enzymatic 
activity-positive cell population according to 
the manufacturer’s instruction. Briefly, cells 
were detached with 0.25% trypsin/EDTA, 
washed with PBS supplemented with 2% FBS 
and suspended in ALDEFLUOR assay buffer 
containing ALDH substrate (BAAA, 1 μmol/L for 
1×106 cells) and incubated at 37°C for 40 min-
utes. As a negative control, an equivalent cell 
aliquot was treated with 50 μmol/L of diethyl-
aminobenzaldehyde (DEAB), a specific ALDH 
inhibitor. The gates for FACS were established 
using the ALDEFLUOR-stained cells treated 
with DEAB to define the baseline fluorescence 
of the cells (R1) and the ALDEFLUOR-positive 
region (R2). 

MicroRNA expression profiling analysis

The 10A-iK8 cells were grown under uninduced 
(U) or induced (I) conditions for 7 days. The total 
RNA was prepared from the cells using Trizol 
(Invitrogen, Carlsbad, CA, USA). Forty μg of the 
total RNA was used to isolate total miroRNA 
using the small RNA isolation kit-RT²-qPCR 
Grade miRNA Isolation Kit (MA-01, SABioscienc, 
Valencia, CA, USA). Then, 100 ng of the small 
RNA sample was used to synthesize the first 
strand cDNAs for the microRNAs using RT2 
miRNA first strand kit (MA-03, SABioscienc, 
Valencia, CA, USA). The cDNAs were then used 
as templates to screen the whole human 
genome miRNA PCR array (MAH-100A, 
SABioscienc, Valencia, CA, USA) using quantita-
tive real-time reverse transcription-PCR (qRT-
PCR) for the profiling by following the manufac-
turer’s instruction. In some experiments, indi-
vidual microRNAs were examined similarly to 
determine their expression in MCF-10A cells 
that were treated with TGF-β (2.5 ng/ml) for 7 
days or in a panel of human breast cancer cell 
lines.

Promoter reporter assays

Luciferase reporter assays were performed 
essentially as described previously [9]. Briefly, 

HEK293 cells were co-transfected with the 
wild-type or mutant pIS1-NUMB-3’-UTR lucifer-
ase reporter pIS1 and pBABE-neo-miR-146a or 
pBABE-neo control vector along with the nor-
malizing control vector pIS0 encoding Firefly 

luciferase (Addgene ID: 12178, Cambridge, MA, 
USA) [36]. After 36 hours, luciferase activity 
was determined using the dual luciferase 

reporter assay system (Promega, Fitchburg, WI, 
USA) and 20/20n luminometer (Turner 

BioSystems, Sunnyvale, CA, USA) according to 
the manufacturers’ instructions.

Mammosphere formation assay

Mammosphere culture was performed as 
described [38]. Cells (3000 to 104 per well) 
were plated in the ultra-low adherent 6-well 
plates and cultured in the MammoCultTM basal 
medium with proliferation supplements 
(STEMCELL Technologies, Vancouver, BC, 
Canada) for 7-10 days prior to sphere counting 
and photography. Mammospheres greater than 
75 μm in diameter were counted as positive 
spheres. 

Co-staining of cellular miR-146a and NUMB 

The fluorescent in situ hybridization coupled 
with tyramide-signal amplification (FISH-TSA) 
was performed as previously described [39]. 
Briefly, cells grown on glass coverslips were 
fixed, permeabilized and prehybridized. Cells 
were then hybridized with 20 μM of miR-146a 
probes (EXIQON, Woburn, MA, USA) for over-
night at 52°C, washed and blocked with block-
ing buffer. After incubated with 0.05 units/ml of 
peroxidase-conjugated sheep anti-DIG anti-
body (Roche, Indianapolis, IN), cover slips were 
further incubated with biotin-tyramide for TSA 
in a TSA-PLUS system (Perkin-Elmer, Boston, 
MA, USA) followed by incubation with SA- 
Fluorescein. After the FISH-TSA, the cellular 
NUMB protein was stained with anti-NUMB 
antibody (Cell Signaling, Danvers, MA, USA) and 
Texas-red conjugated secondary antibody. Cell 
imaging was processed and analyzed with a 
fluorescent confocal microscope.

Western blotting (WB) and immunohistochemi-
cal (IHC) staining

WB and IHC staining were carried out as previ-
ously described [15, 23]. The antibodies used 
in IHC include rabbit anti-human KLF8 antibody 
[9] and rabbit anti-human NUMB monoclonal 
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antibody (C29G1, Cell Signaling, Danvers, MA, 
USA). 

Mammary tumorigenecity in immunocompro-
mised mice

Four to 5-week-old NOD/SCID mice (12 mice 
per cell line. Taconic, Germantown, NY, USA) 
were injected with the 10A-iK8, 10A-iK8-V12 or 
10A-iK8-GFP cells (2 x 106 in 100 μl mixture of 
PBS and Matrigel mix (1:1)) into the right hind 
mammary fat pad. The mice were fed with the 
Dox Diet (3888) (Bio Servs, Frenchtown, NJ, 
USA) supplemented with doxycycline (200 mg/
kg) to induce the expression of KLF8 in the 
tumor cells in vivo or with the Control Diet 
(S4207) not containing doxycycline. Tumors 
formed by the cells were monitored for 7 
months before the tumors were photographed 
and dissected. Tumor length (L) and width (W) 
were measured using a Vernier caliper, and 
mean tumor volume was calculated by the for-
mula of V = 0.52*L*W2 and compared between 
groups of mice by box-plot analysis. The mice 
were housed and maintained in specific patho-
gen-free conditions in facilities approved by the 
American Association for Accreditation of 
Laboratory Animal Care and in accordance with 
current regulations and standards of the United 
States Department of Agriculture, United 
States Department of Health and Human 
Services, and the National Institute of Health. 
Animal care and use was approved by the 
Institutional Animal Care and Use Committee. 
Human care of the mice was thoroughly 
considered. 

Statistical analysis

All the data was summarized and presented as 
mean +/- the standard deviation (SD) with a 
minimum of three observations per group. 
Unpaired, paired or single sample Student’s 
t-test with the Bonferroni correction for the mul-
tiple comparisons or Qi-Square test was applied 
as appropriate. Significance was determined by 
the alpha level of 0.05.

Results

KLF8 induces EMT-associated mammary stem 
cell traits in MCF-10A cells

Our previous findings showed that stable 
expression of KLF8 could induce EMT in breast 
epithelial cells [9]. An intriguing recent finding is 

that breast epithelial cells gain the properties 
of stem cells during EMT [4, 5]. To determine 
whether during KLF8-induced EMT, the cells 
obtain the properties of stem cells, we used our 
recently generated MCF-10A cell line that 
expresses tetracycline-regulated inducible 
expression of KLF8 (10A-iK8) [15]. Effective 
induction of EMT by the induced expression of 
KLF8 in the cells, using TGF-b-induced MET in 
the parental MCF-10A cells as a positive con-
trol, was verified by analysis of the changes in 
the cell morphology and expression switch 
between epithelial markers and mesenchymal 
markers proteins (data now shown). Changes in 
the human mammary stem cell surface mark-
ers CD44high/CD24low were first examined by 
flow cytometry. We found that more than 90% 
of the cells acquired a CD44high/CD24low expres-
sion pattern when the expression of KLF8 was 
induced (10A-iK8/I) compared to only 33% of 
the uninduced cells (10A-iK8/U) (Figure 1A and 
1B). To verify this result, an independent human 
mammary stem cell marker aldehyde dehydro-
genase (ALDH) was analyzed. We found that 
KLF8-expressing cells (10A-iK8/I) gained 3 
times more ALDH-positive cells (5.76%) than 
the cells not expressing KLF8 (10A-iK8/U) did 
(1.34%) (Figure 1C and 1D). Similar results 
were obtained in the cells treated with TGF-β  
(Figures 1A, 1B and 2). Taken together, these 
results clearly demonstrated that like TGF-β, 
KLF8 could induce the mammary stem cell 
traits via EMT. 

KLF8-upregulated expression of miR-146a is 
responsible for the induction of stem cell traits 
in MCF-10A cells

MiRs have been implicated in the regulation of 
both EMT and stem cells [40-43]. We sought to 
examine the change in the expression profile of 
miRs to identify target miRs of KLF8 responsi-
ble for the stem cell trait induction during EMT. 
Among the 14 miRs whose levels were changed 
≥ 10 times by the induction of KLF8 expression 
(Figure 2), four were similarly regulated by 
TGF-β treatment (Figure 3A). Among these 4 
miRs, the miR-146a was the most significantly 
upregulated in the invasive breast cancer cells 
(MDA-MB-231, Hs578T and BT-549), but not in 
the non-invasive breast cancer cells (MCF-7 
and T47-D) (Figure 3B and 3C). Given that the 
invasive and non-invasive cells represent the 
mesenchymal and epithelial phenotypes, 
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Figure 1. KLF8 induces stem cell traits in MCF-10A cells associated with EMT. A and B: Induction of an increase in 
CD44high/CD24low cells by KLF8 and TGF-β. The 10A-iK8 cells were grown under uninduced (U) or induced (I) condi-
tions, or the parental MCF-10A cells were grown untreated (-TGF-β) or treated (+TGF-β) with recombinant TGF-β (2.5 
ng/ml) for two weeks. The cells were then prepared for FACS analysis of expression of the cell-surface markers 
CD44 and CD24 as described in the Materials and Methods to identify CD44high/CD24low cell population (% shown 
in red). C and D: Induction of an increase in ALDH+ cells by KLF8 and TGF-β. The 10A-iK8 cells or parental MCF-10A 
cells were grown and treated as described above, followed by FACS analysis of ALDH expression in the cells using 
the ALDEFLIOR assay as described in the Materials and Methods to identify the ALDH+ cell population. Representa-
tive FACS results are shown C where percentage of ALDH+ cell populations are indicated in red in the absence of 
DEAB, normalized to those in the presence of DEAB. Fold changes in the ALDH+ cell populations caused by KLF8 
expression or TGF-β treatment was summarized in D. *P < 0.01 compared to the uninduced or untreated cells.
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respectively, during EMT and KLF8 is aberrantly 
overexpressed in these invasive cancer cells 
[17], we decided to focus firstly on the miR-
146a for the subsequent experiments. 

To test if the upregulation of miR-146a is 
required for the induction of stem cell traits by 
KLF8, we blocked the function of miR-146a in 
the 10A-iK8 cells. We found that when the cells 

Figure 2. MicroRNA profile in 10A-iK8 cells. A: The 
whole genomic miR PCR array (consisting of 4 consec-
utive sets) was screened for KLF8-regulated miRs in 
the 10A-iK8 induced cells compared to the uninduced 
cells. Assay and analysis were described in the Mate-
rials and Methods. B: Shown are miRs whose expres-
sion levels were increased or decreased by > 10 times 
in the induced cells compared to the uninduced cells.
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were treated with the miR-146a inhibitor, the 
numbers of both ALDH positive cells and mam-
mospheres were reduced by approximately 
50% regardless of the induction of KLF8 
expression (Figure 4A and 4B). This result sug-
gested that miR-146a plays a mediating role 
downstream of KLF8 for the induction of the 
stem cell traits in the cells.

To determine if overexpression of miR-146a 
alone is sufficient to induce the stem cell traits, 
we overexpressed miR-146a in the parental 
MCF-10A cells. We found that the cells con-
tained more than 2 times of ALDH positive cells 
and mammosphere forming capability com-
pared to the mock control cells (Figure 4C and 
4D). This result suggested that the miR-146a 

Figure 3. MiR-146a is upregulated by KLF8 and TGF-β in MCF-10A cells and is highly overexpressed in invasive 
breast cancer cells. A: Expression of the 14 miRs shown in Figure 2 was further compared between TGF-β treated 
and untreated MCF-10A cells to identify target miRs (Hsa-mir-146a, -219-2-3p, -508-3p, and -513a-5p) common 
to KLF8 and TGF-β. The expression of these 4 miRs was then examined in the indicated human breast cancer cell 
lines. B: MiR-146a fold difference from that in the MCF-10A cells. C: The expression of MiR-146a was compared 
between the cancer cells. 
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Figure 4. KLF8 upregulated expression of miR-146a is responsible for the induction of stem cell traits in MCF-10A 
cells. A and B: Inhibition of miR-146a suppresses the KLF8-dependent expression of ALDH and mammosphere for-
mation. The 10A-iK8 cells were transfected with a Cy3 dye-labeled miR-146a inhibitor or an inhibitor control. After 
3 days, the expression of KLF8 was induced in the cells and the cells were cultured for 7-10 days either in regular 
culture plates for analysis of ALDH+ population (% shown in red) by FACS in the absence or presence of the ALDH 
inhibitor DEAB (A) or in mammosphere culture dishes for mammosphere formation (B). Representative FACS results 
and mammosphere images were shown in the left panels. C and D: Overexpression of miR-146a is sufficient to in-
duce stem cell traits in MCF-10A cells. MCF-10A cells were infected with retroviral viruses expressing pre-miR-146a 
or pre-miR control and selected with G418. The cells were then used for analysis of ALDH+ population (% shown in 
red) by FACS (C) and mammosphere formation (D) similarly as described in A and B. The data represent the mean 
± S.E. of at least three independent experiments in triplicate. *P < 0.05. 
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Figure 5. MiR-146a-mediated induction of stem cell traits by KLF8 is correlated with drug resistance. A-C: Constitu-
tive blocking of miR-146a function inhibits the induction of stem cell traits by KLF8. Retroviral viruses expressing the 
miR-146a sponge (A) were used to infect the 10A-iK8 cells. After selected with puromycin, the 10A-iK8-146a-sponge 
and mock-sponge control cells were cultured under uninduced (U) or induced (I) conditions for 7-10 days prior to 
ALDH expression based FACS analysis (B) and mammosphere formation (C). *P < 0.05 compared to I-Mock group. 
D: KLF8 induces the drug resistance in a miR-146a-dependeant manner. The 10A-iK8-sponge and mock control 
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plays a critical role in inducing stem cell traits in 
the cells.

MiR-146a-mediated induction of the stem cell 
traits by KLF8 is correlated with drug resis-
tance 

Drug resistance is one of the hallmarks for 
stem cells. To test if KLF8 grants the 10A-iK8 
cells with the capability of resisting the cell kill-
ing effect of therapeutic drugs and whether 
miR-146a plays such a role downstream of 
KLF8 in the cells, we first generated the 
10A-iK8-sponge cell line where miR-146a was 
constitutively blocked by its inhibiting sponge 
(10A-iK8-146a-sponge) and a sponge mock 
control cell line (10A-iK8-mock-sponge). After 
the inhibition of the stem cell traits under the 
induced conditions by the miR-146a sponge 
but not the mock sponge was confirmed (Figure 
5B and 5C), the response of the cells to the kill-
ing effect of paclitaxel was determined. We 
found that ~90% of the uninduced cells were 
killed after treated for 6 days regardless of the 
expression of the miR-146a-sponge or mock-
sponge (Figure 5D, columns 3 and 4, compare 
days 6 to 1). In sharp contrast, induction of 
KLF8 expression kept ~80% of the mock-
sponge cells viable (Figure 5D, columns 1, com-
pare days 6 to 1). However, only ~30% of the 
miR-146a-sponge cells survived the drug treat-
ment regardless of the KLF8 expression (Figure 
5D, columns 2, compare days 6 to 1). These 
results strongly suggested that KLF8-induced 
miR-146a-dependent stem cell traits are a 
major contribution to the resistance of the cells 
to the cytotoxic effect of the drug. 

MiR-146a mediates KLF8 induced stem cell 
traits by inhibiting NUMB expression

Potential molecular targets of miR-146a were 
predicted by using several software programs 
including TargetScan 5.1, miRanda, miRbase 
and PITA. Among the potential targets, we 
focused on NUMB given its well conserved 
3’-UTR binding site for miR-146a and the inhibi-
tory role in regulating Notch signaling, an impor-
tant stem cell regulating pathway [44]. To test if 
miR-146a directly targets NUMB transcript to 

reduce its translation, we first performed NUMB 
3’-UTR luciferase reporter analysis. We found 
that the presence of the 3’-UTR caused approx-
imately 40% reduction in the luciferase activity 
when miR-146a was co-transfected (Figure 6B, 
compare columns 2 to 1). The inhibitory effect 
of miR-146a was lost when the miR-146a bind-
ing site in the 3’-UTR was disabled by mutagen-
esis (Figure 6B, compare columns 4 to 3). This 
result suggested that NUMB is likely a specific 
inhibitory target of the miR-146a in the cells. As 
described above (Figure 3), miR-146a expres-
sion is differentially expressed between inva-
sive and non-invasive breast cancer cells by 
more than 100 times. To test if the miR-146a 
expression is inversely correlated with the 
expression of NUMB protein in the cancer cells, 
we compared the NUMB protein expression 
between the indicated invasive and non-inva-
sive breast cancer cells by western blotting 
(Figure 6C) followed by co-staining miR-146a 
and NUMB protein in the cells (Figure 6D). The 
western blotting results showed a highly inverse 
correlation of expression between miR-146a 
and NUMB protein in the cancer cells (Figures 
3 and 4C). Similarly, the co-staining assay 
showed that miR-146a was abundantly 
expressed in the invasive Hs578T cells in which 
there was only little expression of NUMB pro-
tein, whereas in the non-invasive T47D cells the 
expression of NUMB was high and localized at 
the cell-cell junctions where miR-146a was 
absent (Figure 6D). Taken together, these data 
suggested that miR-146a can be induced by 
KLF8 and bind to NUMB 3’-UTR to suppress 
NUMB expression in the invasive breast cancer 
cells.

We then tested if overexpression of NUMB can 
interfere with the induction of the stem cell 
traits by KLF8. We infected the 10A-iK8 cells 
with lentiviruses expressing a NUMB-GFP 
fusion protein that does not contain the 3’-UTR 
of NUMB. Lentivirus expressing only GFP was 
used as a control. The cells were grown in mam-
mosphere culture medium for 10 days in the 
presence of KLF8 expression. We found that 
the NUMB-GFP expressing cells formed 80% 

cells were grown under uninduced (U) or induced (I) conditions for 6 days. The cells were then treated with paclitaxel 
(10 nM) for another 6 days. At the indicated time points, the cell viability was examined using the Promega CellTiter-
Glo® Luminescent Cell Viability Assay. Relative viability was normalized to the mock control cells (I-Mock) a day after 
treatment was started. *P < 0.05 compared to I-Mock group at the same time points. The data represent the mean 
± S.E. of at least three independent experiments in triplicate. 
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less mammospheres compared to the GFP 
expressing cells (Figure 7). This result suggest-
ed that KLF8 induces the stem cell traits by 
inhibiting NUMB expression via likely the induc-
tion of the miR-146a expression.

KLF8 potentiates oncogenic transformation of 
MCF-10A cells 

To test if KLF8 plays a role in transforming the 
MCF-10A cells, we introduced the H-RasV12 

Figure 6. MiR-146a targets the Notch signaling inhibitor NUMB. A and B: miR-146a binds the 3’-UTR of NUMB 
transcript to inhibit NUMB translation. The miR-146a binding site in NUMB 3’-UTR was aligned with the miR-146a 
sequence (A). The wild type (WT) NUMB 3’-UTR or its mutant defective in miR-146a binding (MUT) was cloned into 
a luciferase reporter vector. The reporter plasmids were transfected into the MCF-10A cells stably expressing miR-
146a or miR control (described in Figure 4C and 4D) for luciferase activity analysis (B). *P < 0.05 compared to 
column 1. C and D: NUMB expression is inversely correlated with miR-146a expression and invasiveness in breast 
cancer cell lines. Whole cell lysates were used for anti-NUMB blotting with b-actin as a loading control (C). The ex-
pression of the endogenous miR-146a (green dots) and NUMB protein (red) in the indicated breast cancer cell lines 
was determined by FISH-TSA as described in the Materials and Methods (D). The data represent the mean ± S.E. of 
at least three independent experiments in triplicate.
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oncogene into the 10A-iK8 cells. The tumori-
genecity of the cells were determined in nude 
mice after mammary fat pad injection. By the 
end of month 7, no detectable tumors were 
formed by the parental MCF-10A cells or the 
10A-iK8 cells regardless of the induction of 
KLF8 expression (data not shown). In the 
absence of KLF8 induction, the 10A-iK8-
RasV12 cells formed extremely small tumors of 
< 5 mm3 (Figure 8A and 8B, U). In sharp con-
trast, when KLF8 expression in the cells was 
induced, the tumors grew up to 1.3 cm3 with a 
median size of approximately 0.5 cm3 (Figure 
8A and 8B, I). This result suggested that KLF8 
makes a critical contribution to the cell trans-
formation presumably by inducing the stem cell 
traits. To confirm the induced expression of 
KLF8 and determine the expression pattern of 
NUMB protein in the tumors, we performed IHC 
co-staining experiments. We observed a high 
level of NUMB protein expression in the 
absence of KLF8 expression and a loss of 
NUMB expression in the tumors that expressed 
KLF8 (Figure 8C). Taken together, these results 
support that inhibition of NUMB expression and 
thus induction of stem cell traits by KLF8 (likely 
via miR-146a) is an important mechanism 
responsible for the cell transformation.

Discussion

Using immortalized human non-tumorigenic 
mammary epithelial cells expressing inducible 

KLF8 or treated with TGF-β, a panel of human 
breast cancer cell lines representing epithelial 
or mesenchymal features, a combination of 
multiple markers for mammary stem cells, 
array screening and genetic modifications of 
miRs in the cells, we demonstrate that the miR-
146a plays an important role in mediating the 
induction and maintenance of breast CSCs dur-
ing EMT potentially by repressing the expres-
sion of the Notch signaling inhibitor NUMB. This 
finding provides new insights into the mecha-
nisms for breast cancer progression and devel-
oping novel therapeutic strategies. 

Our results are consistent with the recent 
reports supporting cancer-promoting role of 
miR-146a [45]. For example, in cisplatin-resis-
tant MCF-7 lines that are characteristic of mes-
enchymal invasive cancer cell phenotype miR-
146a is the most highly upregulated among all 
miRs compared to the cisplatin-sensitive, 
parental epithelial non-invasive MCF-7 cells 
[46]. MiR-146a was also found to be the most 
highly upregulated miR in triple negative spo-
radic breast tumors and basal-like mammary 
tumor epithelial cell lines and target the tumor 
suppressor BRCA1 to promote proliferation 
[47]. Evidence is also accumulating that sup-
ports a similar role of miR-146a in promoting 
EMT, malignant transformation or therapeutic 
resistance of various other types of cancer 
including bronchial [48], gastric [49], liver [50], 
thyroid [51], and pancreatic cancer [52], leuke-

Figure 7. Overexpression of NUMB inhibits the induction of the stem cell traits by KLF8. 10A-iK8 cells expressing 
NUMB-GFP or GFP control were generated as described in Materials and Methods. The NUMB cDNA did not contain 
the 3’-UTR template. The cells were grown in stem cell culture plate under the induced conditions for 10 days to form 
mammospheres. The mammospheres were imaged and counted. The data represent the mean ± S.E. of at least 
three independent experiments in triplicate. *P < 0.05 compared to NUMB-group.
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mia [53, 54] and lymphoma [55, 56]. On the 
other hand, some reports have indicated a 
tumor-inhibiting role of miR146a [57-59]. It 
remains to be answered whether this discrep-
ancy was due to the difference in the experi-

mental conditions, the stages of tumors or can-
cer types studied, or even an undiscovered 
double-faced role of miR-146a in cancer. 
Nevertheless, given that KLF8 supports tumor 
progression of multiple cancer types [8], miR-

Figure 8. KLF8 potentiates Ras-induced transformation of MCF-10A cells. A and B: KLF8 enhances tumorigenecity 
of MCF-10A cells induced by H-Ras-V12. The 10A-iK8-V12 cells were generated as described in Materials and Meth-
ods. Cells of 1 x 106 were injected into the fat pad of nude mice. The mice were fed with the Dox Diet to induce (I) the 
expression of KLF8 in the tumor cells in vivo. Uninduced (U) KLF8 expression was maintained by feeding the mice 
with the Control Diet not supplemented with doxycyclin. Tumors formed by the cells were monitored for 7 months 
before the tumor images were taken (A) and tumor volumes were analyzed by box plot (B). P < 0.01 compared to 
U group. C: Induction of KLF8 expression led to a decrease in NUMB expression in the tumors. Specimens of the 
tumors from A & B were prepared for immunohistochemical staining of the expression of KLF8 and NUMB proteins. 
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146a may contribute to the role for KLF8 in 
regulating the cancer types other than breast 
cancer as well.

Several miR-146a regulators have recently 
been reported including NF-κB [51, 53, 55, 56], 
TGF-β [48] and breast cancer metastasis sup-
pressor 1 [58]. On the other hand, transcripts 
of several genes have been identified as miR-
146a targets such as NF-κB [57, 59], BRCA1 
[47], and SMAD4 [49, 50, 54]. It will be interest-
ing to determine if KLF8 activates miR-146a 
promoter directly or indirectly by targeting 
these or other miR-146a regulating genes and 
whether other miR-146a target transcripts 
besides NUMB [21] are also regulated by KLF8 
via miR-146a in the regulation of EMT and/or 
CSCs.

It should be noted that in addition to miR-146a, 
several other KLF8-regulated miRs also 
respond to EMT including miR-219-2-3p, miR-
508-3p, and miR-513a-5p (see Figure 3). 
Interestingly, expression of some of these miRs 
is highly altered in either invasive or non-inva-
sive breast cancer cells, yet others are mod-
estly underexpressed in both invasive and non-
invasive breast cancer cells. These results sug-
gest that these KLF8 target/effector miRs may 
contribute differentially to the EMT-dependent 
induction of breast stem cells responsible for 
the development and growth of primary tumors, 
the initiation of tumor invasion and metastasis, 
the colonization and growth of the secondary 
tumors at the metastatic sites, or throughout 
the entire process of tumor progression. 
Besides these four miRs, other potential KLF8 
target miRs (see Figure 2) may also play impor-
tant roles in EMT-associated CSC induction. 
Studies have shown that miR-200 family and 
associated miRs regulate EMT and play an 
important role in tumor progression [60, 61]. 
These miRs are similarly regulated in the cells 
expressing high levels of KLF8 (Figures 2 and 
3), cisplatin-resistant mesenchymal breast 
cancer cells [46], and invasive prostate cancer 
cells [62]. Interestingly, miR-200 family miRs 
and the ZEBs mutually down-regulate each 
other, which has been shown to play an impor-
tant role in EMT, CSCs and metastatic progres-
sion of cancer [60, 63-69]. These results indi-
cate that KLF8 and ZEBs may cooperate in 
regulating their common target miRs and also 
suggest an interesting possibility of cross-talk 
between KLF8 and ZEBs and potentially other 

EMT-regulating transcription factors through 
the miRs-mediated feedback regulation [60].

Resistance to cancer therapies is a major hur-
dle of clinical intervention of cancer and one of 
the hallmarks of CSCs [3]. Several recent stud-
ies have shown that miR-146a is an important 
positive regulator of drug resistance [46, 50, 
54]. The other potential KLF8-downregulated 
miRs such as miR-200 family have been report-
ed to inhibit resistance to therapeutic drugs 
such as microtubule-interfering chemothera-
peutic agents [70-72]. We have recently dem-
onstrated that KLF8 promotes cell resistance 
against the cytotoxic effects of DNA damaging 
agents via PARP-1-dependent DNA damage 
responses [23]. Interestingly, PARP-1 has been 
reported to contribute to resistance of hepato-
cellular carcinoma CSCs against multiple thera-
peutic drug types [73]. These results suggest 
that in addition to promoting tumorigenesis and 
metastasis, KLF8 could also play a role in main-
taining or enhancing therapeutic resistance of 
CSCs by more than one mechanism and miRs 
could play a role downstream of KLF8 in the 
regulation of DNA damage responses. Lastly, 
the cytotoxic resistance could be one of the 
potential mechanisms provided by KLF8 that 
help the H-RasV12 expressing cells form 
tumors more easily and quickly. Experiments 
are in progress to test these interesting 
possibilities.

In summary, this report demonstrates a novel 
mechanism of breast cancer progression by 
which KLF8 induces CSCs to promote tumori-
genesis and drug resistance. This finding pro-
vides new insights into developing novel thera-
peutic strategies to inhibit CSCs and sensitize 
tumor cells to the otherwise ineffective conven-
tional therapies.
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