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Review Article
NFκB function and regulation in cutaneous T-cell  
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Abstract: The nuclear accumulation and transcriptional activity of NFκB are constitutively increased in cutaneous 
T-cell lymphoma (CTCL) cells, and are responsible for their increased survival and proliferation. However, in addition 
to the anti-apoptotic and pro-inflammatory genes, NFκB induces expression of immunosuppressive genes, such 
as IL-10 and TGFβ, which inhibit the immune responses and are characteristic for the advanced stages of CTCL. 
While the mechanisms regulating NFκB-dependent transcription of anti-apoptotic and pro-inflammatory genes have 
been studied extensively, very little is known about the NFκB regulation of immunosuppressive genes. The speci-
ficity of NFκB-regulated responses is determined by the subunit composition of NFκB complexes recruited to the 
individual promoters, post-translational modifications of NFκB proteins, as well as by their interactions with other 
transcriptional factors and regulators. In this review, we discuss the mechanisms regulating the transcription of 
NFκB-dependent anti-apoptotic, pro-inflammatory and immunosuppressive genes in CTCL cells, as potential targets 
for CTCL therapies.
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Introduction

Nuclear factor κB (NFκB) is a key transcriptional 
regulator of genes involved in immune and 
inflammatory responses, as well as genes regu-
lating cell survival, differentiation, proliferation, 
angiogenesis and metastasis [1]. Since NFκB 
activity and transcription of NFκB-dependent 
genes are increased in many types of cancer 
and leukemia, inhibition of NFκB-dependent 
transcription thus represents an important 
therapeutic target [2-4]. NFκB activity is consti-
tutively increased in cutaneous T-cell lympho-
ma (CTCL), where it plays a central mediator 
between malignant cell survival and inflamma-
tory signaling. Recently, studies from our labo-
ratory have indicated that the increased NFκB 
activity in CTCL is responsible for the increased 
resistance to apoptosis by up-regulating the 
anti-apoptotic genes cIAP1, cIAP2 and Bcl-2 
[5]. However, in addition to the anti-apoptotic 
role of NFκB in CTCL, NFκB also regulates the 

expression of pro-inflammatory and anti-inflam-
matory genes.

Tumors and leukemia cells often avoid the 
immune surveillance by expressing anti-inflam-
matory genes that inhibit expression of pro-
inflammatory genes, thus suppressing the 
immune responses [6]. Indeed, CTCL cells are 
characterized by the high expression of anti-
inflammatory genes, IL-10 and TGFβ [7], which 
may be involved in the suppression of pro-
inflammatory cytokines IL-1β, IL-8, TNFα and 
IL-17. Thus, NFκB seems to have a complex reg-
ulatory role in CTCL, where it regulates expres-
sion of anti-apoptotic, pro-inflammatory as well 
as immunosuppressive genes (Figure 1). 
However, while the NFκB regulation of anti-
apoptotic and pro-inflammatory genes has 
been extensively studied and documented, rel-
atively very little is known about the NFκB regu-
lation of immunosuppressive genes. Thus, 
effective therapeutic targeting of NFκB in CTCL 
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should include the anti-apoptotic, pro-inflam-
matory as well as the immunosuppressive func-
tion of NFκB.

CTCL

Cutaneous T-cell lymphoma (CTCL) encom-
passes a group of lymphoproliferative disor-
ders characterized by skin invasive neoplastic T 
cells [8, 9]. Mycosis fungoides (MF) and the leu-
kemic variant Sézary syndrome (SS) are the 
most common clinical forms [10]. MF patients 
often present with patches and plaques on skin 
and experience skin symptoms without serious 
complications. In contrast, patients with SS 
exhibit a leukemic form of the disease, which is 
characterized by malignant T cells in the blood. 
Advanced stages of MF and SS are associated 
with aggressive course and poor prognosis 
[11-14].

SS is an erythrodermic leukemic variant of 
CTCL that is characterized by a high level of 
constitutive NFκB activity, which is respon- 
sible for the increased expression of NFκB-
dependent anti-apoptotic genes and resistance 
to apoptosis [15-17]. Patients with SS have 
high levels of malignant CD4+ T cells express-
ing IL-4, IL-10 and TGFβ that suppress the 
immune system and diminish the antitumor 
responses [18-23]. However, despite the recent 
advances in elucidating the immune mecha-
nisms responsible for pathogenesis of CTCL, 
there is no effective strategy to prolong survival 
in the advanced stages.

NFκB

The NFκB family consists of five distinct tran-
scription factors: p65 (RelA), RelB, c-Rel, p50 
(p105/NFκB1) and p52 (p100/NFκB2) [24]. 
These transcription factors share the N-terminal 
Rel-homology domain (RHD) that is responsible 
for dimerization, DNA binding and nuclear 
translocation [25, 26]. The individual NFκB pro-
teins can form homo- and heterodimers, which 
can bind to promoter κB sites and modulate 
transcription of NFκB-dependent genes [27- 
29].

The Rel proteins, including RelA, RelB and 
c-Rel, contain transcription activation domain 
(TAD), while p105/50 and p100/52 contain 
C-terminal ankyrin-repeat domain (ANK), but no 
TAD. Thus, while p105/p50 and p100/p52 can 

bind to DNA, they cannot activate transcription. 
The precursor proteins p105 and p100 can 
function as IκB proteins, and inhibit nuclear 
localization and transcriptional activity of NFκB 
dimers. Removal of the ANK domains produces 
p50 and p52 subunits that can form homodi-
mers, which can repress transcription by dis-
placing the transcriptionally active heterodi-
mers from κB binding sites [30, 31].

Signaling pathways

The signaling pathways that mediate NFκB acti-
vation can be broadly classified into canonical 
and non-canonical pathways [32, 33]. The 
canonical pathway is engaged by ligands for 
antigen and cytokine receptors, and leads to 
the nuclear translocation of p50/RelA and p50/
c-Rel dimers. The non-canonical pathway is ini-
tiated by stimulation of different signaling mol-
ecules, and leads to the activation of the p52/
RelB dimers [34-36].

In most unstimulated cells, NFκB proteins are 
bound to the inhibitory IκB proteins, which 
retain them in an inactive form in the cyto-
plasm. Upon activation with different stimuli 
including pro-inflammatory cytokines, oxidative 
stress and lipopolysaccharide, IκB is phosphor-
ylated by the enzymes of IκB kinase (IKK) com-
plex, ubiquitinated and subsequently degraded 
by the 26S proteasome. The released NFκB 
proteins then translocate to the nucleus and 
bind to the promoter regions of target genes to 
stimulate their transcription [37, 38].

While the cytoplasmic pathways leading to 
nuclear translocation and activation of NFκB 
have been studied extensively [28-34], much 
less is known about the nuclear events regulat-
ing NFκB-dependent transcription. This nuclear 
regulation involves post-translational modifica-
tions of NFκB subunits, variations in the DNA 
sequence of the NFκB binding site, and binding 
of other transcription factors or coactivators 
[28-34].

Regulation of NFκB activity

The primary mechanism for regulating NFκB 
activity is through the inhibitory IκB proteins, 
which include IκBα, IκBβ, IκBε, IκBζ, Bcl-3, 
p100, and p105 [39-47]. Phosphorylation of 
IκB proteins is mediated by the enzymes of IKK 
complex that include IKKα, IKKβ, and the regu-
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latory subunit IKKγ (NEMO) [48, 49]. While the 
cytoplasmic degradation of IκB, resulting in the 
nuclear translocation of NFκB subunits, repre-
sents a general step in NFκB activation, the 
specificity of NFκB-regulated responses is 
mediated by the subunit composition of NFκB 
dimers and their post-translational modifica-
tions [49-54].

The repertoire of pro-inflammatory genes 
expressed upon NFκB activation includes pro-
inflammatory cytokines IL-1β, IL-17 and TNFα, 
chemokines IL-8, CCL2 and CXCL5, as well as 
adhesion molecules. In addition, NFκB acti-
vates expression of many anti-apoptotic genes 
that include the cellular inhibitor of apoptosis 
(cIAP), the TNF receptor-associated factors 
(TRAF-1 and TRAF-2), and the family of Bcl-2 
proteins, A-1/Bfl-1, Bcl-2 and Bcl-xL. By increas-
ing expression of these anti-apoptotic proteins, 
NFκB activation decreases apoptosis and 
increases survival of leukemia and cancer cells 
[1-6]. Accordingly, inhibition of NFκB activity 

decreases the expression of pro-inflammatory 
and anti-apoptotic genes, and induces 
apoptosis.

In majority of human cancers and leukemia, 
NFκB is constitutively activated due to the 
increased degradation of IκBα and increased 
nuclear levels of NFκB subunits. Since the sup-
pression of NFκB activity inhibits pro-inflamma-
tory and anti-apoptotic gene expression, NFκB 
appears to be one of the most promising tar-
gets in the treatment of many inflammatory dis-
orders as well as different types of cancer and 
leukemia. However, one of the main concerns 
regarding the NFκB inhibitors is their specificity, 
since many steps leading to NFκB activation 
are important for other cellular functions as 
well. Thus, a better understanding of the mech-
anisms regulating the specificity of NFκB-
regulated responses will ultimately lead to the 
development of more specific anti-cancer and 
anti-inflammatory therapies.

Figure 1. Schematic representation of the NFκB-regulated genes in CTCL. The increased activity of NFκB induces 
expression of anti-apoptotic genes cIAP1, cIAP2 and Bcl-2 in CTCL cells, resulting in their increased survival. In ad-
dition, NFκB also induces expression of pro-inflammatory genes IL-1, IL-8, TNFα and IL-17, and anti-inflammatory 
genes IL-10 and TGFβ. The increased expression of anti-inflammatory genes in CTCL inhibits expression of pro-
inflammatory genes, resulting in the characteristic immuno-suppressory nature of CTCL.
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Dimerization of NFκB

Dimerization is required for the NFκB binding to 
promoter regions of target genes [55]. More 
than 12 different combinations of NFκB homo- 
and heterodimers have been described [56]. 
Different dimer combinations have different 
transcriptional activity and regulate different 
sets of target genes [57, 58]. In addition, the 
dimer-specific functions are controlled by inter-
actions with other co-regulatory proteins or 
transcription factors. Thus, depending on these 
interactions, NFκB dimers can function as acti-
vators or repressors. For example, even though 
p50 homodimers function mainly as transcrip-
tional repressors, since they lack the transacti-
vation domain, their association with Bcl-3 in T 
cell lymphoma cells increases transcriptional 
activation [59].

NFκB in CTCL

Increased activation of NFκB promotes cell sur-
vival, proliferation, tumorigenesis, angiogene-
sis and metastasis [60-75]. CTCL cells express 
all five members of the NFκB family; however, 
only p65, p50, p52 and Rel-B have been found 
in patients with MF or SS [76, 77]. The increased 
activity of NFκB induces expression of anti-
apoptotic and pro-inflammatory genes in CTCL 
cells, resulting in their increased proliferation 
and survival. However, NFκB also induces 
expression of anti-inflammatory genes, thus 
contributing to the immunosuppressive nature 
of CTCL. Therefore, NFκB plays a central regula-
tory role in the pathogenesis of CTCL, by regu-
lating expression of anti-apoptotic, pro-inflam-
matory and anti-inflammatory genes (Figure 1).

NFκB rearrangement

Chromosomal amplification, over-expression 
and rearrangement of genes coding for NFκB 
subunits have been described in many human 
hematopoietic and solid tumors [78]. Rear- 
rangements of RelA, c-Rel and NFκB1 genes 
have been found in human lymphoid tumors, 
but not in CTCL [79-81]. However, NFκB2 rear-
rangements have occurred in some cases of 
CTCL, B-cell chronic lymphocytic leukemia, 
multiple myeloma and B-cell lymphoma [82], 
and have been associated with poor prognosis 
in CTCL [83-87].

Anti-apoptotic role of NFκB

High resistance to apoptosis is a characteristic 
feature of CTCL. This high resistance to apopto-
sis is mediated by the high constitutive activity 
of NFκB, both in CTCL cell lines and in tumor 
cells from patients with SS [15, 88-90]. CTCL 
cells express constitutive NFκB, c-myc and 
STAT5 activities that regulate the transcription 
of anti-apoptotic genes cIAP1, cIAP2 and Bcl-2 
[91]. NFκB has been suggested to regulate the 
apoptotic sensitivity in CTCL through Fas path-
way [92]. In addition, the deregulation of Notch1 
signaling might be linked to the development of 
CTCL and several solid malignancies based on 
the NFκB-mediated cell survival [93].

Several pharmacological agents have been 
shown to inhibit NFκB activity and induce apop-
tosis in CTCL. Arsenic trioxide (As2O3) is effec-
tive against CTCL by reducing the DNA-binding 
activity of NFκB and inducing apoptosis [94]. 
PBOXs (pyrrolo-1,5-benzoxazepines) induces 
apoptosis in several CTCL cell lines through the 
NFκB-mediated activation of caspase-3 like 
proteases, and has the potential use as a novel 
anticancer drug [95]. The nitric oxide generat-
ing compound, sodium nitroprusside (SNP), can 
induce apoptosis in CTCL Hut-78 cell line by 
suppressing NFκB activity, and thereby Bcl-xL 
expression [96]. Non-steroidal anti-inflammato-
ry drugs (NSAIDs), such as acetylsalicylic acid, 
sodium salicylate, and diclofenac, which have 
been widely used in the treatment of chronic 
inflammatory disorders, induce apoptosis in 
CTCL cells [97]. AraC (cytosine arabinoside) 
inhibits NFκB activity by dephosphorylating the 
p65 subunit, resulting in the increased apopto-
sis in CTCL Hut-78 cells [98].

Curcumin (diferuloylmethane) is the active com-
pound in turmeric, a dietary spice that has 
been widely consumed for centuries. Curcumin 
has been found to have anti-proliferative and 
pro-apoptotic effects in a number of tumor cell 
lines. In CTCL cells, curcumin induces apopto-
sis by inhibiting phosphorylation of IκBα and 
DNA binding activity of NFκB [99]. Curcumin 
also has an oxidative effect by generating reac-
tive oxygen species (ROS) and inhibiting the 
constitutive activity of NFκB in CTCL Hut-78 
cells [100]. Inhibition of the nuclear accumula-
tion of NFκB p65 and p50 by IKKβ (IKK2) inhibi-
tor (AS6028668) induces a potent apoptotic 
response in CTCL cell lines and patients with 
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SS [16]. In malignant T-cell lines established 
from patients with CTCL, the high constitutive 
activity of NFκB induces expression of the 
oncogenic B-lymphoid kinase (Blk) that pro-
motes proliferation of malignant CTCL cells 
[101]. 

The 26S proteasome inhibitor bortezomib (BZ; 
Velcade), which has been approved by the FDA 
for treatment of multiple myeloma and mantel 
cell lymphoma, acts by targeting the catalytic 
20S core of the proteasome and induces apop-
tosis in cancer cells. One of the mechanisms 
consists of inhibiting the cytoplasmic degrada-
tion of IκBα, resulting in the suppression of 
NFκB DNA binding activity and decreased 
expression of NFκB-dependent anti-apoptotic 
genes. BZ has been also evaluated in CTCL and 
exhibited promising anti-tumor activity [102-
104]. Sors et al. have demonstrated that in 
CTCL cells, proteasome inhibition by BZ inhibits 
the in vitro DNA binding activity of NFκB [15]. 

Interestingly however, a recent study has indi-
cated that in CTCL cell lines, proteasome inhibi-
tion actually increases NFκB activity [105]. 

This seeming discrepancy can be explained by 
our previous study demonstrating that protea-
some inhibition by BZ has a gene specific effect 
on the regulation of NFκB-dependent anti-
apoptotic genes in CTCL Hut-78 cells [5]. Our 
results have shown that proteasome inhibition 
suppresses NFκB activity and induces apopto-
sis by a novel mechanism that consists of the 
increased nuclear translocation and accumula-
tion of IκBα [5, 106, 107]. Promoters of the 
anti-apoptotic genes cIAP1 and cIAP2 are occu-
pied by NFκB p65/50 heterodimers, and the 
BZ-induced nuclear IκBα inhibits this occupan-
cy, resulting in the decreased cIAP1 and cIAP2 
expression. In contrast, Bcl-2 promoter is occu-
pied predominantly by p50/50 homodimers, 
and this occupancy and Bcl-2 expression are 
not suppressed by the BZ-induced nuclear IκBα 

Figure 2. Proposed model of the gene specific regulation of NFκB-dependent anti-apoptotic genes by proteasome 
inhibition in CTCL cells. In CTCL Hut-78 cells, proteasome inhibition by BZ induces nuclear translocation and accu-
mulation of IκBα. The BZ-induced nuclear IκBα removes NFκB p65/p50 heterodimers from the promoters of cIAP1 
and cIAP2 genes, resulting in their suppression. However, the nuclear IκBα does not remove p50/50 homodimers 
from Bcl-2 promoter; consequently, Bcl-2 expression is not inhibited by BZ [5].
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(Figure 2). These data suggest that the regula-
tion of anti-apoptotic genes by NFκB is gene 
specific, and depends on the subunit composi-
tion of NFκB proteins recruited to the pro- 
moters.

Pro-inflammatory role of NFκB

Inflammatory response is a critical part of 
innate immunity and involves signaling path-
ways that regulate both pro-inflammatory and 
anti-inflammatory genes [108]. Transcription of 
many of the pro-inflammatory genes is regulat-
ed by NFκB [109-112]. In the early stages of 
CTCL, activation of NFκB and cellular prolifera-
tion are induced by the autocrine production of 
TNFα, resulting in the increased activation of 
NFκB and resistance to apoptosis [113-116]. In 
addition to TNFα, epidermis of patients with 
CTCL displays increased levels of NFκB-
dependent cytokines IL-1β and IL-8, suggesting 
a role of these cytokines in the pathogenesis of 
CTCL [117-119]. Recent studies have shown 
that malignant T cells and skin lesions from 
CTCL patients produce the pro-inflammatory 
cytokine IL-17 [120-122] that is also regulated 
by NFκB [123].

Zinc is an essential trace element and plays  
an important role in the activation of many 

enzymes involved in normal development and 
function of the immune system; therefore, zinc 
deficiency can cause growth retardation and 
decrease many cellular immune responses 
[124]. Zinc deficiency decreases Th1 cytokines, 
resulting in the shift from Th1 to Th2, and caus-
ing a severe cell-mediated dysfunction [125, 
126]. Zinc-deficient CTCL Hut-78 cells displayed 
decreased phosphorylation of IKK and IκB, 
resulting in the reduced DNA binding of NFκB 
[127-129].

Anti-inflammatory role of NFκB

Although the role of NFκB in the transcriptional 
regulation of pro-inflammatory genes has been 
well established, recent studies have indicated 
that NFκB has an important anti-inflammatory 
function as well [130, 131]. In the later stages 
of CTCL, there is a gradual increase in malig-
nant CD4 cells releasing the immunosuppres-
sive cytokines IL-4, IL-10 and TGFβ [132-134]. 
Increased expression of these cytokines  
correlates with disease progression, immuno-
suppression, and susceptibility to infection 
[134-138].

Regulation of expression of IL-4, IL-10 and TGFβ 
is complex, and is controlled by several tran-
scription factors and regulators, including NFκB 

Figure 3. Proposed model of TGFβ regulation by NFκB and proteasome inhibition in CTCL cells. In CTCL Hut-78 cells, 
the promoter of TGFβ is occupied predominantly by NFκB p65/p50 homodimers. Proteasome inhibition induces the 
nuclear accumulation of IκBα, resulting in p65/p50 removal from TGFβ promoter, and inhibition of the TGFβ expres-
sion [Chang et al, manuscript in preparation].
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[139-143]. In vitro study in CTCL Hut-78 cells 
has indicated that the proximal NFκB binding 
site in IL-10 promoter is regulated predominant-
ly by p50/50 homodimers that activate IL-10 
transcription [141]. The IL-10 regulation by 
p50/50 homodimers was later confirmed by 
analysis of NFκB proteins recruited to the IL-10 
promoter in murine macrophages [142]. This 
study showed that p50/50 homodimers acti-
vate IL-10 transcription, together with the tran-
scriptional co-activator CREB-binding protein 
[142]. These data suggest that the p50/p50 
homodimers might exert their immuno-sup-
pressory function either by inhibiting trans- 

cription of NFκB-dependent pro-inflammatory 
genes, or by stimulating transcription of anti-
inflammatory genes, such as IL-10.

Recent studies from our laboratory have indi-
cated that the human TGFβ promoter is occu-
pied predominantly by p65/p50 heterodimers 
in Hut-78 cells (Figure 3). In addition, the nucle-
ar IκBα that is induced by proteasome inhibi-
tion by BZ significantly decreases this occupan-
cy, resulting in the inhibition of TGFβ expression 
(Figure 3). These results indicate that protea-
some inhibition has two beneficial effects  
in CTCL cells (Figure 4). It induces nuclear  

Figure 4. Proposed model of the regulation of NFκB-dependent genes by proteasome inhibition in CTCL cells. Pro-
teasome inhibition by BZ induces the nuclear translocation and accumulation of IκBα, which inhibits expression of 
NFκB p65/p50-regulated anti-apoptotic genes cIAP1 and cIAP2, resulting in the increased apoptosis of CTCL cells. 
In addition, the BZ-induced nuclear IκBα inhibits expression of TGFβ, which may decrease the immunosuppressive 
phenotype associated with advanced stages of CTCL.
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accumulation of IκBα, which inhibits expres-
sion of NFκB p65/p50-regulated anti-apoptotic 
genes, resulting in the increased apoptosis of 
CTCL cells [5]. In addition, the BZ-induced 
nuclear IκBα inhibits expression of TGFβ, which 
may decrease the immunosuppressive pheno-
type associated with the advanced stages of 
CTCL (Figure 4).

Conclusion

The high constitutive NFκB activity in CTCL cells 
is responsible for their increased survival and 
proliferation, as well as for the increased 
expression of NFκB-dependent pro-inflamma-
tory and anti-inflammatory cytokines. However, 
while the mechanisms regulating NFκB-
dependent transcription of anti-apoptotic and 
pro-inflammatory genes have been studies 
extensively, the mechanisms of how NFκB regu-
lates transcription of immuno-suppressory 
genes remain largely elusive. The specificity of 
NFκB binding to the individual promoters is 
determined by the subunit composition of NFκB 
complexes, their post-translational modifica-
tions, and interactions with other transcription-
al factors and regulators. Understanding the 
mechanisms responsible for the NFκB regula-
tion of immunosuppressive genes may provide 
new strategy for the treatment of CTCL and 
other disorders characterized by high levels of 
NFκB activity and immunosuppressive gene 
expression.
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