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Abstract: S100 protein family has been implicated in multiple stages of tumorigenesis and progression. Among the 
S100 genes, 22 are clustered at chromosome locus 1q21, a region frequently rearranged in cancers. S100 protein 
possesses a wide range of intracellular and extracellular functions such as regulation of calcium homeostasis, cell 
proliferation, apoptosis, cell invasion and motility, cytoskeleton interactions, protein phosphorylation, regulation of 
transcriptional factors, autoimmunity, chemotaxis, inflammation and pluripotency. Many lines of evidence suggest 
that altered expression of S100 proteins was associated with tumor progression and prognosis. Therefore, S100 
proteins might also represent potential tumor biomarkers and therapeutic targets. In this review, we summarize the 
evidence connecting S100 protein family and cancer and discuss the mechanisms by which S100 exerts its diverse 
functions.
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Introduction

The S100 gene family is the largest subfamily 
of calcium binding proteins of EF-hand type [1]. 
To date, at least 25 distinct members of this 
subgroup have been described. Of these genes, 
22 are clustered at chromosome locus 1q21. 
Interestingly, 14 of 22 members localized in the 
epidermal differentiation complex (EDC) on 
chromosome 1q21 [2]. S100 proteins form 
either homodimeric or heterodimeric complex-
es with one another [3, 4]. Upon calcium bind-
ing, most S100 proteins undergo a conforma-
tional change, thus allowing the protein to 
interact with the different protein targets, 
thereby exerting a broad range of intracellular 
and extracellular functions. Intracellular func-
tions include regulation of calcium homeosta-
sis, cell cycle, cell growth and migration, phos-
phorylation, cytoskeletal components and 
regulation of transcriptional factors. In contrast 
to intracellular function, extracellular S100 pro-
teins act in a cytokine-like manner by binding to 
cell surface receptors such as the receptor for 
advanced glycation end products (RAGE) and 
Toll-like receptors (TLRs) [2, 5]. More recently, 
there is growing interest in the S100 proteins 

and their relationship with different cancers 
because of their involvement in a variety of bio-
logical events which are closely related to 
tumorigenesis and cancer progression. The 
association between S100 proteins and cancer 
can also be explained by several observations: 
firstly, most of S100 genes are clustered on 
human chromosome 1q21, a region prone to 
genomic rearrangements, supporting that S100 
proteins may be implicated in tumor progres-
sion. Secondly, several S100 members show 
altered expression in various malignancies. 
Finally, a number of S100 proteins have been 
shown to interact with and to regulate various 
proteins involved in cancer and exert different 
effects on specific target proteins such as 
NF-κB, p53, and β-catenin. In this review we dis-
cuss the important roles of S100 proteins in 
tumorigenesis, cancer metastasis, tumor 
microenvironment, maintenance of pluripoten-
cy and their potential implications as biomark-
ers and prognostic factors. We also discuss the 
underlying mechanisms by which S100 proteins 
involved in tumorigenesis and cancer progres-
sion. Elucidating the mechanisms of S100 sig-
naling in cancer will increase our understanding 
of tumorigenesis and may lead to the identifica-
tion of new therapeutic targets.
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The functions of S100 protein family in cancer

Uncontrolled cell growth and invasion/metasta-
sis are two characteristic features of cancer. 
Aberrant cell proliferation, perturbations of dif-
ferentiation programs, loss of normal apopto-
sis, increase of angiogenesis/invasion/metas-
tasis, and evasion of the immune system 
contribute to the malignant phenotype of can-
cer [6]. S100 proteins possess a wide range of 
biological functions that can alter and regulate 
the major phenotypic features of cancer. The 
functions of S100 proteins have been exten-
sively studied and the functional modes of 
S100 proteins can be intracellular, extracellu-
lar, or a combination of both. Here, we mainly 
focus on several important and well-studied 
members of S100 protein family and summa-
rize the key functions of S100 proteins includ-
ing proliferation, apoptosis, metastasis, tumor 
microenvironment and cancer stem cells, which 
are central to S100 proteins with tumor devel-
opment and progression (summarized in Figure 
1). Furthermore, we identify key pathways in 
these functions and propose additional areas 

of study, which may be of particular importance 
for the less studied S100 family members and 
which may lead to new insights and discoveries 
for cancer diagnosis and treatment.

The association between S100 proteins and 
cancer cell differentiation

One of the hallmarks of many human cancers is 
disrupting the regulation of differentiation [7]. 
Most of S100 calcium-binding proteins are 
clustered at the chromosomal region 1q21, 
constituting important components of the epi-
dermal differentiation complex (EDC) [8]. 
Therefore, S100 proteins are involved in the 
process of terminal differentiation of human 
epidermis and implicated in several disorders 
including cancer. On one hand, some S100 pro-
teins expression levels correlate with tumor dif-
ferentiation. For instance, high expression of 
S100A11 was associated with the histological 
differentiation of pancreatic adenocarcinoma 
(PAC) [9]. And downregulation or absence of 
S100A14 correlated with colorectal cancer 
(CRC) and esophageal squamous cell carcino-

Figure 1. S100 proteins might have important roles during different steps of tumorigenic processes. S100 proteins 
are involved in many aspects of phenotypic features of cancer including regulation of cell differentiation, cell cycle 
progression, cell proliferation, cell apoptosis, cell motility, invasion and migration, tumor microenvironment and 
Cancer Stem Cells (CSCs) etc.
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ma (ESCC) poor differentiation [10, 11]. On the 
other hand, some S100 proteins expression 
levels correlate with tumor dedifferentiation. 
For example, high levels expression of S100A4 
is associated with poor differentiation in PAC 
and ESCC [12, 13]. And S100A6 can act as a 
poor-differentiation predictor in hepatocellular 
carcinoma (HCC) [14]. In addition, Some S100 
proteins can even exhibit converse correlation 
with tumor differentiation dependent on can-
cer-type. For example, S100A2 protein under-
expression was associated with poor tumor dif-
ferentiation in laryngeal squamous cell car- 
cinoma (LSCC) and ESCC [15, 16]. Conversely, 
expression levels of S100A2 are negatively 
associated with differentiation of pancreatic 
cancer cell lines [17]. Our previous study shows 
that loss of S100A8/S100A9 expression in 
ESCC correlates with poor differentiation [18]. 
In contrast, co-expression of S100A8/S100A9 
correlates with poor tumor differentiation in 
breast invasive ductal carcinoma (IDC) [19]. 
And overexpression of S100A9 is also associ-
ated with the poor differentiation of pulmonary 
adenocarcinoma, IDC and liver carcinomas [20-
22]. Taken together, these data suggest that 

cases S100 proteins share their target proteins 
and, hence, contribute to identical activity. For 
example, extracellular S100 proteins can inter-
act with RAGE that resulting in the activation of 
MAPK and NF-κB signaling. In addition, S100 
proteins are also involved in the regulation of 
Epidermal Growth Factor (EGF) signaling. 
Intracellular S100 proteins can interact with 
p53, thereby affecting p53 transcriptional 
activity and p53-mediated cell cycle regulation 
and proliferation.

S100 proteins in RAGE signaling

Several lines of evidence show that certain 
S100 proteins are secreted into the extracellu-
lar space and exert their functions in an endo-
crine, paracrine and autocrine manner. One of 
the general receptors of S100 proteins is RAGE, 
which is a cell surface receptor implicated in 
multiple pathologies including inflammation 
and cancer [23]. S100 proteins including 
S100A1, S100A4, S100A6, S100A8/A9, S100- 
A11, S100A12, S100A14, S100B, and S100P 
bind to RAGE and trigger RAGE-mediated cellu-
lar signaling which involves in MAP Kinase, 

Figure 2. S100 proteins in RAGE signaling. S100 proteins can be secreted into 
the extracellular space, and crosslink with cell-surface receptor-RAGE and deliver 
signals inside the cell, thereby modulate cell survival, proliferation or apoptosis. 
Some S100 proteins (S100P, S100A8/A9, S100A12, S100A14, S100B) can inter-
act with RAGE, subsequently activating the MAPK, PI-3K-AKT, and NF-κB signaling 
pathways, and thereby leading to the up-regulation of genes involved in cell sur-
vival and proliferation. In other cases, the apoptosis cascade is activated through 
the activation of JNK and caspases.

S100 proteins expres-
sion correlates with tu- 
mor differentiation.

S100 proteins in cancer 
cell proliferation

S100 proteins in the cell 
cycle and cell prolifera-
tion

Cell cycle deregulation is 
fundamental alterations 
in the control of cell di- 
vision, resulting in un- 
strained cell proliferation. 
Several S100 proteins 
have been implicated in 
the dysregulation of pro-
liferation, particularly for 
S100A1, S100A4, S10- 
0A6, S100A8/A9 and 
S100A14, which are per-
haps the most well-stud-
ied S100 proteins in 
human cancers. S100 
proteins exert their ac- 
tions through specific tar-
get proteins. In a few 
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NF-κB, and phosphatidylinositol 3-kinase (PI-
3K)/AKT signaling pathway. Therefore, S100 
proteins are involved in the regulation of diverse 
cellular processes including inflammation and 
cancer [24-35]. Here, we summarized the 
effect of S100 proteins on cancer cell survival, 
proliferation or apoptosis via the interaction 
with RAGE (Figure 2). In neuroblastoma cells 
S100B modulates cell survival by recruiting 
PI-3K/AKT and NF-κB signaling pathway in a 
RAGE-dependent manner, whereas S100A6 
inhibits cell survival and triggers cell apoptosis 
through the activation of JNK [31]. S100P 
increases colon cancer cell proliferation and 
stimulated both ERK1/2 phosphorylation and 
NF-κB activity via the interaction with RAGE, 
and antagonism of RAGE-cromolyn blocked the 
biological effects of S100P on cell proliferation 
[36]. Also, S100P regulates cell proliferation 
and survival of pancreatic cancer cells by acti-
vating RAGE [37]. S100A8/A9 at low concentra-
tion promotes tumor cell growth via activating 
MAP Kinase and NF-κB signaling pathway 
dependent on RAGE ligation. Accordingly, 
S100A8/A9-mediated cell growth can be 
blocked by RAGE specific siRNAs or antibody 
[32, 38]. Our published data suggest that extra-
cellular S100A14 promotes cell proliferation at 

low concentrations via binding to the RAGE in 
ESCC cells [34].

S100 proteins in Epidermal Growth Factor 
(EGF) signaling

Several S100 family members are involved in 
EGF/EGFR signaling pathway (Figure 3). For 
instance, EGF receptor activation stimulates 
transcription of S100A2 in human keratino-
cytes [39]. And extracellular S100A4 was found 
to interact with a variety of EGFR ligands and 
have the highest affinity for amphiregulin and 
stimulate EGFR/ErbB2 receptor signaling and 
enhance the amphiregulin-mediated prolifera-
tion of mouse embryonic fibroblasts [40]. And 
levels of ErbB2 and S100A4 were tightly corre-
lated in samples of primary medulloblastoma 
and ErbB2 overexpression up-regulated 
S100A4 expression in medulloblastoma cells 
[41]. Previous study also demonstrated that 
EGF treatment significantly induced S100A7 
expression and S100A7 played a functional 
role in EGF-induced signaling pathway [42]. 
Further, S100A7 enhanced cell survival by bind-
ing to c-Jun activation domain-binding protein 1 
(Jab1), thereby increasing activity of NF-κB and 
p-Akt, contaminant with EGFR signaling activa-
tion [43]. In addition, S100A14 can directly 
interact with ErbB2 and functions as a modula-
tor of ErbB2 signaling. And S100A14 depletion 
significantly decreased HER2 phosphorylation, 
downstream signaling, and HER2-stimulated 
cell proliferation [44].

S100 proteins in p53 signaling

It’s particularly intriguing that several S100 pro-
teins may bind to p53. P53 and S100 proteins 
form autoregulatory feedback loop (Figure 4). 
P53 binds to the promoter of S100 proteins 
such as S100A2, S100A9, S100A14, and 
S100B and stimulates the expression of S100 
proteins [45-48]. And as a direct p53 target 
gene, S100A9 induces p53-dependent cellular 
apoptosis and mediates the p53 apoptosis 
pathway [47]. In turn, S100 proteins can affect 
p53 function and interfering with p53 transcrip-
tional activity. Hence, S100 proteins contribute 
to the regulation of cell cycle and cell growth via 
affecting p53 activity. S100A2 can interact 
with p53 in calcium-dependent manner and 
activate p53 transcriptional activity, presum-
ably helping restore p53 function in cell arrest 
and apoptosis [49]. Overexpression of S100A4 

Figure 3. S100 proteins in EGF signaling. S100 pro-
teins (S100A2, S100A4, S100A7) are induced by the 
activation of EGF/EGFR signaling. In turn, S100 pro-
teins affect the activation of EGF/EGFR signaling and 
EGF/EGFR-mediated cell proliferation.
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drives cells into G2/M phase by sequestering 
p53 and upregulating the expression of p53 
target gene-Stathmin [50]. Furthermore, 
S100A4 can interact with p53 and interfere 
with p53 transcriptional activity. For instance, 
S100A4 activates the p53 target genes such 
as p21/WAF1, thrombospondin-1, MDM2 in 
cells with wild-type p53. On the other hand, 
S100A4 interacts with p53 and inhibits the 
phosphorylation of p53. However, S100A4 
exhibits a differential modulation of the p53 
target gene. And expression of S100A4 result-
ed in the inhibition of the transcription of p21/
WAF1. In contrast, S100A4 induced pro-apop-
totic gene-Bax expression. Accordingly, S100A4 
enhanced p53-dependent cell apoptosis. This 
observation implies that S100A4 may exert its 
function on tumor progression by p53 and 
enhancing p53-dependent apoptosis, which 
might accelerate the loss of p53 in tumors [51, 
52]. S100A6 was also reported to interact with 
p53 in a calcium-dependent manner and 
enhance p53 transcriptional activity, thus facili-
tating the apoptotic action of p53 [53]. 
S100A14 inhibits cell proliferation by harboring 
p53 and inducing G1 arrest in oral squamous 
cell carcinomas (OSCC), this G1-arrest correlat-
ed with up-regulation of p21 [54]. S100B exerts 

attenuating cell growth both in vitro and in vivo 
partially by down-regulation of Cox-2 in oral 
cancer cells [59]. S100A6 has an important 
role in regulating endothelial cell cycle. In pri-
mary human endothelial cells, depletion of 
S100A6 caused increased cell-cycle arrest in 
the G2/M phase. Mechanistic investigation 
demonstrated that S100A6 depletion caused a 
decrease in both cyclin-dependent kinase 
(CDK1), phosphor-CDK1 levels, CDK1, cyclinA1 
(CCNA1) and cyclin B (CCNB1) genes with 
effects on cell-cycle progression [60]. In gastric 
cancer cells, S100A6 protein negatively regu-
lates its partner-CacyBP/SIP mediated inhibi-
tion of cell proliferation and tumorigenesis by 
affecting β-catenin degradation [61]. S100A7 
may possess differential activities dependent 
on ER status. In ER-negative breast cancer 
cells, S100A7 increases cell growth in vitro and 
in vivo via the interaction with c-Jun activation 
domain-binding protein 1 (Jab1) [62]. Also, 
overexpression of S100A7 promoted MDA-
MB-231 cell survival by increasing activity of 
NF-κB and phospho-Akt dependent on the 
interaction with Jab1 [43]. In contrast, in 
ER-positive breast cancer cells, S100A7 exhib-
its tumor suppressor capabilities through inhi-
bition of the β-catenin/TCF4 pathway [63]. 

Figure 4. S100 proteins in p53 signaling. S100 proteins can be intracellularly lo-
cated and regulate cell growth, cell-cycle progression and apoptosis by interact-
ing with the relevant intracellular signal-regulation pathways. In particular, some 
S100 proteins can interact with p53 and affect p53 transcriptional activity, thereby 
resulting in the expression changes of p53 target genes involved in cell survival, 
proliferation and apoptosis.

dual regulatory effects 
on p53. In normal cells, 
S100B enhanced p53 
nuclear translocation 
and accumulation via 
calcium-dependent sig-
naling pathway, thereby 
promoting p53-mediated 
cell growth inhibition and 
apoptosis [55, 56]. In 
cancer cells, S100B in- 
teracts with p53, inhibits 
the phosphorylation of 
p53 and disrupts p53 
tetramers, thus diminish-
ing p53 ultimate function 
as a tumor suppressor 
[46, 57, 58].

In other cases different 
S100 members take part 
in the regulation of simi-
lar activity through differ-
ent target proteins. Ec- 
topic overexpression of 
S100A2 induced G1/S 
cell cycle arrest, thus 
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Further, in squamous cell carcinoma of oral 
cavity (SCCOC), S100A7 inhibits cell growth by 
targeting β-catenin degradation [64]. S100A8/
A9 is a crucial regulator of cell proliferation and 
inhibits growth of squamous cell carcinoma by 
negatively regulating G2/M cell cycle progres-
sion. S100A8/A9 increases PP2A phosphatase 
activity and p-Chk1 (ser345) phosphorylation, 
which represses phosphorylation of mitotic 
p-Cdc25C (ser216) and p-Cdc2 (Thr12/Tyr15) 
to inactivate the G2/M Cdc2/cyclinB1 complex. 
CyclinB1 expression then reduces and the cell 
cycle arrests at the G2/M checkpoint, thereby 
inhibiting cell division [65]. S100A10 positively 
regulates cell growth via the interaction with 
DLC1 in lung cancer [66]. S100A11 acts as a 
tumor suppressor and mediates growth inhibi-
tion by TGF-β1 via induction of p21/WAF1 [67]. 
Moreover, S100A11 suppresses the cell growth 
of squamous carcinoma cell lines via the inter-
action with Annexin A1 [68]. On the other hand, 

S100A11 could act as a tumor inducer and sus-
tain the cell growth of lung adenocarcinoma 
cells [69]. There is also evidence that S100B is 
implicated in the regulation of cell division via 
targeting Ndr (a nuclear serine/threonine pro-
tein kinase) [70, 71]. In cultured glioma C6 
cells, the accumulation of S100B correlates 
with contact-dependent inhibition [55]. In con-
trast, in human melanoma cells, overproduc-
tion of S100B protein in G1 phase is linked with 
cell cycle progression. These apparent contra-
dictions suggest that alternative functions for 
intracellular S100B in negative and positive 
cell growth regulation might depend on other, 
as yet unidentified cellular cofactors.

S100 proteins in oncogenic transformation

S100 proteins function in proliferation and 
transformation via a variety of cellular recep-
tors such as RAGE and TLR4. S100A2 overex-
pression in the human malignant squamous 

Figure 5. S100 proteins are involved in cancer-stromal interplay. Many of S100 proteins are implicated in the com-
munication between cancer cells and stromal cells such as fibroblasts, endothelial cells, and inflammatory cells 
including Tumor-associated Macrophages (TAMs), Myeloid Derived Suppressor Cells (MDCS), T lymphocytes, and 
neutrophils.
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cell carcinoma cell line KB decreases colony 
formation and in vivo tumor growth [59]. 
However, in lung cancer, overexpression of 
S100A2 promotes tumor growth [72]. S100A4 
is involved in tumorigenesis in multiple can-
cers. For example, overexpression of S100A4 
in melanoma cells promotes in vivo tumor 
growth, accordingly, S100A4 suppression 
decreases tumor growth. Further, suppression 
of S100A4 in the human pancreatic adenocar-
cinoma, osteosarcoma, and prostate cancer 
cells reduces tumor growth in vivo [27, 73, 74]. 
Heterozygously deleted S100A4 mice exhibit 
reduced prostate tumorigenesis contaminant 
with reduced NF-κB activity dependent on 
RAGE [75]. S100A6 overexpression in CRC 
enhances tumor growth in vivo [76]. 
Overexpression of human S100A7 or its murine 
homologue mS100a7a15 enhances mammary 
tumorigenesis [77]. S100A9 knock-out mice 
show reduced tumor incidence, growth and 
metastasis [38]. Also, the absence of S100A9 
and S100A9 ligand TLR4 expression delays 
tumor incidence in a spontaneous prostate 
cancer model and influences growth of trans-
plantable tumors in the EL-4 lymphoma model 
[78]. Accordingly, RAGE-deficient mice are 
resistant to DMBA/TPA-induced skin carcino-
genesis, concomitant with loss of S100A8/A9 
induction [79]. Downregulation of S100B in gli-
omas abrogates tumor growth in vivo [80]. 
S100P promotes pancreatic and prostate can-
cer growth [37, 81]. S100P-derived RAGE 
antagonistic peptide reduces tumor growth 
[82]. These findings suggest that S100 proteins 
might represent potential therapeutic targets in 
oncogenesis.

S100 proteins in cell apoptosis

Apoptosis is a tightly regulated cell suicide pro-
gram, defects and evasion of cell apoptosis 
promote malignant transformation and have 
been recognized as a hallmark of cancer [6]. 
Accumulating evidence shows that several 
S100 proteins play central roles in the regula-
tion of cell apoptosis. Knockdown of S100A4 
induces cell apoptosis and enhances chemo-
sensitivity through the induction of BNIP3 
expression in pancreatic cancer [83]. In con-
trast, S100A4 sensitizes osteosarcoma cells to 
IFN-gamma-mediated induction of apoptosis in 
parallel with activating NF-κB [84]. S100A6 trig-
gers cell apoptosis through activating JNK 
activity dependent on RAGE [31]. Further, 

upregulation of S100A6 (calcyclin) enhances 
cell apoptosis and decreases cell viability by 
affecting Caspase-3 activity in liver cancer cells 
[85]. Extracellular S100A8/A9 can inhibit 
growth of a variety of normal cell types (macro-
phages, bone marrow cells, lymphocytes, fibro-
blasts) and exhibit apoptosis-inducing activity 
in various tumor cells. In some cells, S100A8/
A9 induces cell apoptosis through binding to 
the cell-surface receptor in a zinc-independent 
manner [86]. Another study suggests that 
S100A8/A9 exerts apoptotic activity by selec-
tive release of Smac/DIABLO and Omi/HtrA2 
from mitochondria and modulation of anti-
apoptotic protein Bcl-2 [87]. In addition, 
S100A8/A9 may also promote autophagy-like 
death by provoking the translocation of BNIP3 
to mitochondria [88]. S100A10 may bind to Bcl-
2-associated death promoter (BAD) protein, 
negatively affect BAD-induced apoptosis [89]. 
Synthetic N-terminal peptides of S100C/A11 
induced cell apoptosis through partial translo-
cation of apoptosis-inducing factor (AIF) from 
the cytoplasm to nuclei [90]. Our previous study 
showed that S100A14 can interact with RAGE 
and high dose S100A14 induces cell apoptosis 
is partially in a RAGE-dependent manner in 
esophageal cancer cells [34].

S100 proteins in tumor metastasis

Metastasis is a major cause of death for cancer 
patients. The process of metastasis involves a 
cascade of linked, sequential steps which 
include tumor invasion, migration, host immune 
escape, extravasation, angiogenesis, and 
tumor growth [91]. S100 proteins are involved 
in many steps of metastasis and some of them 
(i.e. S100A4) have been well recognized as 
metastasis markers. S100A4 is a direct target 
of β-catenin/TCF and it has been considered as 
an epithelial-mesenchymal transition (EMT) 
marker [92]. Enhanced S100A4 promotes a 
migratory phenotype, and in particular, pro-
motes EMT [74, 93-95], whereas inhibition or 
loss of S100A4 decreased cell migration and 
abrogated EMT signatures [92, 95, 96]. 
Co-transfection of the human gene for S100A4 
with pSV2neo induced the metastasis of Rama 
37, a benign rat mammary cell line, suggesting 
that S100A4 possesses metastasis-inducing 
capability [97]. Furthermore, overexpression of 
S100A4 in MCF-7 cells induced hormone-inde-
pendent cell growth in vivo and promoted cell 
invasiveness into surrounding tissues and 
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metastasized to regional lymph nodes and 
lungs [98]. Transgenic mice carrying S100A4 
gene develop aggressive metastatic mammary 
tumors [99]. In contrast, mice lacking S100A4 
gene suppresses the tumor development and 
metastasis [100]. The suppression of S100A4 
reduced the metastasis of osteosarcoma cells, 
but has no effect on cell proliferation [101]. As 
a typical member of the S100 family, S100A4 
protein exerts both intracellular and extracellu-
lar functions by specific target proteins. For 
instance, S100A4 regulates cell motility and 
adhesion by interacting with Nonmuscle Myosin 
IIA (NMIIA) and Ephrin-beta 1, thus contributing 
to the metastatic behavior of tumor cells [102-
104]. S100A4 activates NF-κB by inducing 
phosphorylation of IKKalpha/beta, leading to 
increased ikappaBalpha phosphorylation 
[105]. Extracellular S100A4 activates the tran-
scription factor NF-κB and induces a series of 
gene products including Ephrin-A1 and optineu-
rin in a subset of human cancer cells, which 
represent possible candidates responsible for 
S100A4-mediated metastatic progression 
[106]. In addition to stimulating the motility of 
tumor cells, S100A4 may affect cell invasive 
properties through influencing the expression 
of matrix metalloproteinases (MMPs) and their 
endogenous inhibitors [107]. S100A4 binds to 
Smad3 and increases TGF-β-induced MMP-9 
expression, thus enhancing the cell invasion 
ability [108]. S100A2 is regulated by TGF-β and 
involved in TGF-β-mediated cancer cell invasion 
and migration. Further, S100A2 interacts with 
Smad3, regulates TGF-β/Smad3 signaling and 
induces EMT in lung cancer [72]. Overexpression 
of S100A2 dramatically promotes non-small 
cell lung cancer (NSCLC) cell migration in vitro 
and enhances metastasis in vivo, whereas 
ablation of S100A2 inhibits tumor metastasis 
in vivo. These results indicate that S100A2 acts 
as a strong metastasis inducer in NSCLC [109]. 
Depletion of S100A6 has a profoundly negative 
effect on the invasion and motility of pancreatic 
cancer cells [110, 111]. Possible mechanism is 
that S100A6 facilitates Annexin II translocation 
to the cell membrane [111]. In contrast, overex-
pression of S100A6 in osteosarcoma cells 
decreases cell motility and anchorage indepen-
dent growth on collagen gels [112]. S100A7 
increases invasive capabilities of prostate can-
cer cells via a regulation of MMPs and promotes 
the migration and invasion of osteosarcoma 
cells via the interaction with RAGE [113, 114]. 

Another report shows that S100A7 inhibits 
β-catenin signaling by promoting β-catenin deg-
radation. In turn, β-catenin signaling negatively 
regulates S100A7 expression. Thus, the recip-
rocal negative regulation contributes to their 
important roles in tumor progression [64]. 
S100A8/A9 promotes cell migration and inva-
sion through p38 MAPK dependent NF-κB acti-
vation leading to an increase of MMP2 and 
MMP12 in gastric cancer [115]. S100A10 may 
bind to plasminogen and subsequently mediate 
its activation by plasminogen activators, facili-
tating the conversion of plasminogen to plas-
min [116]. Subsequently, active plasmin further 
activates some members of MMP family [117, 
118]. On the other hand, DLC1, a partner of 
S100A10, displaces Annexin II from S100A10, 
thereby enhancing the ubiquitin-dependent 
degradation of S100A10 [66]. Therefore, 
S100A10 was involved in the process of cell 
invasion and metastasis [66, 119-121]. 
Depletion of S100A13 inhibits invasiveness of 
lung cancer cell lines [122]. Our published data 
demonstrated that S100A14 acts as either an 
inducer or an inhibitor of cell invasion by regu-
lating MMP2 transcription in a p53-dependent 
manner [123]. S100P acts as a metastasis 
inducer and knockdown of S100P decreased 
metastatic potential in vivo in pancreatic can-
cer cells, which is likely mediated by activating 
RAGE. Additionally, overexpression of S100P 
increases expression of S100A6 and Cathepsin 
D, both of which are involved in cellular inva-
sion. Further study shows that S100P-induced 
invasive potential was at least partially due to 
the increase of cathepsin D [37, 124]. Also, 
S100P promotes the transendothelial migra-
tion of tumor cells through the interaction with 
ezrin in NSCLCs [125].

S100 proteins in the tumor microenvironment

S100 proteins in the communication between 
cancer cells and stromal cells

Accumulating evidence shows that the respons-
es of the stromal cells in neoplastic tissues play 
central roles in tumor progression and cancer 
metastasis [126]. These cells include fibro-
blasts, vascular cells, infiltrating leukocytes, as 
well as bone marrow-derived myeloid cells 
(BMDCs) including macrophages, neutrophils, 
mast cells, myeloid cell-derived suppressor 
cells (MDSCs) and mesenchymal stem cells 
(MSCs) [127]. In addition to acting directly on 
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tumor cells, S100 proteins have also been 
implicated in many aspects of the communica-
tion between cancer cells and stromal cells. For 
example, S100 proteins are involved in the 
interaction between tumor cells and stromal 
fibroblasts, infiltration of leukocytes, recruit-
ment of tumor-associated macrophages 
(TAMs), neutrophils and myeloid-derived sup-
pressor cells (MDSCs), and regulation of angio-
genesis, thereby participating in the cellular 
and molecular events necessary for invasion 
and metastasis (Figure 5). 

S100A4 is considered as a marker of fibro-
blasts and a specific subset of inflammatory 
macrophages [128]. And S100A4 is expressed 
in a variety of cells such as in the tumor micro-
environment (macrophages, fibroblasts, acti-
vated lymphocytes) and plays a crucial role in 
mediating tumor-stromal interplay [129, 130]. 
Recent studies found that MCF-7/S1 tumor 
cells can induce the expression of S100A4 in 
human mammary fibroblasts in co-culture 
experiments [131]. Accordingly, coinjecting 
S100A4+/+ fibroblasts into the xenografts effec-
tively rescued the metastatic inhibition of 
tumors in S100A4 knock-out mice [100]. In 
addition to stimulating S100A4 expression and 
affecting the metastatic phenotype by S100A4, 
tumor cells can also induce the release of 
S100A4 from stromal fibroblasts. In turn, extra-
cellular S100A4 promotes metastatic capacity 
of tumor cells by increasing MMP-13 activity 
and modifying actin cytoskeleton and focal 
adhesions [130]. Mechanistic studies show 
that some cytokines, in particular RANTES 
(CCL5), a cytokine involved in tumor progres-
sion [132, 133] is necessary and sufficient for 
inducing the release of S100A4 from fibro-
blasts. Conversely, the secreted S100A4 acti-
vates the expression and secretion of RANTES. 
Thus, a positive feedback loop is formed, con-
tributing to the formation of pre-metastatic 
niches [134]. These data suggest that the 
reciprocal regulation between RANTES expres-
sion and release of S100A4 plays a crucial role 
in metastatic formation. Recently, it has been 
demonstrated that ablation of S100A4 in stro-
mal cells using transgenic mice significantly 
reduced metastatic colonization. Mechanistic 
investigation demonstrated that S100A4 exerts 
functions by regulating several extracellular 
matrix (ECM) molecules and growth factors, 
particularly matrix protein tenascin-C and 
growth factor VEGF-A, which are important for 

establishing an angiogenic microenvironment 
and protecting cancer cells from apoptotic 
stress [135]. Further, S100A4 plays a crucial 
role in neutrophil-promoting tumor progression 
and S100A4 depletion increases the effective-
ness of anti-VEGF therapy in glioma [136]. 
Besides, S100A4 released into the tumor envi-
ronment or S100A4+/+ fibroblasts induce mas-
sive infiltration of T lymphocytes at the site of 
the growing tumor and release of specific proin-
flammatory cytokines including G-CSF and 
Eotaxin-2 (CCL24, MPIF-2), thus generating a 
favorable microenvironment for metastasis for-
mation [137-139]. In addition to affecting the 
infiltration of T cells, S100A4 may also regulate 
the recruitment of macrophages. Genetic 
depletion of S100A4 impaired the recruitment 
of macrophages to sites of inflammation in vivo. 
Consistent with these observations, S100A4-/- 
primary bone marrow macrophages (BMMs) 
display defects in chemotactic motility [140]. 

S100A8 (calgranulin A, MRP8) and S100A9 
(calgranulin B, MRP14) are abundantly 
expressed in cells of the myeloid lineage, 
including monocytes and neutrophils and early 
differentiation states of macrophages [141, 
142]. Increased S100A8/A9 expression is 
found in tumor-infiltrating myeloid cells in many 
epithelial tumors [143, 144]. As mediators and 
cellular effectors of inflammation, S100A8/A9 
proteins are important constituents of the 
tumor microenvironment that critically contrib-
utes to the development of tumors [145, 146]. 
S100A8/A9 proteins play essential roles in 
tumor-stromal interactions, leading to colitis-
induced colon cancer [147]. S100A8/A9 regu-
lates neutrophil cell survival by the MEK-ERK 
signaling pathway via TLR4 and the integrin 
CD11b/CD18 [148]. And in S100A9-deficient 
mice, the number of bone marrow neutrophils 
is decreased [149]. Further, the S100A8/A9 
proteins stimulate infiltration of inflammatory 
lesions by activated myeloid cells, and are 
involved in neutrophil migration to the inflam-
matory sites [149-151]. Importantly, S100A9 
expression has also been shown to be involved 
in Myeloid Derived Suppressor Cells (MDSC) 
function, which suppresses the adaptive 
immune response by blocking the functions of 
CD4+ and CD8+ T cells [127]. MDSC synthesize 
and secrete S100A8/A9 proteins. In turn, high 
levels of S100A9 inhibit the differentiation of 
dendritic cells (DCs) and induce accumulation 
of MDSCs in cancer [152]. Further, S100A8/A9 
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proteins bind to carboxylated N-glycan 
expressed on the receptor for advanced glyca-
tion end-products and other cell surface glyco-
protein on MDCS, and promote MDCS migra-
tion to the tumor site through the activation of 
NF-κB and repress host-mediated anti-tumor 
immune response against cancer cells, thereby 
facilitating carcinogenesis and tumor progres-
sion [153]. Thus, the S100A8/A9 proteins serve 
as an autocrine feedback loop that sustains 
accumulation of MDSC and are sufficient to 
maintain the functionality of MDSC with the 
inflammatory tumor environment [38, 153-
155]. Also, induced S100A8/A9 expression in 
the pre-metastatic lung creates an inflamma-
tion-like state and thereby promotes metastat-
ic tumor spread [156, 157]. Together, S100A8/
A9 promotes tumorigenesis by inducing inflam-
matory responses and creating a pro-inflamma-
tory microenvironment. As inflammatory che-
moattractants, S100A8/A9 proteins further 
mediate the recruitment of inflammatory cells 
to sites of tissue damage, thereby contributing 
to the tumorigenesis and cancer metastasis 
[158, 159]. In cancer cells, S100A8/A9 regu-
late inflammation through activation of MAPK 
and NF-κB signaling pathway via interaction 
with RAGE and carboxylated glycans, leading to 
inflammatory cell recruitment and tumor growth 
and metastasis [38, 147]. Also, a number of 
growth factors produced by tumor cells includ-
ing TNF-α, TGF-β and VEGF-A can stimulate 
S100A8/A9 expression, thus serving to recruit 
myeloid cells into the pre-metastatic lung, con-
tributing to the establishment of a “pre-meta-
static niche”, and thereby promoting metasta-
sis formation [156]. Furthermore, S100A8/A9 
induced by pre-metastatic lung promotes the 
expression and secretion of serum amyloid A3 
(SAA3) protein which is involved in recruitment 
of myeloid cells and migration of tumor cells, 
hence, contribute to recruit the myeloid cells 
and enhance the migration of tumor cells by 
activation of TLR4 receptor and subsequent 
NF-κB signaling [157]. In addition, S100A8/A9 
has been identified novel target genes in the 
well-established Mdr2 knockout mouse model 
of inflammation-associated liver carcinogene-
sis. And co-expression of S100A8 and S100A9 
proteins promote malignant progression by 
activation of ROS-dependent signaling pathway 
and protection from cell death [160].

Other S100 proteins have been implicated in 
tumor microenvironment. For example, S100A7 

is induced by the proinflammatory cytokines. 
And S100A7 may enhance breast cancer 
growth and metastasis through upregulating 
proinflammatory pathways and recruiting 
tumor-associated macrophages (TAMs) [77, 
161]. In addition, S100A7 modulates a series 
of genes linked to the immune response includ-
ing the multifunctional gene, CD74, suggesting 
that S100A7 may act by host conditions or stro-
mal factors, thus contributing to the tumor pro-
gression [162]. S100A10 is also involved in the 
regulation of macrophage recruitment in 
response to inflammatory stimuli by binding to 
plasminogen, a key cell surface receptor of 
macrophages [163]. Further, S100A10-defi- 
cient mice show a decrease of macrophages 
and inhibition of growth of murine Lewis lung 
carcinomas or T241 fibrosarcomas, and the 
tumor growth deficit can be rescued by intra-
peritoneal injection of wild-type but not 
S100A10-deficient macrophages. These res- 
ults demonstrated that S100A10 is essential 
for the migration of macrophages to the tumor 
site, which defines a rate-limiting step in tumor 
progression [164]. Mechanistic investigation 
demonstrated that DLC1, a Rho GTPase-
activating protein (RhoGAP) competed with 
Annexin II for interaction with S100A10, pro-
moting ubiquitin-dependent degradation, 
attenuating plasminogen activation and result-
ing in inhibition of in vitro cell migration, inva-
sion and tumorigenicity of lung cancer cells 
[66]. Taken together, these data support the 
notion that S100 proteins drive chronic inflam-
mation and thus promote tumor progression.

Angiogenesis

Angiogenesis is required for invasive tumor 
growth and metastasis and performs a critical 
role in the control of cancer progression [165]. 
Angiogenesis is controlled by equilibrium 
between angiogenic stimulators and inhibitors 
that are produced by tumor cells, surrounding 
stromal cells, and infiltrating leukocytes [166]. 
S100 proteins are involved in angiogenesis by 
affecting proangiogenic and antiangiogenic 
factors such as MMPs, TGF-β, fibroblast growth 
factor (FGF), vascular endothelial growth factor 
(VEGF) etc. For example, S100A4 may induce 
angiogenesis through interaction with Annexin 
II and accelerate plasmin formation, thereby 
promoting tumor metastasis [167, 168]. Also, 
S100A4 may stimulate the degradation of ECM 
and promote angiogenesis by transcriptionally 
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Table 1. The altered expression and potentially clinical implications of S100 proteins in human can-
cer

Name
Gene expression (Tumor type)

Clinical implications Reference
Over-expression Under-expression

S100A1 Breast, Kidney, Ovary, 
Melanoma

A marker for poor prognosis ovarian and endometrial 
cancers;
A specific and sensitive marker in distinguishing nephrogenic 
adenoma from prostatic adenocarcinoma.

[210-215]

S100A2 Esophagus, Breast, 
Colon,
Stomach,
Lung,
Ovary
Pancreas

Larynx
Melanoma
Prostate, Bladder

A poor prognostic marker for NSCLC and pancreatic cancer;
A predictor of good prognosis and survival in OSCC, ESCC 
and LSCC;
an independent prognostic marker for recurrence in oral 
cancer and CRC;
A predictor of response pancreatectomy and a metastatic 
marker for  pancreatic cancer.

[15, 17, 109, 
176-178, 210, 214, 
216-233]

S100A3 Stomach [217]

S100A4 Breast
Melanoma
Stomach
Bladder, Esophagus
Kidney
Lung
Colon
Bone
Pancreas, Uterus
Ovary
Thyroid

Oral A biomarker for progression/metastasis or prognosis in mul-
tiple cancers such as breast cancer, gastric cancer, bladder 
cancer, pancreatic cancer, ESCC, CRC, LSCC and NSCLC.

[10, 13, 83, 185-
187, 210, 214, 217, 
221, 229, 234-256]

S100A5 Brain [204]

S100A6 Breast 
Melanoma 
Stomach
Pancreas
Colon 

Prostate
Oral

A diagnostic marker or prognostic factor in pancreatic 
cancer, gastric cancer, prostate cancer, melanoma, NSCLC 
and HCC;

[110, 210, 214, 
249, 257-264]

S100A7 Stomach
Head and neck
Oral
Ovary
Skin
Breast

Salivary gland A predictor of poor prognosis in HNSCC and estrogen 
receptor-negative invasive breast cancer;
Serum S100A7 may serve as a potentially diagnostic marker 
for lung cancer and ovarian cancer.

[192, 193, 195, 
196, 217, 265-268]

S100A8 Breast
Stomach
Lung
Oral Prostate

Oral
cervix

A significant predictor of recurrence in bladder cancer;
a poor prognostic marker for Non-Muscle-Invasive Bladder 
Cancer (NMIBC) and  invasive ductal carcinoma of the breast 
(IDC).

[19, 182, 197, 210, 
218, 249, 269-274]

S100A9 Breast, Stomach
Lung
Cervix
Prostate

Esophagus A poor prognostic marker in IDC and NSCLC;
Serum S100A9 may serve as a useful marker to discriminate 
between prostate cancer and benign prostatic hyperplasia.

[19, 47, 181, 182, 
210, 218, 269, 271, 
272, 275]

S100A10 Breast
Stomach
Gallbladder
Kidney

A predictor for recurrence of CRC;
a potential molecular target for early gallbladder cancer 
diagnostics and therapeutic applications;

[210, 232, 276, 
277]

S100A11 Breast, Stomach
Pancreas
Lung
Colon
Uterus

An unfavorable prognostic marker in PAC;
Down-regulation of S100C is associated with bladder cancer 
progression and poor survival.

[9, 68, 183, 184, 
210, 218, 278, 279]

S100A13 Melanoma An angiogenic and prognostic marker in melanoma. [280]

S100A14 Breast 
Ovary, Uterus

Oral
Kidney, Rectum, Colon

Both S100A11 and S100A14 are significantly associated 
with breast cancer patient outcome.

[210, 249, 281]

S100A15 Breast [282]

S100A16 Bladder, Lung, Thyroid 
gland, Pancreas, 
Ovary

[283]

S100B Melanoma, Nerve 
Colon
Bone

A poor prognostic marker for CRC and melanoma;
Serum S100B has a clinically independent prognostic value 
in patients with melanoma and breast cancer.

[200-203, 214, 
226, 284, 285]
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activating MMP-13 expression [169]. In addi-
tion, S100A4 and VEGF exerts a synergistic 
effect on Human Umbilical Vein Endothelial 
Cells (HUVECs) migration via the RAGE receptor 
by KDR expression and MMP-9 activity, and a 
neutralizing monoclonal antibody against 
S100A4 abolishes endothelial cell migration, 
tumor growth and angiogenesis [27]. S100A7 
promotes angiogenesis by the dramatic regula-
tion of MMP13 and VEGF [170]. S100A10 also 
plays an important role in angiogenesis in vivo, 
suggesting a critical role in endothelial cell 
function [171]. S100A13 affects the release of 
FGF-1 and contributes to angiogenesis [122]. 
Taken together, S100 proteins contribute to 
tumor metastasis through affecting the pro-
cess of angiogenesis.

S100 proteins and cancer stem cells

Recent studies have linked cancer stem cells 
(CSCs), EMT and the tumor microenvironment 
(TME) in tumor metastasis. Major signaling 
pathways involved in EMT are from TME. 
Conversely, TME may induce the occurrence of 
EMT in tumor cells. In addition, CSCs may be 
the inducers of EMT in the tumor cells, and EMT 
could promote stem cell (SC) properties and 
further generate cells with the features of CSCs 
[172, 173]. As a typical member of the S100 
family, S100A4 is not only involved in the inter-
play between EMT and TME, but also plays an 
important role in the establishment and/or 
maintenance of pluripotency. S100A4 is signifi-
cantly upregulated in mouse glioma CSCs [174]. 
Also, S100A4 expression is highly enriched in 
head and neck cancer-initiating cells (HN-CIC). 
Knockdown of S100A4 markedly decreased 
tumor spheres and in vivo tumor formation. 
S100A4 depletion also significantly decreased 
the side population (SP) cells and ABCG2-
positive cells in which high expression of 
ABCG2 possibly contributes to SP phenotype. 
In addition, S100A4 depletion dramatically 
decreased the enzymatic activity of aldehyde 
dehydrogenase (ALDH), which has been identi-
fied as a CSC marker, “cancer stemness” genes 
(Oct-4 and Nanog) expression and abrogated 

EMT signatures. Conversely, overexpression of 
S100A4 in head and neck squamous cell carci-
nomas cells enhanced their stemness and 
tumorigenic properties [95].

Other S100s have been implicated in CSCs, 
although their roles in the stemness properties 
are not well-studied. For example, S100A6 
expression is upregulated in mouse glioma 
CSCs [174] and S100A14 is also identified as a 
potential novel marker of breast cancer cells 
with tumor-initiating features [175]. These data 
suggest that S100 proteins can play crucial 
roles in maintaining self-renewal or cancer 
stem-like properties.

The altered expression of S100 proteins and 
clinical interest for S100 proteins as putative 
biomarkers in cancers

Members of the S100 protein family display a 
unique pattern of tissue/cell type specific 
expression and exhibit distinct alterations in 
different types of cancers [4]. The complexity of 
different patterns of alterations implies S100 
proteins might act as both friend and foe and 
exert both pro- and anti- tumorigenic actions. 
For instance, overexpression of several mem-
bers of S100 proteins (i.e. S100A2, S100A3, 
S100A6, S100A8/A9, and S100A11) has been 
documented in several types of cancer. 
Conversely, underexpression of these proteins 
has been found in other types of cancer. 
Overexpression of S100A2 indicates poor prog-
nosis in NSCLC and pancreatic cancer [17, 176, 
177]. Conversely, loss of S100A2 expression 
has been reported to correlate with a poorer 
prognosis and shorter survival in OSCC and 
ESCC [178, 179]. And patients with S100A2 
positive LSCC have a better relapse-free overall 
survival than patients with S100A2-negative 
tumors [15]. Moreover, S100A2 expression is a 
good predictor of response to pancreatectomy 
in pancreatic cancer [180]. S100A8 and 
S100A9 overexpression is considered as mark-
er of poor prognosis in breast IDC and NSCLC 
[19, 181]. In contrast, the presence of S100A9-
positive inflammatory cells in cancer tissues 
correlates with a better prognosis in patients 

S100P Lung
Breast
Pancreas

S100P is potentially useful for molecular Diagnosis of 
NSCLCs;
Elevated S100P level showed poorer overall survival in CRC 
and ovarian cancer patients.

[220, 223, 287-
291]

S100Z Breast [287]
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with gastric cancer [182]. S100A11 might be a 
significant tumor marker for pancreatic adeno-
carcinoma and high expression of S100A11 is 
an unfavorable predictor for prognosis of 
patients who have undergone surgical resec-
tion [9]. Conversely, low expression of S100A11 
is associated with poor survival in patients with 
bladder cancer [183]. However, another report 
showed that overexpression of S100A11 pre-
dicts poor survival [184]. Therefore, these 
S100 proteins may be of value as a biomarker 
of cancer progression in some instances 
dependent on tumor type. In contrast, some 
S100 proteins (i.e. S100A4) exhibit similar 
expression patterns in most types of cancers. 
For example, S100A4 is universally overex-
pressed in multiple cancers and the enhanced 
expression of S100A4 proves to be indepen-
dent marker for tumor progression, invasion, 
metastasis, poor survival and prognosis in sev-
eral different types of cancer [12, 185-191]. 
Nuclear accumulation of S100A7 may serve as 
predictor of poor prognosis in head and neck 
cancer [192] and S100A7 expression is associ-
ated with a worse prognosis in estrogen recep-
tor-negative invasive breast cancers [193].

More importantly, serum levels of some S100 
proteins have been considered as biomarkers 
in cancer. For example, S100A6 in sera corre-
lates with experimental burden and with clini-
cal disease stage [194] and the level of S100A7 
protein in serum may serve as a potential mark-
er in lung cancer and ovarian cancer [195, 
196]. Increased expression of S100A8/S100A9 
in sera was associated with recurrence-free 
survival with bladder cancer [197]. Increasing 
serum S100B is an independent prognostic 
marker for melanoma relapse and mortality 
risk [198, 199]. And preoperative serum levels 
of S100B in breast cancer patients strongly 
predicted poor survival [200]. In melanoma, 
S100B is a strong independent prognostic fac-
tor for overall and long-term survival [201, 
202]. Moreover, the overexpression of S100B 
has a significant correlation with postoperative 
relapse and poor prognosis in CRC patients 
[203]. Therefore, regulating S100-dependent 
biology means a better chance for a cure, espe-
cially in cancer. The most straightforward 
means in the clinic is to develop small molecule 
inhibitors directly inhibit the biological func-
tions of S100 proteins. S100B inhibitors will 
likely have therapeutic value for treatment of 
some cancers such as malignant melanoma, 

astrocytomas [204], renal tumors [205], and 
some forms of leukemia [206], where S100B is 
elevated. Also, the antiallergy drug cromolyn 
binds S100P, prevents activation of RAGE and 
inhibits tumor growth and invasion in mouse 
model [207]. A S100A9-binding small molecule 
(ABR-215050) is presently in a clinical trial for 
the treatment of prostate cancer [208, 209]. 
Taken together, some S100 proteins are cur-
rently being explored in the clinic as potential 
diagnostic and prognostic markers or thera-
peutic targets of cancer [143]. This review sum-
marizes these findings and evaluates their 
implications for human multiple cancers 
(Summarized in Table 1).

Future directions

S100 proteins play important roles in the devel-
opment and progression of tumors due to their 
multifunctional properties involved in a variety 
of cellular and extracellular processes. Future 
studies are needed to further reveal molecular 
mechanisms and signaling pathways that 
define the multiple and specific roles that S100 
proteins play in tumor progression and metas-
tasis, providing novel therapeutic targets and 
biomarkers.

Recent studies show that communication 
between cancer cells and stromal cells which is 
often mediated by ECM components in the 
tumor microenvironment plays a central role in 
cancer metastasis. Many members of S100 
proteins can be expressed by tumor cells and a 
variety of stromal cells. It is notable that a num-
ber of positive mutual feedback loops between 
these S100 proteins and growth factors, cyto-
kines and SAA proteins that serve to increase 
their expression, secretion and activity during 
the interplay between tumor cells and stromal 
cells. Therefore, modulating S100 proteins is 
not limited to activities within the cell. In- 
vestigations of the tumor-stromal and stromal-
stromal cross-talk involved in cellular migration 
in cancer may lead to the design of novel thera-
peutic strategies. Further studies are expected 
to investigate the role of S100 proteins in the 
communication between cancer cells and stro-
mal cells and elucidate the underlying mecha-
nism, which may facilitate not only S100-
related cancer research, but also to the dia- 
gnosis, prevention, and treatment of cancer.
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Finally, the clinical interest for S100 proteins 
will be continuously expanding. S100 proteins 
not only provide important diagnostic and prog-
nostic tools for the management of cancer, but 
that inhibition of their activity may represent a 
possible means of controlling cancer develop-
ment and progression.
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