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Abstract: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic effects 
against that tumors harboring EGFR activating mutations in the EGFR intracytoplasmic tyrosine kinase domain 
and resulted in cell apoptosis. Unfortunately, a number of patients ultimately developed resistance by multiple 
mechanisms. Thus, elucidation of the mechanism of resistance to EGFR-TKIs can provide strategies for blocking or 
reversing the situation. Recent studies suggested that redundant kinase activation plays pivotal roles in escaping 
from the effects of EGFR-TKIs. Herein, we aimed to characterize several molecular events involved in the resistance 
to EGFR-TKIs mediated by redundant kinase activation.
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Introduction

Epidermal growth factor receptor (EGFR), a 
member of a family which consists of at least 4 
receptor tyrosine kinases, including EGFR (Er- 
bB1), HER2 (ErbB2), HER3 (ErbB3), and HER4 
(ErbB4) (Figure 1). To date, seven ligands for 
EGFR have been identified: epidermal growth 
factor (EGF), transforming growth factor (TG- 
F)-α, heparin-binding EGF-like growth factor 
(HB-EGF), amphiregulin, betacellurin, epiregu-
lin, and epigen [1]. The EGFR family of cell sur-
face-receptor tyrosine kinases controls the 
intracellular signaling pathways that promote 
cell growth, proliferation, differentiation, and 
migration [2]. The important roles of EGFR in 
the activation of cancer relevant cellular pro-
cesses, together with the presence of overex-
pressed or aberrantly activated EGFR in non-
small cell lung carcinoma (NSCLC), suggest 
that targeting the EGFR may provide a strategy 
for NSCLC. 

Two main anti-EGFR strategies are currently in 
clinical application: low-molecular-weight TKIs 
that compete with adenosine triphosphate 
(ATP) for binding to the tyrosine kinase portion 
of a mutant EGFR receptor, and monoclonal 
antibodies (mAbs) that are directed at the 

ligand-binding extracellular domain, thereby 
preventing ligand binding, and consequently re- 
ceptor dimerization, and receptor signaling. 
Among these, gefitinib and erlotinib were the 
first EGFR-TKIs to be approved by Food and 
Drug Administration (FDA) for treatment of 
NSCLC (Table 1). These drugs inhibit kinase 
activity by competitively bind to the ATP-binding 
site of EGFR, preventing auto-phosphorylation 
and consequently blocking downstream signal-
ing cascades of RAS/RAF/MEK/ERK and PI3K/
AKT pathway, resulting in proliferation inhibi-
tion, cell cycle progression delay, and cell apop-
tosis [3]. 

Although EGFR-TKIs treatment shows good re- 
sponse rates and progression free survival 
(PFS) in NSCLC patients with EGFR gene muta-
tions, acquired resistance of TKIs therapy is 
common after a median of 12-16 months [4]. To 
date, various mechanisms of resistance to erlo-
tinib and gefitinib have been identified, includ-
ing 1) gatekeeper mutations in EGFR, such as 
the T790M second mutation which is thought 
to be responsible in over 50% in patients who 
acquire secondary resistance [5]; 2) activation 
of redundant kinase signaling pathway such as 
c-Met [6], insulin-like growth factor receptor 
(IGFR) [7], HER family members [8, 9], growth 
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arrest specific gene6 (Gas6)-AXL pathway [10], 
fibroblast growth factor receptor (FGFR) [11], 
vascular endothelial growth factor (VEGFR) 
[12], platelet-derived growth factor receptor 
(PDGFR) [2], and interleukin-6 receptor (IL-6R) 
signaling pathway [13]; 3) activation of down-
stream molecules (PTEN loss or K-RAS, PIK3CA 
mutation) [14, 15]; 4) small-cell lung cancer 
transformation [16] and 5) epithelial-to-mesen-
chymal transition (EMT) [17]. Therefore, it is 
essential to understand the mechanisms of 
resistance to TKIs for the development of new 
EGFR-targeted drugs. This review focuses on 

the mechanisms of resistance to EGFR-TKIs 
mediated by redundant kinase activation.

Redundant kinase pathways as mechanisms 
for resistance to EGFR-TKIs

A simple explanation for the insensitivity to 
EGFR inhibitors is through a “redundant effect” 
mechanism, the dominant activity of redundant 
receptor tyrosine kinase (RTK) systems distinct 
from EGFR [18]. In this regard, it has been 
observed that a large fraction of the tyrosine 
phosphoproteome was abundant in erlotinib-

Figure 1. HER family and EGFR signaling pathway. Ligand-bound receptors form functionally active homodimers or 
heterodimers, resulting in the activation of downstream signaling pathways such as PI3K/AKT, RAS/RAF/MAPK, 
PLCγ/PKC and JAK/STAT pathway, leading to cell proliferation, invasion, metastasis, survival and angiogenesis.
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treated cells [19]. Activation of these receptor 
tyrosine kinases by growth factors could pro-
tect cells against the EGFR-TKIs. Thus, there is 
no shortage of candidates for RTKs that may 
function as alternatives to EGFR in signal trans-
duction of growth and transformation in NSCLC. 

c-Met pathway

c-Met, a transmembrane tyrosine kinase recep-
tor that binds with HGF, then induces recruit-
ment of the Grb2-associated binder (GAB1) and 
activation of multiple signaling networks includ-
ing the phosphoinositide PI3K/AKT/mTOR and 
RAS/RAF/MEK/ERK pathways independent of 
EGFR, HER2, HER3, and HER4 [20]. Deregulation 
of c-Met signaling due to overexpression of 
c-Met or HGF has been associated with poor 
prognosis in advanced gastric carcinomas [21]. 
A well-documented mechanism is c-Met ampli-
fication initially reported in 15-20% of resistant 
patients [6], but recently another reported in 
3-5% [5]. Strong HGF expression was observed 
in > 60% of tumors with secondary EGFR-TKIs 
resistance [22]. Activation of c-Met pathway in 
human tumors can be induced by various 
means, like HGF overexpression, transactiva-
tion by other membrane proteins (including 
EGFR), and mutations [23, 24]. Accordingly, a 
recent study suggests that c-Met activation 
caused by c-met gene amplification is a suit-
able surrogate marker of resistance to EGFR-
TKIs [25]. Interestingly, c-met gene was also 
found amplify before drug exposure [26] as well 
as the c-Met activity and protein levels were 
elevated in nonexposed NSCLC patients [27]. 
This suggests c-Met overexpression is associ-
ated with primary resistance of EGFR-TKIs in 
NSCLC.

As for transactivation by other membrane pro-
teins, Engelman et al. [6] found that there is a 
cross-talk between EGFR and c-Met mediated 

by phosphorylation and signaling from HER3 to 
AKT in lung cancer cell lines, which leads to the 
resistance of EGFR TKIs. Much to their surprise, 
even if oncogenic EGFR was fully inhibited, acti-
vation of the PI3K/AKT/mTOR pathway could 
continue through the interaction of c-Met and 
HER3. Phosphorylation of HER3 by c-Met has 
been shown to occur via direct as well as indi-
rect mechanisms. With respect to direct phos-
phorylation, the c-Met receptor may homodi-
merize with HER3 activates the PI3K/AKT path-
way independent of EGFR [28]. This mechanism 
is analogous to the manner in which EGFR itself 
activates PI3K-driven signal transduction. 
Indirect phosphorylation of HER3 include up-
regulation of EGFR ligands, and activation of 
other tyrosine kinases (for example, c-Src) [29, 
30]. Moreover, when this redundant c-Met sig-
naling via HER3 was simultaneously inhibited, 
apoptosis increased dramatically among resis-
tant cells [30]. Specific short hairpin RNA 
(shRNA) and small interfering RNA (siRNA) of 
c-Met could restore the ability of gefitinib in 
resistant cells [31]. However, Rho et al. [32] 
found that there was no cross-talk between 
c-Met and EGFR. These phenomena may be 
explained by a previous report [27], in which it 
was shown that mutated and amplified EGFR 
can activate c-Met. Likewise, enhanced levels 
of HGF, active the c-Met/PI3K/AKT signaling 
pathway, thus induce gefitinib resistance of 
lung cancer cells harboring EGFR-activating 
mutations [33]. An anti-HGF neutralizing anti-
body or an HGF antagonist (NK4), when com-
bined with EGFR-TKIs, dramatically reversed 
HGF-induced resistance in vitro and in vivo 
[34]. Moreover, transient but intensive inhibi-
tion of PI3K/AKT by PI3K inhibitors and gefitinib 
successfully overcame HGF-induced EGFR-TKIs 
resistance in vitro and in vivo [35]. 17-DMAG 
(an HSP90 inhibitor) has efficacy for HGF-
triggered erlotinib resistance in cell lines and 
animal models [36]. Another research found 

Table 1. Clinical drugs targeting EGFR approved by FDA
Drugs Trade Name Target Category Times Application
Erlotinib Tarceva EGFR TKI 2004 NSCLC, pancreatic cancer
Gefitinib Iressa EGFR TKI 2003 NSCLC
Lapatinib Tykerb EGFR/HER2 TKI 2007 metastatic breast cancer
Afatinib Gilotrif EGFR/HER2 TKI 2013 NSCLC, metastatic breast cancer
Cetuximab Erbitux EGFR Monoclonal antibody 2004 colorectal cancer
Trastuzumab Herceptin HER2 Monoclonal antibody 1998 metastatic breast cancer
Panitumumab Vectibix EGFR Monoclonal antibody 2006 colorectal cancer
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that through promoting c-Met-integrin associa-
tion, HGF-FN (fibronectin) and HGF-VN (vitro-
nectin) complexes coordinated and enhanced 
endothelial cell migration through activation of 
the PI3K pathway [37]. There is also an impor-
tant cross-talk between c-Met and the α2β1 
integrin in mast cell, resulting in the release of 
the pro-inflammatory cytokine, IL-6 [38], which 
can activate the IL-6R/JAK/STAT signaling relat-
ed with EGFR-TKI resistance [13]. 

Many of these mechanisms above are thought 
to be critical for the contribution of c-Met to 
tumorigenesis and may be involved in both pri-
mary and acquired resistance to gefitinib, me- 
anwhile provide a rationale for targeting HGF/c-
Met pathway. The c-Met inhibitor PHA-665752 
[39] and NPS-1034 [40] has great effect 
against lung cancer cells resistant to EGFR-
TKIs. Mueller et al. [25] have shown that inhibit-
ing c-Met kinase activity in breast cancer cell 
lines with constitutive c-Met activation sensi-
tizes these cells to EGFR-TKIs. 

HER pathway

Recent studies have suggested that overex-
pression of other members of the EGFR recep-
tor family, namely HER2 and HER3 are involved 
in EGFR-TKIs resistance [41, 42]. Activation of 
HER2 signaling was recently reported to cause 
resistance to cetuximab alone in patients with 
colorectal cancer [43]. The recent role of HER2 
amplification in the acquisition of resistance to 
TKIs, reported in 12-13% of patients [5]. HER2 
can be actived by IGFR1 through a physical 
association between the two receptors [44]. 
Importantly, IGFR1 signaling via the PI3K/AKT 
pathway is associated with resistance to trastu-
zumab (an anti-HER2 monoclonal antibody) in 
breast cancer, it also demonstrate evidence of 
the existence of a physical interaction between 
IGFR1 and HER2 [45]. Furthermore, activated 
IGFR1 can also physically associate with HER3 
and HER4 [46]. Cretella et al. [8] found that tar-
geting HER2 with trastuzumab-DM1 can im- 
prove the treatment of HER2 positive breast 
cancer. It offers a new therapeutic approach in 
lung cancers expressing HER2 even when 
resistant to EGFR-TKIs. The combination of afa-
tinib plus cetuximab could be efficacious in ov- 
ercoming acquired resistance in lung cancer 
[47]. HER2 mutations are present in about 
2-4% of NSCLC, especially in women, never-
smokers, Asian patients and in adenocarcino-
mas without EGFR or K-ras mutations [48]. 

These mutations render the receptors activa-
tion, resulting in proliferation and metastasis of 
tumor cells. Alternatively, through study of 
receptor down-regulation, data suggests that 
mutant EGFRs, especially the L858R/T790M 
variant, have a propensity to heterodimerize 
with HER2, which allows for evasion of Casitas 
B-cell lineagelymphoma (CBL) mediated ubiqui-
tinylation and subsequent lysosomal degrada-
tion [49]. 

Likewise, HER3 overexpression was previously 
reported to be associated with impaired sur-
vival in breast cancer [50]. Almost all de novo 
resistant NSCLC tumors the HER3 receptor is 
strongly phosphorylated [51]. HER3 lacks tyro-
sine kinase activity but it can be trans-phos-
phorylated efficiently by c-Met [6] or other RTKs 
such as HER2 and HER4 [52]. HER3 interacts 
with the other HER family members to active 
intracellular pro-survival signaling due to sev-
eral tyrosine residues in its intracytoplasmic 
domain, which can be phosphorylated and 
become high affinity docking sites for the cata-
lytic subunit of PI3K. High surface HER3 expres-
sion correlates with AKT phosphorylation in 
lung adenocarcinoma primary cultures [10]. 
Byun et al. [53] reported that genetic silencing 
of USP8 led to the downregulation of several 
RTKs including EGFR, HER2, HER3, and c-Met, 
markedly decreased the viability of gefitinib-
resistant and -sensitive NSCLC cells by decreas-
ing RTKs expression while having no effect on 
normal cells. Furthermore, erlotinib with either 
HER2 or HER3 knockdown by their cognate siR-
NAs also inhibited PI3K/AKT activation [54]. 
This indicates that the loss of addiction to 
mutant EGFR results in the gain of addiction to 
both HER2 and HER3. Antibodies against HER3 
only work in cells overexpressing surface HER3 
[9]. And combination of anti-HER3 antibodies 
with EGFR-TKIs synergistically affect cell prolif-
eration in vitro, resulting in cell cycle arrest, 
p21 expression upregulation and tumor growth 
inhibition in mouse xenografts [9]. Hence sur-
face HER3 may be considered a predictive 
marker of efficacy if appropriately validated in a 
more number of cases. In light of these consid-
erations, HER3 might be a central node in the 
resistance to EGFR-TKIs, and agents targeting 
this molecule are being developed (NCT01- 
211483) [55]. 

VEGFR pathway

Vascular endothelial growth factor (VEGF) is an 
important survival factor of vascular endotheli-



Redundant kinase activation and resistance of EGFR-TKIs

612 Am J Cancer Res 2014;4(6):608-628

al cells that activates tyrosine kinase after 
binding to VEGFR. VEGFR2 is the key mediator 
of VEGF-mediated angiogenesis, and VEGFR1 
and VEGFR3 are involved in vasculogenesis, 
and lymphangiogenesis, respectively [12]. Re- 
cent studies showed that VEGF overexpression 
was associated with clinical response to EGFR-
TKIs in patients with lung cancer [56, 57]. It 
suggested the VEGF may play a key role in 
resistance to EGFR-TKIs. EGFR and VEGFR sig-
naling pathways are independent but are close-
ly interlinked, both EGF and TGF-α can induce 
VEGF expression via activation of EGFR in cell 
culture models [58]. 

HGF is also associated with VEGFR signaling 
pathway. High serum HGF is relevant to short 
progression-free survival in a clinical trial of a 
VEGFR inhibitor, sorafenib, for the treatment of 
hepatocellular carcinoma [59]. Overexpression 
of HGF conferred resistance to lenvatinib (a 
VEGFR inhibitor) and it was cancelled by golva-
tinib (a c-Met inhibitor) [60]. In renal cell carci-
noma, HGF was also reported to induce resis-
tance to sunitinib, an inhibitor of multiple kinas-
es, including VEGFR2, by compensating for 
inhibited angiogenesis [61]. Previous study 
showed HGF stimulated VEGF production by 
activation of the c-Met/Gab1 signaling pathway 
in EGFR mutant lung cancer cell lines [62]. 
Silencing of Gab1 successfully canceled HGF-
stimulated VEGF production and HGF-induced 
EGFR-TKIs resistance. These findings suggest 
that Gab1 may be a novel ideal target for con-
trolling EGFR mutant lung cancer. Though inhi-
bition of VEGFR shrinked the tumor, meanwhile 
it made the tumor more aggressive with more 
metastatic behavior in a model of pancreatic 
neuroendocrine cancer [63]. Maybe the block-
ade of VEGFR signaling caused hypoxia and 
that hypoxia is likely to enhance HGF/c-Met 
pathway that promotes tumor survival and 
metastasis [64]. Therefore, dual inhibition of 
HGF and VEGF may be therapeutically useful 
for EGFR-TKIs resistant lung cancer. Golvatinib 
is an orally active dual TKI for c-Met and 
VEGFR2, it exerts effect by inhibiting the c-Met/
Gab1/PI3K/AKT pathway [65]. 

IGFR pathway

IGFR is a member of the class II receptor tyro-
sine kinase family. It has two distinct ligands 
(IGF1 and IGF2) plus insulin, and two receptors 
(IGFR1 and the insulin receptor). The two recep-
tors are capable of homo- and hetero-polymer-

ization, leading to receptor auto-phosphoryla-
tion and subsequent phosphorylation of sub-
strate proteins, the insulin receptor substrate-1 
(IRS-1) [66]. Similar to the EGFR pathway, IGFR1 
activation triggers the RAS/RAF/MAPK path-
way and the PI3K/AKT/mTOR pathway [67]. 
Overexpression of IGFR1 was detected in 33% 
of HCCs and increased activation of IGFR1 was 
observed in 52% of tumors [68]. A report indi-
cated that IGF1R activation is a molecular me- 
chanism that confers acquired resistance to 
erlotinib in lung cancers with the wild-type 
EGFR [69]. Overexpression of the igfr1 gene 
constitutes a common theme in many human 
cancers including NSCLC [70]. Interestingly, 
IGFR1 expression in NSCLC specimens was 
associated with a history of tobacco smoking, 
squamous cell carcinoma histology, mutant 
(mut) K-Ras, and wild-type (wt) EGFR, all of 
which have been strongly associated with poor 
response to EGFR-TKIs [71]. Kim et al. [72] 
found that activation of IGFR1 caused by IGF1 
overexpression led to spontaneous lung tumor 
development that progressed to adenocarcino-
ma upon exposure to tobacco carcinogens. It 
was suppressed by a selective IGFR1 inhibitor, 
cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-
1-(2-phenyl-quinolin-7-yl)-imidazo [1, 5-a] pyr-
azin-8-ylamine (PQIP) on the early stage. 
Jameson et al. [7] found that IGFR1 activation 
partially reverses the cell cycle arrest caused 
by gefitinib in oral squamous cell carcinoma 
(OSCC) cells. Importantly, IGFR1 stimulation 
does not eliminate the gefitinib-induced incre- 
ase in total p27 (cyclin kinase inhibitor), its 
phosphorylation state and subcellular localiza-
tion are altered. This suggested that the IGFR1 
can rescue OSCC cells from EGFR-TKIs treat-
ment. Knockdown of IGFR1 with siRNAs, mam-
mary tumor growth was strongly delayed in 
vitro [73]. And lung adenocarcinoma cell lines 
responded to combined therapy with erlotinib 
and NVP-AEW541, an IGF1R-TKI [69]. Thus, it 
has been proposed that reduction of IGFR sig-
naling in some cancer types may have thera-
peutic benefit to EGFR-TKI treatment.

In addition to the level of IGFR1 and IGF, the 
degree of IGFR1 activation is dependent on the 
abundance of insulin like growth factor binding 
proteins (IGFBPs) [74]. Epidemiological studies 
have shown that decreasing levels of IGF-1 and 
increasing levels of IGFBP-3 are independently 
associated with a high risk of colorectal cancer 
[75]. IGFBP-3 is a potent negative regulator of 
IGFR1 activation by binding with IGF-1 and then 
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regulates the mitogenic and anti-apoptotic 
actions of IGFs independent of IGF [76]. Choi et 
al. [77] showed significant downregulation of 
IGFBP-3 expression in resistant cells, and addi-
tion of recombinant IGFBP-3 restored the abili-
ty of gefitinib to downregulate PI3K/AKT signal-
ing and to inhibit cell growth. On the other hand, 
adenovirus-mediated overexpression of or rec- 
ombinant IGFBP-3 slightly inhibited the growth 
of HCC cells in vitro [78]. A report showed that 
in breast cancer, trastuzumab regulates IGFBP-
2 and -3 expressions, which impacts IGFR1 
downstream signaling [79]. Collectively, these 
results suggest that loss of expression of IG- 
FBPs in tumor cells treated with EGFR-TKIs 
results in the activation of IGFR1 signaling, 
which in turn mediates resistance to EGFR- 
TKIs. 

Hurbin et al. [80] observed a cross-talk between 
EGFR and IGFR1 and their ligands, amphiregu-
lin and IGF1 under gefitinib treatment in resis-
tant mucinous cells. It is reported that amphi-
regulin and IGFR1 mediate gefitinib resistance 
through increasing the interaction between the 
proapoptotic protein BAX and Ku70 [81]. The 
inhibition of Ku70 acetylation enhances BAX/
Ku70 binding and prevents gefitinib-induced 
apoptosis. In contrast, the acetylation of Ku70 
releases BAX from Ku70 and restores the sen-
sitivity to gefitinib. Indeed, amphiregulin is a 
principal activator of the ligand-receptor auto-
crine pathway, members of the HER family (HER 
1-4) can form heterodimers with IGFR1 and 
InsR, leading to the formation of hybrid recep-
tors through physical associations between 
heterologous families [80]. Morgillo et al. [82] 
also reported that increased levels of EGFR/
IGFR1 heterodimers activated IGFR1 and its 
downstream signaling mediators, leading to 
acquired resistance to erlotinib. Co-treatment 
of erlotinib and an IGFR1 inhibitor induced both 
apoptosis and cell cycle arrest, while either 
agent or EGFR-TKI alone only induced cell cycle 
arrest in some EGFR mutant NSCLC cells [83]. 

FGFR pathway

FGFs bind with members of a family of RTKs 
(FGFR1-4), then lead to receptor dimerization 
and activation of the PI3K/AKT/mTOR and RAS/
RAF/MEK/ERK pathways [84]. Recently, FGFR 
was regarded as an important autocrine growth 
factor pathway for resistance to EGFR-TKIs in 
NSCLC [85]. FGFR1 amplification is associated 
with poor prognosis in NSCLC [86]. A plenty of 

in vitro studies revealed overexpression of 
FGF2, FGFR1 and FGFR2 mRNA and protein in 
primary NSCLC specimens [87, 88]. Recently, 
two independent groups reported that FGFR1 
was amplified in approximately 10% to 20% of 
squamous cell lung cancers [89, 90]. However, 
another study found only 3 of 41 NSCLC cell 
lines showed evidence for activated FGFR1 
[91]. And amplification of the fgfr gene has 
been detected in bladder cancer, albeit at a 
very low frequency [92]. It is suggested that 
FGF/FGFR pathway activation is one of the 
important mechanisms to escape from EGFR-
TKIs. Terai et al. [11] found that the expression 
of FGFR1 and FGF2 were increased in gefitinib-
resistant cells and that the phosphorylation 
status of EGFR itself was not affected by FGF2/
FGFR1 activation and completely inhibited by 
gefitinib. Ware and colleagues reported on 
rapid acquired resistance to EGFR-TKIs in 
NSCLC cell lines through derepression of 
expressions of FGFR2 and FGFR3 [93]. They 
demonstrated that FGFR2 and FGFR3 can 
mediate FGF2 and FGF7 stimulated ERK activa-
tion as well as FGF stimulated transformed 
growth in the setting of EGFR-TKIs. It means 
that FGF2 or FGF7 rescues NSCLC cells from 
treatment with an EGFR-TKI. Also, co-culture of 
H322c cells with human fibroblasts rescues 
EGFR-TKIs induced growth inhibition in an 
FGFR-dependent manner [93]. Interestingly, 
FGFR2 and FGFR3 expression was induced in 
all gefitinib-sensitive NSCLC cells and correlat-
ed with cells that co-express EGFR and EGF 
ligands or bear gain-of-function EGFR. However, 
NSCLC cells that do not express EGFR or are 
gefitinib-resistant did not exhibit FGFR2 and 
FGFR3 mRNA induction in response to gefitinib 
[94]. Much to surprise, FGFR2 and FGFR3 
induction occurs quickly (1-2 days) compared 
with met gene amplification in response to gefi-
tinib (~6 months) [6]. It suggests that the fgfr2 
and fgfr3 gene are not amplified but are being 
regulated at the transcriptional level. Thus, 
increased FGFR2 mRNA is partially mediated 
by transcriptional induction of the fgfr2 gene 
following gefitinib treatment. Importantly, the 
application of siRNA and neutralizing FGF anti-
bodies is an efficient therapy against tumor 
growth [95, 96]. Also, RO4383596 (an FGFR 
inhibitor) inhibited basal fibroblast growth fac-
tor receptor substrate-2 (FRS2) and ERK phos-
phorylation as well as tumor proliferation and 
growth [94].
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In addition to inappropriate expression of FGF 
ligands and FGFRs, FGFR mutations could par-
ticipate in oncogenesis. FGFR2 mutations are 
mainly located within the hinge between Ig-like 
domains (exon 7), around the 3rd Ig-like do- 
mains and within the kinase domain [97]. 
FGFR2 mutations are observed gain-of-func-
tion in 10% of primary endometrial cancers as 
well as endometrial tumor cell lines [98]. In uro-
thelial cancers, FGFR3 mutations in the ligand 
binding domain lead to ligand-independent di- 
merization or stabilization of the active confor-
mation of the receptor while mutations in the 
kinase domain can render the receptor consti-
tutively active [92]. FGFR4 mutations have be- 
en observed in lung adenocarcinoma with a 
potential contributing role to carcinogenesis 
[99]. One study [18] suggested that epithelial 
to mesenchymal transition (EMT) can mediate 
EGFR-TKIs resistance by kinase switch, such as 
those activated by FGFR, PDGFR or α5β1 integ-
rin. Their results were provided by primary lung 
cancer cells without exposure to EGFR-TKIs and 
cells with wild-type EGFR. FGFRs have also 
been shown to be physically associated with 
N-cadherin in mammary cancer cells, resulting 
in cell survival, invasion, proliferation and 
metastasis [100]. Maybe the N-cadherin pro-
motes ERK and AKT phosphorylation resulting 
in sustained signaling. 

PDGFR pathway 

PDGFR is a member of the class III receptor 
tyrosine kinase family. PDGFR can activate the 
PI3K, PLCγ, and mitogen-activated protein ki- 
nase (MAPK) signaling pathways [101]. High 
expression of PDGFRβ is a predictor of poor 
prognosis [102]. The PDGFRβ isoform has been 
shown to mediate EGFR transactivation, sug-
gesting this class of receptors may play a role in 
the response to TKIs. Importantly, phosphory-
lated PDGFRβ was observed in glioblastoma 
that lacked of EGFR signaling [103]. The contri-
bution of PDGFRβ signaling to drug resistance 
remains incompletely understood. PDGFRβ 
amplifications and/or mutations are exceed-
ingly rare events in glioblastoma [104]. In 
mouse genetic models, PDGFβ ligand overex-
pression can promote gliomagenesis by enh- 
ancing cellular proliferation [105]. Kassouf et 
al. [106] revealed that PDGFRβ was undetect-
able or expressed at very low levels in gefitinib-
sensitive cell lines, but was expressed at higher 
levels in all resistant cell lines. Akhavan et al. 
[2] first demonstrated that mTORC1 inhibition 

mediates EGFR-TKIs resistance in glioblastoma 
through transcriptional regulation of PDGFRβ, a 
mechanism which could also be active in other 
cancer types. In mouse embryonic fibroblasts, 
PDGFRβ was shown to be a target of mTOR-
dependent negative transcriptional downregu-
lation [107]. Also, PDGFRβ has been shown to 
mediate vemurafenib resistance through tran-
scriptional upregulation in melanoma [108]. 
Akhavan et al. [2] identified that EGFR inhibi-
tors derepress PDGFRβ transcription, providing 
a potent mechanism underlying RTK switching. 
Thomson et al. [18] suggested that a switch to 
PDGFR signaling occurs in concert with EMT. 
Recently, PDGFRβ has been shown to promote 
glioma stem cell self-renewal [71], suggesting a 
more definitive role in tumorigenesis and/or 
maintenance. Moreover, a PDGFRβ inhibitor si- 
gnificantly reduced PDGFR and MAPK phos-
phorylation [71]. Although these observations 
indicate that PDGFRβ can active EGFR/MAPK 
pathway, there is still not any clinical data sug-
gesting a relationship between PDFGR expres-
sion and acquired resistance to EGFR-TKIs. 

In addition, Yeh et al. [109] showed that PD- 
GFRα have a functional interaction with c-Met 
in vitro and in vivo. Previously, Black and his col-
leagues reported co-expression of c-Met/PD- 
GFRα in all of 9 human bladder cancer cell lines 
[110]. The interaction between c-Met and PD- 
GFRα was further corroborated by HGF stimula-
tion and siRNA silencing experiments in vitro 
[109]. The interaction may be initiated by signal 
regulation. That PD98059 rather than FTI-277 
(RAS inhibitor) or PP2 (Src inhibitor) success-
fully inhibited c-Met activation, suggests trans-
activation of PDGFRα is independent of RAS or 
Src. Consistent with this, Kina et al. [111] sh- 
owed that PDGFα-mediated signaling plays a 
key role in c-Met upregulation, which in turn is 
relevant with chemotherapy resistance. And 
PDGFα receptor inhibition eliminates cisplatin-
dependent c-Met expression in cervical cancer 
cell lines [111]. Future studies are required to 
explore the mechanism of PDGFR pathway in 
resistant cancers.

AXL pathway

AXL is a member of the tyro3 tyrosine kinase 
receptor family of RTKs, which also includes 
MER and TYRO-3. After binding with growth 
arrest-specific gene 6 (GAS6), it activates the 
PI3K/AKT/mTOR and RAS/RAF/MEK/ERK path-
ways to promote proliferation, survival, and 
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migration of cancer cells in vitro [112] and tu-
mor angiogenesis and metastasis in vivo [113]. 
Recently, the activation of AXL kinase confers 
acquired resistance mechanism of EGFR-TKIs 
[10]. Overexpression of AXL and/or GAS6 is the 
main mechanisms of activation in a wide range 
of human cancers, and it often correlates with 
poor prognosis [114]. In a small cohort of NS- 
CLC patients refractory to EGFR-TKIs, higher 
expression of AXL and GAS6 was detected in 
20% and 25% of cases, respectively [10]. High 
levels of AXL in EGFR mutant lung cancer cell 
lines induced erlotinib resistance [52, 80]. 
Zhang et al. [10] shows that AXL upregulation is 
the second most common mechanism of EGFR-
TKIs acquired resistance (after EGFR T790M) 
in EGFR-mutant NSCLCs. In some erlotinib re- 
sistance cell lines, GAS6 is not indispensable 
because AXL overexpression can promote do- 
wnstream signaling and induce transformation 
in the absence of GAS6 expression [10].

Resistant cells with AXL overexpression are 
more inclined to migrate and adhere, which is 
the same with EMT and c-Met [115]. AXL was 
also activated in this cell line with T790M and 
c-Met amplification, whereas a report [10] fo- 
und increased activation of AXL in EGFR-mutant 
lung cancer models with erlotinib acquired re- 
sistance in the absence of EGFR T790M or c- 
Met activation. Even so, c-Met was shown to 
interact with AXL, and promote signal transduc-
tion downstream of AXL [116]. Increased ex- 
pression and coactivation of c-Met and AXL 
have been described in NSCLC [91]. Both c-Met 
and AXL was involved in HER2-positive breast 
cancer resistant to lapatinib [117, 118] and 
resistance to AKT inhibition in preclinical mod-
els [119]. Salian-Mehta et al. [120] showed 
HGF/c-Met signaling modulated neuron migra-
tion dependent and independent of AXL co-
expression and p38MAPK. Conversely, AXL con- 
trols gonadotropin-releasing hormone (GnRH)
neuronal survival via HGF/c-Met signaling. Wh- 
en altering the levels of AXL, the bi-directional 
cross-talk between AXL and c-Met was affect-
ed. The kinase dead mutant of AXL expression 
reduced the phosphorylation of AKT and p38- 
MAPK induced by c-Met, but with no effect on 
ERK or STAT3 [120]. It confirmed the cell spe-
cific pathways downstream of the interaction 
between AXL and c-Met in GnRH neurons. 
Similarly, either deletion of the intracytoplas-
mic domain or mutating the tyrosine kinase 
domain of AXL reduced HGF- induced activa-

tion of c-Met. Interestingly, the AXL pathway 
was also associated with increased levels of 
tumor vimentin, thus suggesting that AXL may 
mediate EMT in EGFR-TKIs resistant patients 
[16, 17]. Consistently, a prior study showed vi- 
mentin upregulation was associated with AXL 
overexpression in breast cancer cells [40]. AXL 
and MER also regulate tumor stromal cell inter-
actions via secretion of proinflammatory cyto-
kines [114]. Only MER (but not AXL or TYRO-3) 
inhibits IL-6 secretion by lipopolysaccharide 
(LPS)-stimulated U937 cells and monocytes/
macrophages [121]. 

Pharmacologically or genetically inhibiting AXL 
restored erlotinib sensitivity both in vitro and in 
vivo. Rho et al. [40] investigated the antitumor 
activity of NPS-1034, a newly developed drug 
that targets both c-Met and AXL, in gefitinib or 
erlotinib resistant NSCLC cells. Combining gefi-
tinib or erlotinib with NPS-1034 effectively 
induced cell proliferation delay and cell apopto-
sis in both resistant cell lines. Combining AXL 
siRNA or NPS-1034 with EGFR-TKIs is also ef- 
fective, suggesting that AXL is a key role in EG- 
FR-TKIs resistance. Importantly, whether GAS6 
might induce EGFR-TKIs resistance via AXL pa- 
thway and whether somatic alterations (amplifi-
cations, rearrangements, point mutations) in 
AXL or GAS6 occur in human EGFR-mutant NS- 
CLCs needs further study to fully elucidate.

IL-6R pathway

IL-6 was hypothesized to reduce the depen-
dence of EGFR pathway through the IL-6/
gp130/STAT3 axis [122]. Serum IL-6 levels are 
elevated in patients with lung cancer than in 
normal individuals [123]. Also, IL-6 is detected 
at higher levels in tumor-associated stroma 
than in normal bone marrow stroma [124]. 
Recently, it has been reported that STAT3 acti-
vation via IL-6R is relevant with multidrug resis-
tance in cancer cells [125]. Afatinib can pro-
mote the secretion of IL-6 by activating a posi-
tive feedback loop for IL-6/STAT3 axis. Among 
soluble factors secreted from stromal cells in 
tumor microenvironment, IL-6 is the most wide-
ly studied factor to induce resistance to anti-
cancer drugs in many cancers [126]. Kim et al. 
[13] found that AKT and ERK were dramatically 
inactivated due to afatinib treatment, but STAT3 
was paradoxically hyperactivated via increase 
of autocrine IL-6 production. Moreover, overex-
pression or addition of IL-6 to TKI-sensitive 
cells induced TKI resistance, which could be 
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overcome by metformin [127]. Finally, metfor-
min-based combinatorial therapy effectively 
blocked tumor growth in TKI-resistant cancer 
cells, which was associated with decreased 
IL-6 secretion and decreased IL-6-signaling ac- 
tivation in vivo. In addition, activation of NF-κB 
is another possible explanation for the auto-
crine IL-6 production by afatinib [13]. IL-6 is a 
well-known downstream target of NF-κB. Rec- 
ently, it was reported that increased IL-6 pro-
duction via NF-κB activation mediated resis-
tance to docetaxel in prostate cancer [128]. 
These reports support the hypothesis that 
NF-κB activation is involved in autocrine IL-6 
production upon afatinib treatment. Because 
IL-6 is mainly secreted from fibroblasts in vivo 
[129], there may be a cross-talk between fibro-
blasts and IL-6, which leads to afatinib resis-
tance through activation of the IL-6R/JAK1/
STAT3 signaling pathway in cancer cells. Co- 
culturing cancer cells and MRC5 fibroblasts 
(secrete IL-6), afatinib-induced STAT3 activa-
tion was enhanced in the presence of MRC5-
CM [13]. And treating with IL-6R neutralizing 
antibody or IL-6R siRNA completely suppressed 
afatinib-induced STAT3 activation and signifi-
cantly restored the effect of afatinib. However, 
the treatment of MRC5-CM did not affect the 
inactivation of AKT and ERK by afatinib in both 
cells. These findings indicate that interaction 
with fibroblasts is important for de novo resis-
tance of NSCLC cells to afatinib through activa-
tion of the IL-6R/JAK1/STAT3 signaling path- 
way.

Other pathways

Several recent studies demonstrated that the 
FAS-NFκB signaling pathway can promote tu- 
mor growth [130, 131]. NFκB signaling has 
been broadly associated with inflammation and 
cancer [132]. A recent report showed activated 
NFκB pathway rescued NSCLC cells bearing a 
mutant EGFR from EGFR inhibitors. Bivona et 
al. [133] identified activation of NFκB signaling 
as a new mechanism of de novo resistance to 
erlotinib treatment. Of the 36 shRNAs recov-
ered from the pooled screen, 18 targeted ge- 
nes that are involved in NFκB signaling directly 
or indirectly. Interestingly, one of the top hits in 
the pooled screen was CD95/FAS, the ligand of 
the FAS death receptor, it functions upstream 
of NFκB to promote cell survival and tumor 
growth [131]. They also observed increased 
FAS expression and NFκB pathway activation in 
resistant cells [133]. And knockdown of FAS 

and several components of the NFκB pathway 
enhanced cell death in EGFR-mutant lung can-
cer cells treated with EGFR-TKIs. Low expres-
sion of the NFκB inhibitor IκB (high NFκB activa-
tion state) was predictive of a poor clinical out-
come in patients treated with EGFR-TKIs [133]. 
IκB status was not a predictive outcome in 
EGFR mutant lung cancer patients treated with 
surgery or chemotherapy, indicating NFκB sig-
naling is specific biomarker of EGFR-TKIs res- 
ponse in this patient population. Presumably 
more data about this pathway and its clinical 
relevance will become available in the near 
future. 

The echinoderm microtubule-associated pro-
tein-like (EML) 4-ALK (anaplastic lymphoma 
kinase) fusions gene that encodes a cytoplas-
mic chimeric protein with constitutive kinase 
activity have been found in 5-7% of NSCLC 
patients, more frequently in those with young 
age, adenocarcinoma histology, and never or 
light smokers [134]. The resulting protein car-
ries a coiled-coil basic domain from the ups- 
tream fusion partner, which may promote di- 
merization to activate the ALK tyrosine kinase 
[135]. EML4-ALK overexpression activated ERK 
and STAT3, but not AKT [136]. Moreover, ALK 
gene rearrangements are often mutually exclu-
sive with EGFR mutations, even if there were 
cases of patients harboring both EGFR activat-
ing mutations and ALK translocation [137]. 
Activating mutations or translocations of the 
alk gene have been identified in anaplastic 
large-cell lymphoma, neuroblastoma, inflamma- 
tory myofibroblastic tumor and NSCLC [135]. 
Activated alk gene initiates signaling mostly 
through RAS/RAF/ERK and PI3K/AKT pathway. 
ALK inhibition results in downregulation of both 
AKT and ERK phosphorylation [138], and cell 
apoptosis mediated by ERK-dependent BIM 
upregulation and STAT3-dependent survivin 
downregulation [136]. 

Rearrangements of the receptor tyrosine kin- 
ase c-ros oncogene 1 (ROS1) appeared to occur 
in approximately 1% to 2% of NSCLC [139]. 
ROS1 is located on chromosome 6 and has a 
high degree of amino acid homology with ALK 
(49% within the kinase domain and 77% within 
the ATP-binding site). Clinicopathologic features 
of ROS1-positive cases are the same as ALK-
rearranged NSCLC, including younger age, nev- 
er smokers, and adenocarcinoma histology 
[140]. Multi-targeted ALK/MET/ROS1 inhibi-
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tors, such as crizotinib, have demonstrated effi-
cacy in this population [141].

Strategies 

Targeting redundant kinase and its ligands

There are many inhibitors and anti-bodies tar-
geting both receptors and ligands of these 
redundant kinases (Figure 2). For example, 
adding a c-Met inhibitor (PHA-665752 or NPS-
1034) may be beneficial to EGFR mutant lung 
cancer patients whose tumors harbor c-Met 
amplification as a mechanism of EGFR-TKIs re- 
sistance. Antibodies targeting the HGF (NK4) 
are currently in clinical development. Besides, 
17-DMAG (an HSP90 inhibitor) has efficacy for 
HGF-triggered erlotinib resistance in cell lines 
and animal models [36]. Likewise, as an inhibi-
tor of IGFR1 and AKT phosphorylation, PQ401 
is reported to mimic IGFBP-3 and an IGFR1-
blocking antibody that does not bind the InsR 
[142]. Amphiregulin might also be a therapeutic 
target. Amphiregulin inhibition combined with 
gefitinib strongly reduced tumor growth of 
mucinous cells with wild-type EGFR and mutat-
ed K-ras in vivo [81]. It is also noteworthy that 
inhibition of the InsR along with the IGFR1 may 
be clinically desirable due to InsR can substi-
tute for IGFR1 when IGFR1 is selectively inhib-
ited [143]. Importantly, targeting multiple re- 
ceptors with a single agent may potentially 
overcome molecular heterogeneity and improve 
efficacy. HKI-272 (neratinib) is an irreversible 
inhibitor with activity against both EGFR and 
HER2 [144]. Idacomitinb, a pan-HER inhibitor 
that irreversibly and covalently binds to the ATP 
domain of each of three kinase-active mem- 
ber of the HER family (EGFR, HER2 and HER4) 
[145]. BMS-690514 is a TKI targeting both 
EGFR and VEGFR that has shown interesting 
phase II data with patients with NSCLC [146]. 
Likewise, AZD2171 (cediranib) was developed 
as a VEGFR inhibitor [147], but exhibits good 
potency for FGFRs and has been employed as 
an effective inhibitor of growth of FGFR2-driven 
gastric cancer cell lines [148]. Additionally, a 
multi-kinase targeted TKI, dovitinib, has been 
used to inhibit activated FGFR3 in multiple 
myeloma [149]. Sorafenib is a multi-targeted 
tyrosine kinase inhibitor acting on PDGFR, VE- 
GFR, RAF, c-Kit, and fms-like tyrosine kinase-3 

(FLT3), and has been shown to inhibit hepatic 
cellular cancer (HCC)-induced proliferation and 
angiogenesis [150, 151]. 

Inhibition of downstream molecules

Since a lot of redundant kinase signaling share 
the same downstream signaling, PI3K/AKT/
mTOR or RAS/RAF/MEK/ERK or JAK/STAT path-
way, the inhibitors of these downstream mole-
cules may be of a great efficency to block the 
activation of various redundant kinase (Figure 
2). At the present time, several drugs that inhib-
it activated RAF, MEK, PI3K, AKT and mTOR are 
available and clinical trials with these agents 
are actively recruiting patients, some of them 
selecting therapy based on the genetic profile 
of the tumor. Addition of PI3K inhibitors to stan-
dard treatment is an interesting approach 
already being explored in multiple phase- I/II 
trials [152]. Besides, mTOR is a key mediator of 
PI3K/AKT downstream signaling and is com-
monly activated in NSCLC. To date, several mT- 
OR inhibitor rapamycin analogs are available, 
including temsirolimus and everolimus, which 
show effect in renal cell carcinomas and pan-
creatic neuroendocrine tumors [153]. Rapa- 
mycin and its analogs bind FK506-binding pro-
tein-12 (FKBP12) inhibits mTOR activity and 
halting the translation of proteins critical for 
cell proliferation and survival [154]. Moreover, 
mTOR, PI3K, and dual PI3K/mTOR inhibitors 
are being evaluated in early-stage clinical trials 
of lung cancer, either alone or in combination 
with EGFR inhibitors. The MEK inhibitors, such 
as CI-1040 and AZD6244, reversed the resis-
tance both in vitro and in vivo [155]. Several 
agents, OPB-31121 (STAT3 decoy oligonucle-
otides) [156], or AZD1480 (a small molecule 
inhibitor for JAK) [157] has been developed, it 
can block the IL-6R and EGFR pathway, may be 
suitable candidates for future combined thera-
py with irreversible EGFR-TKIs. 

Combination therapy 

A number of studies provided increasing evi-
dences supporting the dual inhibition of two or 
more receptors rather than single receptor tar-
geting. Combining a reversible EGFR-TKI and an 
anti-EGFR antibody may be a relevant strategy 
for overcoming EGFR-TKIs resistance. Afatinib 

Figure 2. Redundant kinase signaling pathway. The activation of redundant kinase leads to downstream pathway 
such as PI3K/AKT, RAS/RAF/MEK and JAK/STAT signaling actived, which offsets the blockade of EGFR pathway by 
TKIs. 
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(BIBW 2992), an irreversible inhibitor of EGFR, 
HER2, and HER4 [158], in combination with 
cetuximab, was reported to have significant 
activity in patients with acquired resistance to 
EGFR-TKIs [47]. Due to the cross-talk between 
EGFR family and other kinase receptors, such 
as EGFR-VEGFR, HER2-IGFR, HER3-c-Met, as 
well as the interaction between c-Met and other 
redundant kinases, combination therapy is in- 
dispensable for overcoming the resistant tu- 
mors. Dual blockade of the EGFR and VEGFR 
axes may be valuable for overcoming not only 
EGFR-TKIs resistance but also angiogenesis in- 
hibitor resistance. Combining drugs targeting 
HER2 or HER3 with inhibitors of IGFR or c-Met 
can cause both two pathways blocked, respec-
tively. Dual inhibition of c-Met and VEGFR path-
way, resulting in the blockage of two signaling 
and better effect if combined with EGFR-TKIs. 
The combination of small molecule kinase 
inhibitors targeting AXL (XL880 or MP-470) or 
an AXL neutralizing antibody with an EGFR-TKI 
is a potential approach to overcome resistan- 
ce. In addition, NPS-1034 inhibited cell prolif-
eration as well as ROS1 activity in HCC78 cells 
with ROS1 rearrangement. Rho et al. [40] es- 
tablished the efficacy of NPS-1034 in NSCLC 
cells resistant to EGFR-TKIs because of AXL 
activation or ROS1 rearrangement. Combining 
inhibitions of receptor kinases and downstream 
molecules is also applicable for treatment. Kim 
et al. [71] provide a rationale for the therapeu-
tic use of IGF-1R TKIs, either singly or in combi-
nation with MAPK/ERK inhibitors, particularly 
in tumors with K-ras mutations. In patients wi- 
th resistance to first-generation EGFR-TKIs gen-
erated by c-Met, it is unlikely that an irrevers-
ible EGFR inhibitor alone would be effective, 
but the combination of an irreversible EGFR 
inhibitor and an mTOR inhibitor may be an 
effective strategy for overcoming resistance 
[159]. 

Conclusion 

Clinical and biological evidence suggests that 
the EGFR does not function as a single domi-
nant receptor tyrosine kinase in autocrine gr- 
owth of NSCLC, but that multiple redundant 
kinases will participate in (Figure 2). Cancers 
harboring EGFR mutations depend on constitu-
tive activation of these kinases for survival 
independent of EGFR. Explanations for the EG- 
FR-TKIs resistance of redundant kinase activa-
tion, up to now, have not been fully clarified. 
Thus, effective blockade of these signaling in 

primary NSCLC tumors will require precise iden-
tification of the active receptor tyrosine kinase 
pathways through appropriate biomarkers. The 
development of multi-TKIs with the capacity to 
inhibit several different receptor tyrosine kinas-
es should also be pursued, as these drugs 
would represent a more optimal choice than a 
combination of several different TKIs. It is likely, 
that specific combinations of selective TKIs will 
be required to completely inhibit signaling and 
cell transformation. 
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