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Abstract: Approximately 35% of breast cancers exhibit PIK3CA activating mutation. Since PIK3CA hotspot muta-
tion is the most frequently mutated gene in human breast cancers and primarily overlaps in HER2+ as well as ER+ 
breast cancers, the subset of patients bearing PIK3CA activating mutation does not get fullest benefit from either 
anti-HER2 or anti-hormonal agents. Literature also suggests that these patients may have chemotherapy resis-
tance. Indeed, multiple clinical trials are currently evaluating the efficacy of over 30 drugs targeting different nodal 
points in the PI3K-AKT-mTOR pathway in breast and other cancers. However, to date, responses of solid tumors to 
PI3K pathway inhibitor monotherapy remains modest with an accompanied rapid emergences of drug resistance. 
MYC elevation represents one of the potential modes of actions by which breast tumors develop resistance to the 
PI3K pathway-specific targeted therapies. As products of oncogenes, both MYC and PIK3CA are well-established 
onco-proteins which contribute to breast oncogenesis. However, their similarities out number their dissimilarities 
in the context of their specific oncogenic cellular signals. In this review we will describe the specific cellular signals 
initiated following alteration in the MYC gene and PIK3CA gene in breast cancers. We will interrogate how MYC gene 
alterations influence the action of PI3K pathway targeted drugs in the context of PIK3CA mutation towards the de-
velopment PI3K inhibitor induced drug-resistance in breast cancers.
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Introduction

Breast cancers like other solid cancers are 
characterized by gene mutations and chromo-
somal aberrations [1, 2]. Breast cancer is the 
most common cancer of women in the U.S. and 
other western countries, with an accumulated 
life time incidence rate of about 11%. About 
10% of breast cancers are inherited, mostly 
caused by mutations in BRCA1 and BRCA2. 
The rest are sporadic breast cancers caused by 
somatic mutations and chromosome instability 
in the breast tissue [3]. Both MYC and PIK3CA 
are among frequently amplified genes in addi-
tion to other well-known oncogenes including 
ERBB2, FGFR1, and CCND1 in breast cancers. 
Many tumor types (if not all) exhibit survival 
and/or growth dependence on a mutationally 
activated particular gene, commonly a kinase 
through a process termed “oncogene addic-
tion”. This principle of targeted kinase inhibition 

has provided clinical success in treating diverse 
cancer types [4-9]. However, the single most 
concern that impedes the sustained clinical 
benefits of targeted therapies is the observed 
emergence of acquired drug resistance. As we 
are evolving in clinics to target an organ site 
cancer with genomic-data-driven pathway tar-
geted drugs, the problem of drug induced resis-
tance is becoming a formidable challenge. In 
this review we will try to understand the role of 
specific cellular signals those are brought into 
action following alteration(s) in the MYC gene 
and PIK3CA gene in breast cancers. We will 
also cross-examine how MYC gene alterations 
influence the action of the PI3K pathway tar-
geted drugs in the context of PIK3CA mutation 
towards the development of PI3K pathway-spe-
cific inhibitor induced drug-resistance and how 
oncogenic mutation of PIK3CA synergistically 
interacts with MYC functions in breast can- 
cers.

http://www.ajcr.us
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Alterations of MYC and PIK3CA genes in 
breast cancers

MYC is a proto-oncogene that transcribes its 
protein product containing a basic helix-loop-
helix domain. As a transcription factor MYC pro-
tein regulates up to 15% of all human genes. 
Hence MYC gene product is tightly regulated at 
multiple levels of cell signaling, and the protein 
acts as downstream effector of several signal-
ing pathways related to all fundamental func-
tions of a cell. MYC is one of the most common-
ly altered oncogenes in human cancers [10]. In 
breast cancer, MYC target genes are involved in 
cell growth, proliferation, transformation, im- 
mortalization, metastasis-associated pheno-
types, DNA-damage response, angiogenesis 
and cell-cycle control. Hyperactivation of MYC 
in tumor cells sets the permissive stage for the 
oncogenic signals and actively participates in 
the cellular transformation. This action is 
achieved by the evolutionarily conserved func-
tion of MYC which modulates protein synthesis. 
The MYC oncogenic program enhances the pro-
tein synthesis capacity of cancer cells by direct-
ly contributing to their survival, proliferation, 
and genome instability. MYC has also been 
demonstrated to be an important component 
of the “oncogenic nexus” acting in concert with 
PP2A and CIP2A in achieving the tumorigenic 
transformation in cells [11].

From the time Bishop and his co-workers dis-
covered the MYC gene in the late 1970s [12-
14], an enormous volume of scientific literature 
has been accumulated to demonstrate its fun-
damental role towards the malignant transfor-
mation of human and animal cells [15, 16]. 
Almost all types of human malignancies includ-
ing breast cancer have amplification and/or 
overexpression of this gene. Correlation of 
amplification of the MYC oncogene and overex-
pression of the MYC protein in high-grade 
breast cancer has been reported [17]. A sum-
mary of the amplification, RNA or protein 
expression of MYC gene in human breast can-
cers has been elegantly presented in the review 
by Liao and Dickson in 2000 wherein authors 
have painstakingly described the profound 
roles of MYC in breast cancer and its relation-
ship with actions of different hormones those 
are etiologically related to breast cancer [15]. 
In later years, role of genetic and epigenetic 
alterations of MYC gene was further expanded 

to field of the multistep process of disease pro-
gression in breast cancers [18]. Alterations of 
MYC gene and MYC protein levels have been 
found related to the disease progression in 
ductal and lobular breast cancer [19]. The 
involvement of MYC was established in differ-
ent subtypes including ER+, HER2+ and BRCA1-
associated of breast cancers [18, 20-22]. 
Elevated MYC expression leads to a poor prog-
nosis in sporadic breast cancer patients those 
are BRCA1-deficient [23]. BRCA1 has been 
linked to transcriptional regulation through 
interaction with MYC and its role in BRCA1-
associated breast cancer makes it an impor-
tant target in basal-like/triple-negative breast 
cancers [18]. MYC oncogene amplification is 
observed in BRCA1-associated breast cancers 
wherein the aggressive histopathological fea-
tures of tumors are in part due to dysregulated 
MYC activity and MYC also contributes to tumor 
progression [21]. MYC amplification has also 
been identified as an important predictor of 
response to the targeted therapies like HER2-
targeted therapies [18].

In 1985, Whitman and colleagues showed that 
the transforming ability of the polyoma virus 
middle-T antigen (PyMT), a membrane-bound 
tyrosine kinase, closely correlated with phos-
phatidylinositol (PI) kinase activity [24]. 
Although PyMT was later found to have inde-
pendent oncogenic properties, its regulation of 
PI3K revealed that hyperactivation of this path-
way can lead to uncontrolled proliferation, 
enhanced migration, and adhesion-indepen-
dent growth [25]. Recent observations revealed 
further important insights into the mechanism 
of regulation and activation of the PI3K path-
way in cancer. Amplifications in the genes 
encoding p110α, p85α and AKT have been 
described and there is recent evidence of an 
activating mutation in AKT1 in breast, colorec-
tal and ovarian cancers [26]. Notably, alteration 
in PIK3CA, PTEN, AKT1 and PIK3R1 (the gene 
for the p85α regulatory subunit of PI3K) were 
generally non-overlapped in tumor samples. In 
addition to this direct evidence of deregulation 
of the PI3K-AKT-mTOR network, it is well docu-
mented that receptor tyrosine kinases (RTKs), 
such as trans-membrane receptors (via tyro-
sine kinases) can be aberrantly activated in 
various cancers, leading to activation of the 
PI3K-AKT-mTOR signaling pathway [27]. These 
tyrosine kinases are able to phosphorylate criti-
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Figure 1. Alterations (A) and somatic mutations (B) of human MYC gene in Breast Invasive Carcinoma (TCGA, Provi-
sional). (A) Alterations (amplification, mutation, mRNA upregulation, RPPA upregulation and RPPA downregulation) 
of MYC gene in Breast Invasive Carcinoma (TCGA, Provisional). Data was obtained using c-BioPortal. Unaltered 
cases and white spaces between values were removed. The case set contained 1062 tumor samples. Following 
Genomic Profiles were selected: (1) mutations, (2) putative copy-number alteration (CNA) from GISTIC, (3) mRNA ex-
pression Z-scores (RNA Seq V2 RSEM) with Z-score thresholds ± 2.0, and (4) protein/phospho-protein level (RPPA) 
with Z-score thresholds ± 2.0. (B) The number of somatic mutations of MYC gene at different sites (domains) 
have been plotted in the selected samples. The somatic mutation rate of MYC gene in the selected samples has 
been presented in the text. Different domains/regions are presented in different colors. The left inset shows the 
schematic representation of interactions between mitogen mediated PI3K and RAS signaling pathways and role of 
MYC transcription factor as a “Signal Integrator”. Mitogenic stimulation with growth factors (GF)/cytokines leads to 
activation of the RAS-MAPK pathway and the PI3K-mTOR pathway. MYC protein level, its transcription, its synthesis 
as well as post translational modification, stability and degradation are either in parallel and/or serially regulated 
by the RAS-MAPK pathway and the PI3K-mTOR pathway. The synthesized nascent MYC protein is unstable in nature 
and has short half-life. MYC protein stability is increased via the post-translational phosphorylation at S62 by acti-
vated ERK. ERK can be activated downstream of RAS activation. Active RAS induces activation of its downstream 
effector pathways: the MAPK and PI3K pathways. While ERK activation following RAS activation stabilizes newly 
synthesized MYC protein, PI3K activation blocks MYC protein degradation by inhibiting phosphorylation at T58 by 
GSK3beta. GSK3beta initiates its degradation by phosphorylation of MYC protein at T58. Phosphorylation at T58 
by GSK3beta requires prior phosphorylation at S62. Phosphorylation at T58 induces subsequent dephosphoryla-
tion at S62 by PP2A. Activated PI3K pathway (either following RAS activation or GF induction) inhibits GSK3beta 
and stabilizaes beta-catenin to induce MYC transcription in the nucleus. Thus RAS-mediated activation of ERK and 
PI3K-mediated inhibition of GSK3beta determine the amount of MYC protein in a tumor cell at a particular point of 
time by controlling both its stability and degradation via post-translational phosphorylation. The right inset shows 
the 3D crystal structure of chain A of MYC onco-protein (PDB 1nkp : crystal structure of myc-max recognizing dna) 
as obtained from c-BioPortal. Bound molecules are displayed in the cartoon (inset). The color represents the protein 
by secondary structures. Alpha helics is represented in yellow, beta sheets in blue and loops in light grey. The side 
chain atoms for every mapped residue are displayed. All mutated residues are represented in a single violet color. 
We acknowledge the cBioPortal for Cancer Genomics site (http://cbioportal.org) which provides a Web resource for 

http://cbioportal.org/
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cal tyrosine residues within activation motifs, 
often located within the receptors themselves 
(e.g., autophosphorylation of the YXXM motif in 
PDGFR) or are present on protein adaptors 
(e.g., IRS, SHC, GRB, GAB, and CBL). As a multi-
domain-containing protein, the regulatory sub-
unit of PI3K (p85, p55, p50) binds to the phos-
phorylated pYXXM motif via their SH2 domains 
resulting in PI3K membrane recruitment and 
generates the second messenger PI (3, 4, 5) P3 
from PIP2. In addition, the RBD domain of 
p110α catalytic subunit is recruited to the plas-
ma membrane through direct binding to the 
GTP-bound active form of membrane-bound 
(myristylated) RAS. Indeed, many of the most 
novel biomarker/mechanism-based cancer 

drugs, such as Gefitinib, Cetuximab, Trastu- 
zumab and Lapatinib act through the inhibition 
of aberrantly activated RTKs, reducing the sig-
naling through the PI3K-AKT-mTOR pathway. 
The overwhelming evidence of deregulation of 
the PI3K-AKT-mTOR pathway in tumorigenesis 
means that inhibition of this signaling pathway 
is an attractive avenue of investigation for phar-
macological intervention. There are several 
small molecule inhibitors (SMIs) of PI3Ks or 
mTORs that have been developed and histori-
cally used as pharmacological tools to study 
the effect of PI3K or mTOR inhibition. Multiple 
clinical trials are currently evaluating the effi-
cacy of over 30 drugs targeting different nodes 
in the PI3K pathway in breast and other can-

exploring, visualizing, and analyzing multi-dimensional cancer genomics data. The portal reduces molecular profil-
ing data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression and 
proteomic events [28]. We acknowledge works of Cerami et al. The cBio Cancer Genomics Portal: An Open Platform 
for Exploring Multidimensional Cancer Genomics Data [28, 29]. We acknowledge the TCGA Research Network for 
generating TCGA datasets. 

Figure 2. Overlap between alterations of human MYC and PIK3CA genes in Breast Invasive Carcinoma (TCGA, Pro-
visional) (upper panel) and differential alterations of human MYC and PIK3CA genes in subtypes of Breast Invasive 
Carcinoma (TCGA, Nature 2012) (lower panel). Upper panel: Alterations (amplification, mutation, heterozygous de-
letion and homozygous deletion) of MYC and PIK3CA genes in Breast Invasive Carcinoma (TCGA, Provisional) are 
presented. Data was obtained using c-BioPortal. Unaltered cases and white spaces between values were removed. 
The case set contained 1062 tumor samples. Following Genomic Profiles were selected: (1) mutations, (2) putative 
copy-number alteration (CNA) from GISTIC, (3) mRNA expression Z-scores (RNA Seq V2 RSEM) with Z-score thresh-
olds ± 2.0, and (4) protein/phospho-protein level (RPPA) with Z-score thresholds ± 2.0. Lower panel: Table shows 
changes in MYC and PIK3CA genes in five different subtypes of Breast Invasive Carcinoma (TCGA, Nature 2012) 
including Luminal A, Luminal B, HER2-enriched, Basal-like and Claudin-low. A custom case set was build using c-
BioPortal (TCGA , Nature 2012 data set containing 825 cases; raw data at the NCI.) Following Genomic Profiles were 
selected: (1) mutations, (2) putative copy-number alteration (CNA) from GISTIC, (3) mRNA expression Z-scores (RNA 
Seq V2 RSEM) with Z-score thresholds ± 2.0, and (4) protein/phospho-protein level (RPPA) with Z-score thresholds 
± 2.0. (Total 824 samples). The total numbers of samples in the respective subtypes are shown in the parenthesis.
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Figure 3. Alterations (A) and somatic mutations (B) of human PIK3CA gene in Breast Invasive Carcinoma (TCGA, 
Provisional). (A) Alterations (amplification, mutation, mRNA upregulation, RPPA upregulation and RPPA downregu-
lation) of PIK3CA gene in Breast Invasive Carcinoma (TCGA, Provisional). Data was obtained using c-BioPortal. 
Unaltered cases and white spaces between values were removed. The case set contained 1062 tumor samples. 
Following Genomic Profiles were selected: (1) mutations, (2) putative copy-number alteration (CNA) from GISTIC, 
(3) mRNA expression Z-scores (RNA Seq V2 RSEM) with Z-score thresholds ± 2.0, and (4) protein/phospho-protein 
level (RPPA) with Z-score thresholds ± 2.0. (B) The numbers of somatic mutations of PIK3CA gene at different sites 
(domains) have been plotted in the selected samples. The somatic mutation rate of PIK3CA gene in the selected 
samples has been presented in the text. Different domains/regions are presented in different colors. The left inset 
shows the 3D crystal structure of chain A of phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha 
isoform (PDB 4/23: crystal structure of p110alpha complexed withnish2 of p85alpha and pi-103) as obtained from 
c-BioPortal. Bound molecules are displayed in the cartoon (inset). The color represents the protein by secondary 
structures. Alpha helics is represented in yellow, beta sheets in blue and loops in light grey. The side chain atoms 
for every mapped residue are displayed. All mutated residues are represented in a single violet color. The right inset 
shows commonly identified hotspot and non-hotspot mutations of PIK3CA in different domains as reported in vari-
ous cancers which can be used as a reference. We acknowledge the cBioPortal for Cancer Genomics site (http://
cbioportal.org) which provides a Web resource for exploring, visualizing, and analyzing multi-dimensional cancer 
genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily under-
standable genetic, epigenetic, gene expression and proteomic events [28]. We acknowledge works of Cerami et al. 
The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data [29]. We 
acknowledge the TCGA Research Network for generating TCGA datasets.

cers (https://clinicaltrials.gov). Although, tar-
geted inhibition of PIK3CA holds significant 

promise, there are worries that an eventual 
development of resistance to these drugs and 

http://cbioportal.org/
http://cbioportal.org/
https://clinicaltrials.gov


Resistance to PI3K inhibitors in breast cancers

6 Am J Cancer Res 2015;5(1):1-19

a clonal survival advantage would ultimately 
limit the clinical efficacy.

An alteration summary for MYC and PIK3CA 
genes in BC and subtypes 

In order to know the extent of changes in MYC 
gene in breast cancer, we obtained an altera-
tion-summary for MYC gene in breast cancer 
(Figure 1). Data mining was carried out using 
cBioPortal for Cancer Genomics, a data portal 
[cBioPortal for Cancer Genomics: [28, 29]], 
available at http://www.cbioportal.org to mea-
sure the incidence of alterations in MYC, as per 
the criteria mentioned in the legends of figures. 
The database query was based on deregulation 
(mutation, copy number alterations and altered 
expression) of the MYC. We acknowledge the 
cBioPortal for Cancer Genomics site (http://
cbioportal.org) which provides a web resource 
for exploring, visualizing, and analyzing multidi-
mensional cancer genomics data. We acknowl-
edge the TCGA Research Network for generat-
ing TCGA datasets. Figure 1A showed that the 
MYC was altered in 28% (295) of the cases 
(1062 samples) of the breast invasive carcino-
mas (Oncoprint data obtained using c-BioPor-
tal; TCGA Provisional). The only somatic muta-
tion occurring in the MYC gene in the selected 
samples was observed to be less than 5 in 
number of the only site of MYC mutation 
(E431K) (Figure 1B). Oncoprint data obtained 
using c-BioPortal (Figure 2) showed that there 
is a limited overlap between the 24% of altered 
MYC and the 37% of the altered PIK3CA of the 
breast invasive carcinomas (1062 samples; 
TCGA Provisional) (Figure 2: Upper Panel). The 
highest alteration (35%) in MYC was observed 
in basal-like types of BC (Figure 2: Upper Panel).

In contrast to alteration in MYC gene (Figure 
1A) in 28% (295) of the cases (1062 samples) 
of the breast invasive carcinomas (TCGA 
Provisional), the PIK3CA was altered in 37% of 
the cases (390 of cases) in the same selected 
samples (Figure 3A). Out of this 28% of the 
MYC altered cases, the predominant form of 
alteration was found to be the amplification of 
the gene followed by the upregulation of the 
mRNA. This pattern of the alteration of gene is 
characteristically different from that observed 
in PIK3CA gene in the same set of patients’ 
samples. Figure 3A shows that the predomi-
nant form of alterations in the PIK3CA observed 
in the breast invasive carcinomas (TCGA 

Provisional) is the mutation. This pattern of the 
alteration of gene is characteristically different 
from that observed in MYC gene in the same 
set of patients’ samples. Figure 1A shows that 
the predominant form of alterations in the MYC 
observed in the breast invasive carcinomas 
(TCGA Provisional) is the amplification. In cer-
tain samples, the mutations of the gene were 
found to occur along with the upregulation of 
PIK3CA mRNA or the amplification of the 
PIK3CA gene. There is also a significant differ-
ence observed between the somatic mutation 
rates of the MYC gene and the somatic muta-
tion rates of the PIK3CA gene in the selected 
samples as presented in the Figures 1B, 3B. 
The somatic mutation rate of the MYC gene 
was 0.1% as compared to 29.8% in the PIK3CA 
gene in the selected samples (Figures 1B, 3B). 
Not only the rate of somatic mutation was high-
er in PIK3CA gene but also the distribution pat-
terns of the somatic mutations were much 
wider between different domains of the corre-
sponding protein of the PIK3CA gene. In addi-
tion the number of individual somatic mutation 
occurring in PIK3CA gene far exceeded the 
number of individual somatic mutation occur-
ring in MYC gene. The most predominant 
somatic mutation occurring in PIK3CA gene, 
H1047L/R/Y was found in nearly 140 times as 
compared to less than 5 number of the only 
mutation (E431K) occurring in the MYC gene 
(Leucine Zipper domain) in the same selected 
samples (Figures 1B, 3B). The highest % of 
alteration in PIK3CA gene was observed in 
luminal A subtype (49.4%) while basal-like sub-
type exhibited the highest alteration in the MYC 
gene (35%) (Figure 2: Lower Panel). Interestingly, 
this differential alteration of MYC gene, special-
ly mRNA upregulation can be explained by the 
reported activation of Wnt-beta-catenin path-
way in this subset of breast cancer as reported 
from our group and others [30, 31]. Our study 
also demonstrated that the upregulation of this 
pathway is associated with the metastatic 
behavior of the disease [32] in line with other 
reported observations that Wnt/β-catenin sig-
naling pathway can be a potential therapeutic 
target in the treatment of triple negative breast 
cancer [33].

Targeting the PI3K-AKT-mTOR signals in BC 

The PI3K-AKT-mTOR signaling network has 
been reported to control tumorigenesis. 
Numerous signaling molecules of the PI3K-
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AKT-mTOR network are altered (mutated, up-
regulated or down-regulated) in several tumor 
types, leading to increased PI3K signaling. The 
major oncogenic mutations in PI3K cluster 
occurs in two separate regions of its p110α 
catalytic subunit, the helical (E542K and 
E545K) and the kinase (H1047R) domains; 
both types yield constitutive lipid kinase activi-
ty [34, 35]. According to Professor Vogelstein 
oncogenes (unlike tumor suppressor genes) are 
recurrently mutated at the same amino acid 
positions [36]. Except the mutation in the TP53 
suppressor gene, PIK3CA hotspot mutation is 
the most frequently mutated gene in human 
breast cancers and primarily overlaps in HER2+ 
as well as ER+ breast cancers [37-39]. Presence 
of these mutations in cancer cells confer resis-
tance to targeted therapies in both HER2+ and 
ER+ breast cancers [40-43] and demands 
pharmacological interventions of PI3K catalytic 
subunit (p110) inhibitor to overcome the resis-
tance to PIK3CA-mediated therapy [8, 9, 44]. In 
addition a loss of function mutation (deletion or 
mutation or epigenetic alteration) of tumor sup-
pressor PTEN, the antagonistic phosphatase to 
class I PI3K has been reported which leads to 
an increase in levels of PtdIns (3,4,5) P3 and 
consequently activation of AKT [45, 46]. More 
recently activating mutations have been dis-
covered in PIK3CA, the gene that encodes the 
class IA catalytic subunit p110α, in numerous 
cancers including lung, breast and colorectal 
cancer (CRC) [35]. PIK3CA mutations are 
thought to arise early in breast cancer develop-
ment and are known to be selected for the pro-
gression as this mutation can be found in duc-
tal carcinoma in situ as well as in invasive 
breast cancers/metastatic samples [47]. 

Agents targeting the PI3K-AKT-mTOR signaling 
pathways either alone or in combination have 
shown promise in early phase clinical trials and 
are currently being studied in phases I/II stages 
of clinical trials in various cancers including 
breast cancers. Several drugs targeting multi-
ple levels of the PI3K network (that is PI3K, 
AKT, mTOR) have been developed. A number of 
ATP-mimetics that bind competitively and 
reversibly to the ATP-binding pocket of p110 
are in early clinical development. These include 
the pan-PI3K inhibitors (BKM120, XL-147, 
PX-866, PKI-587, and GDC-0941), the p110α- 
specific inhibitors (BYL719, GDC-0032, and 
MLN1117), p110β- specific inhibitors (GSK- 

2636771, SAR260301), the p110δ-specific 
inhibitor (CAL-101, Idelalisib; very recently 
approved by FDA for CLL patients [48]), the dual 
PI3K/mTOR inhibitors (BEZ235, BGT226, 
PF-4691502, GDC-0980, and XL-765), the allo-
steric inhibitors of mTOR (FDA approved everoli-
mus, temsirolimus, and ridaforolimus) and the 
mTORC1/2 kinase inhibitors (MLN0128, AZD- 
8055 and OSI-027). The pan-PI3K and p110α-
specific inhibitors are equally potent against 
oncogenic p110α mutants. The development of 
isozyme-specific antagonists has permitted the 
delivery of significantly higher doses of the 
drugs (anti-p110α and anti-p110β) with appre-
ciably lower side effects as compared to pan-
PI3K inhibitors. Everolimus was the first one to 
be evaluated in clinical trials. BOLERO-2 trial, a 
randomized, double-blind, placebo-controlled 
phase III study of exemestane with or without 
everolimus (Afinitor; Novartis) in ER+/HER2- 
postmenopausal advanced breast cancer 
refractory to non-steroidal aromatase inhibitor 
(AI), demonstrated a median PFS of 10.6 
months with combination therapy, compared 
with 4.1 months with exemestane alone (HR = 
0.36; 95% CI Z 0.27e0.47; P < 0.001) [49], 
leading to U.S. Food and Drug Administration 
(FDA) approval for its application in the 
AI-resistant population. Next-generation seq- 
uencing identified almost 1,500 sequence 
alterations, 24 rearrangements, and about 550 
copy number variations. The average tumor 
sample contained 4.1 genetic alterations, and 
at least one known somatic alteration was 
identified in 219 patients. The pathways har-
boring the most genetic alterations were 
PIK3CA (48%), CCND1 (31%), TP53 (23%), and 
FGFR1 (18%). Patients with a single alteration 
in one of these pathways had a median pro-
gression-free survival (PFS) of 214 days with 
everolimus, compared to 77 days with placebo 
(HR = 0.26). For those with multiple alterations, 
median PFS was 138 and 128 days, respec-
tively (HR = 0.28) (2013 ASCO Annual Meeting 
reported by Prof. Gabriel N. Hortobagyi). The 
pan-PI3K inhibitor BKM120 (Novartis) is in 
phase III trials in combination with fulvestrant 
in patients with ER+ metastatic breast cancer 
resistant to prior AI therapy [(BELLE 2); 
NCT01610284] [36] or resistant also to an 
mTOR inhibitor [(BELLE 3); NCT01633060)]. In 
addition, a p110α inhibitor of PI3K has shown 
some promise in PIK3CA mutant breast cancer 
in phase I studies. In the preliminary report of 
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this phase I study of the p110α inhibitor BYL719 
(Novartis), 6/18 (33%) patients with heavily 
pretreated metastatic breast cancer with 
PIK3CA mutation achieved tumor shrinkage 
>20%, and two of these six patients achieved a 
partial response [50]. Ma et al., recently 
showed that the pan-PI3K inhibitor BKM120 
plus fulvestrant produced partial response or 
disease stabilization for over 6 months in 10 of 
18 patients with metastatic ER+ positive breast 
cancer. The results of this trial led to the ongo-
ing phase III trials of this combination for 
patients with ER+ breast cancer who had dis-
ease progression on an aromatase inhibitor 
[51]. Another phase Ib international study 
showed that the combination of a p110α-
specific inhibitor GDC-0032 with fulvestrant 
yielded a 73% response rate [52]. Emerging 
research showed that the combination app- 
roach of HER2 and PI3K targeting agents was 
required for tumor regression in preclinical 
model of HER2 amplification and PIK3CA muta-
tion [9, 53, 54]. Dual mTORC1/2 and HER2 
blockade resulted in antitumor activity in the 
anti-HER2 therapy resistant preclinical models. 
The simultaneous blockade of both the PI3K/
AKT/mTOR and the MEK-ERK pathways obta- 
ined by combining lapatinib with INK-128 acts 
synergistically in inducing cell death and tumor 
regression in breast cancer models refractory 
to anti-HER2 therapy [54]. 

It has been also reported that PIK3CA muta-
tions partially uncouple PI3K from upstream 
RTKs (e.g. HER2) to allow the development and 
maintenance of resistance to tyrosine kinase-
targeted therapies [9]. The presence of PIK3CA 
mutations has been shown to determine clini-
cal outcomes in different trials. Women bearing 
HER2+/HR+ tumors with mutations in the PI3K-
AKT pathway respond poorly to neoadjuvent 
therapy in the German GeparSixto study 
(reported in San Antonio Breast Cancer sympo-
sium 2013). The combined analysis from both 
GeparQuino and GeparSixto studies demon-
strated that in HER2+ patients, pathological 
complete response rates after dual HER2 
blockade were significantly lower in the PIK3CA 
mutant group compared to patients with wild 
type PIK3CA (17% vs 27%). In HER2+/HR+ 
patients who harbored PIK3CA mutations, only 
6.3% achieved pathological complete response 
compared with 30.8% for those without a 
PIK3CA mutation [55]. 

MYC cross-talks with PI3K-mTOR pathway

MYC is located upstream of PI3K-related DDR 
kinases as reported by Reimann et al., explain-
ing the upregulation of a DDR following MYC 
activation and the MYC-evoked DNA damage 
response accounted for treatment resistance 
in vivo [56]. The functional involvement of MYC 
gene regulated transcriptional network with the 
PI3K-mTOR pathway has been reported to con-
trol different oncogenic cellular signals includ-
ing proliferation, anti-apoptosis, nutrient res- 
ponse, RAS-MAPK pathway activation and DNA 
damage response. The PI3K family inclu- 
des ataxia telangiectasia-mutated (ATM), atax-
ia telangiectasia and RAD3-related (ATR) and 
DNA-dependent protein kinase (DNA-PK). Th- 
ese kinases are all activated by DNA damage 
[57]. MYC (1) induces DNA damage, (2) increase 
reactive oxygen species and (3) mitigate p53 
function leading to oncogene-induced genetic 
instability. The presence of deregulated MYC 
partially disables the p53-mediated DNA dam-
age response, enabling cells with damaged 
genomes to enter the cycle [58]. 

Data from the “Basket” trials strongly advo-
cates that the organ-site location of the tumor 
such as breast or lung or prostate is becoming 
less important than the genomic/proteomic 
information of the tumor (“Basket” trials; David 
B. Solit; Memorial Sloan Kettering Cancer cen-
ter; Preannual meeting seminar, “Genetics and 
Genomics for the Practicing Clinicians” held 
immediately before the ASCO Annual meeting 
2014). An undeniable piece of evidence of the 
oncogenic functional interaction between MYC 
and the PI3K-mTOR pathway can be presented 
from the studies in Burkitt lymphoma in which 
the immunoglobulin (IG) promoter-c-MYC trans-
location is a hallmark of the disease [59, 60] 
and in the experimental models of the disease 
activation of mTOR is observed [61, 62]. 
Synergy between PI3K signaling and MYC func-
tion has been reported by Sander et al., in 
Burkitt lymphomagenesis [63]. Their finding of 
recurrent PI3K pathway activation in human 
Burkitt lymphoma indicated that deregulated 
c-MYC and PI3K activity cooperate in Burkitt 
lymphoma pathogenesis. In line with this 
observed synergy, an impaired cytotoxic 
response was observed due to upregulation of 
NOTCH-MYC signaling following PI3K/mTOR 
inhibition in T-cell acute lymphoblastic leukae-
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mia [64]. Results of the study by Shepherd et 
al., showed that drugs targeting PI3K-mTOR can 
upregulate NOTCH-MYC activity, have implica-
tions for the use of PI3K inhibitors for the treat-
ment of other malignancies with activated 
NOTCH. PI-103 (PI3K and mTOR dual inhibitor) 
addition led to upregulation of c-MYC, which 
was blocked by co-incubation with a γ-secretase 
inhibitor (GSI; NOTCH inhibition), indicating that 
PI3K-mTOR inhibition resulted in activation of 
the NOTCH-MYC pathway as suggested by their 
microarray studies showing a global increase in 
NOTCH target gene expression upon PI3K-
mTOR inhibition. NOTCH-MYC-induced resis-
tance to PI3K-mTOR inhibition was supported 
by synergistic induction of cell death by PI-103 
and a small molecule c-MYC inhibitor and by 
reduction of the cytotoxic effect of PI-103 + GSI 
by c-MYC overexpression. In other hematologi-
cal malignancies like B-cell lymphomas, a com-
bined inhibition of PI3K-related DNA damage 
response kinases and mTORC1 induced apop-
tosis indicating that combined DDR and 
mTORC1 inhibition may represent a novel ther-
apeutic strategy for the management of MYC-
driven cancers [60]. Gene expression profiling 
revealed elevated NOTCH1 mRNA expression in 
triple negative breast cancers, both basaloid 
and claudin-low subtypes. It has been reported 
that NOTCH ligands, Jagged1 and Jagged2, are 
correlated with poor prognosis in TNBC and 
AKT is activated downstream of NOTCH in 
breast cancer cell lines. Interestingly, Zhu et al 
demonstrated a correlation of NOTCH1, pAKT 
and nuclear NF-κB expression in triple negative 
breast cancer [65]. NOTCH-1 signaling pathway 
has been reported to be involved in mediating 
the effect of Genistein in the inhibition of 
growth of MDA-MB-231 triple-negative breast 
cancer cells [66]. Recently Stoeck et al., used 
Next-generation sequencing to identify NOTCH 
mutations in a large collection of diverse solid 
tumors including triple negative breast cancer 
[67]. NOTCH1 and NOTCH2 rearrangements 
leading to constitutive receptor activation were 
observed only in triple-negative breast cancers. 
Accordingly, they observed that TNBC cell lines 
with NOTCH1 rearrangements associated with 
high levels of activated NOTCH1 (N1-ICD) were 
sensitive to the gamma-secretase inhibitor 
(GSI) in vitro and in vivo, whereas cell lines with 
NOTCH2 rearrangements were resistant to GSI. 
In their study, immunohistochemical staining of 
N1-ICD in TNBC xenografts correlated with 

responsiveness, and expression levels of the 
direct NOTCH target gene HES4 was found to 
be correlated with outcome in patients with 
TNBC. These observations become relevant in 
the context of the involvement of MYC in the 
disease because of the fact that MYC is an 
downstream effector of NOTCH and NOTCH 
induced mammary tumorogenesis [68]. The 
above facts indicate that it is possible to target 
MYC-regulated pathways in combination with 
inhibitors of other oncogenic pathways in the 
basal-like subtype of breast cancer.

Another important link of the functional conver-
gence between MYC gene and mammalian tar-
get of rapamycin (mTOR) is initiation factor 4E 
binding protein-1 (4EBP1), a master regulator of 
protein synthesis [69]. Pourdehnad et al., found 
that mTOR-dependent phosphorylation of 
4EBP1, an important mTOR substrate is 
required for cancer cell survival in MYC gene-
dependent tumor initiation and maintenance. 
The clinical implications of this critical link 
between MYC and mTOR-dependent phosphor-
ylation of 4EBP1 was tested in clinics by observ-
ing the therapeutic response in human lympho-
mas. Clinically active mTOR inhibitor, which is 
capable of blocking mTOR-dependent 4EBP1 
phosphorylation had remarkable therapeutic 
efficacy in MYC-driven hematological cancers. 
Studies by Li et al., on the nutrient-responsive 
signaling network that controls metabolic gene 
transcription in Drosophila larvae following 
amino acid (AA) starvation have provided the 
genetic proof of interaction between MYC and 
PI3K. Their data show that the widespread 
changes in metabolic gene expression in 
Drosophila larvae following AA starvation are 
mediated in large part through the mTOR sig-
naling pathway and MYC is one of the important 
transcriptional mechanisms by which these 
changes occurred [70].

The unique post-translational control of MYC 
dynamics by sequential phosphorylation at S62 
and T58 allows MYC protein to integrate 
upstream signals from both the RAS-MEK-ERK 
and the PI3K-AKT-mTOR pathways both in par-
allel or in series (RAS activation activates down-
stream PI3K), critically regulating a wide range 
of cell fates (growth, proliferation, and pro-
grammed cell death), energy/amino acid 
metabolism and DNA damage repair. MYC 
senses and intergrates ERK and PI3K signals 
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[71]. In their study Lee et al., analyzed a well-
defined signaling module for MYC regulation 
using a kinetic model constrained by experi-
mental data and observations. In this module 
they observed that MYC acts as an integrator of 
its upstream signals that differentially regulate 
its stability [71]. A diagrammatic representa-
tion of the PI3K-MYC interaction has been pre-
sented in the Figure 1B (left inset). Sears et al., 
reported that multiple RAS-dependent phos-
phorylation pathways regulate MYC protein sta-
bility [72]. Their result demonstrated that an 
activation of the RAS-RAF-ERK pathway extends 
the half-life of the MYC protein to enhance the 
MYC activity in tumor cells. Investigating mito-
gen stimulation regulated two N-terminal phos-
phorylation sites in MYC, T58 and S62, they 
showed that the S62 phosphorylation mediat-
ed via ERK is required for RAS induced stabili-
zation of MYC. T58 phosphorylation mediated 
by GSK3beta (a downstream effctor molecule 
of the PI3K-AKT signaling pathway) in a prior 
S62 phosphorylation dependent manner is 
associated with degradation of MYC. Additi- 
onally, the RAS-dependent PI3K pathway also 
contributes to the MYC protein accumulation 
via GSK3beta activity. These observations thus 
define a synergistic role for multiple RAS-
mediated phosphorylation pathways in the con-
trol of MYC protein accumulation during the 
initial stage of cell proliferation. Activation of 
MYC via RAS activation has also been reported 
in neuroblastomas where active RAS is needed 
to block N-MYC degradation, promoting coop-
erative RAS- and N-MYC-dependent cell cycle 
progression of the tumor cells [73]. In addition 
to the RAS-PI3K pathway mediated increase in 
the accumulation of MYC protein, the PI3K 
pathway activation can also contribute to the 
transcription of MYC gene via a signaling medi-
ator of Wnt-beta-catenin pathway (Figure 1B; 
left inset), the involvement of which is well doc-
umented in breast cancer [30-32]. Figure 1B; 
left inset represents interactions between 
mitogen mediated PI3K and RAS signaling 
pathways and role of MYC transcription factor 
as a “Signal Integrator”. Mitogenic stimulation 
with growth factors (GF)/cytokines leads to 
activation of the RAS-MAPK and the PI3K-mTOR 
pathways. MYC protein level, its transcription, 
its synthesis as well as post translational modi-
fication, stability and degradation are either in 
parallel and or serially regulated by the RAS-
MAPK and the PI3K-mTOR pathways. Patterns 

of RAS-mediated activation of ERK and PI3K-
mediated inhibition of GSK3beta determine 
the amount of MYC protein in a tumor cell at a 
particular time by controlling both its stability 
and degradation via post-translational phos-
phorylation. In breast cancers, the interactive 
synergy between MYC and PI3K has been 
reported to be mediated through estrogen 
enhancing proliferation of mammary epithelial 
cells. Seventeen-beta-estradiol stimulated 
both a short-term transient and a sustained 
increase in MYC protein expression in MCF7 
cells. The MYC dependent survival signal gen-
erated by E2, which have been strongly impli-
cated in the development of ER+ breast can-
cers was dependent upon basal levels of mTOR 
and its upstream regulators PI3K. These data 
provide evidence that E2 promotes survival sig-
nals in breast cancer cells through an mTOR-
dependent increase in MYC expression [74].

The data obtain from the above studies provide 
a rational basis for the use of drug combina-
tions that target both the pathways. It was 
recently reported that the induction of MYC-
regulated genes is associated with poor out-
come in human cancers [75]. It has been also 
reported by other that MYC overexpression had 
no effect on cellular sensitivity to doxorubicin 
but rendered cells even more sensitive to pacli-
taxel, which are two classical chemotherapeu-
tic agents [76].

Resistance to pathway targeted inhibitors in 
BC

Although MYC remains one of the most com-
monly altered oncogenes in human cancers, 
yet therapies directly targeting MYC hyperacti-
vation (or its immediate downstream) are not 
successful in the clinic unlike targeted thera-
pies against activated oncogenic kinases [77]. 
Recently, components of the protein transla-
tion machinery have been exploited as thera-
peutic targets for MYC -driven cancers which 
may represent a highly relevant strategy for the 
treatment of MYC -dependent human cancers. 
Guided by the tumor dependency framework, 
mechanism of resistance to anti-cancer agents 
have been analyzed extensively in recent years 
with special focus on small molecule kinase 
inhibitors. At the end, these efforts have given 
rise to 3 main categories of resistance to tar-
geted therapies. 
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1. Secondary genetic alteration in the target 
gene itself is one of the most common drug 
resistance mechanisms for the targeted thera-
py. This mechanism has been most extensively 
described and studied for imatinib, which binds 
the inactive conformation of ABL [78]. 
Secondary somatic alterations have been 
detected in a wide variety of tumors from 
patients treated with variety of targeted kinase 
inhibitors [79-81]. 

2. Activation of bypass signaling mechanisms 
following the treatment of targeted therapies. 
An illustrate example of bypass-mediated resis-
tance has been described in EGFR-mutant non 
small cell lung cancer. Here, reactivation of 
PI3K-AKT signaling leads to drug resistance 
[82]. It has been reported by other that the 
aberrant activation of the PI3K-AKT signaling 
pathway in the presence of a EGFR kinase 
inhibitor gefitinib can occur as a result of acti-
vation of MET or by its ligand hepatocyte growth 
factor (HGF) or IGF-1R signaling [83-86]. 
Another avenue through which bypass resis-
tance mechanism may operate involves modu-
lation of feedback loops. Examples include 
HER3 pathway up-regulation in the setting of 
AKT inhibition [87], PI3K-AKT activation by 
mTOR inhibitors [88] and augmentation of AKT 
signaling by MEK inhibitors [89].

3. Acquired drug resistance involves genomic 
alterations that dysreguate signaling compo-
nents acting either upstream or downstream of 
the target protein. To date, this kind of drug 
resistance mechanism has been most exten-
sively studied for MEK and RAF inhibitors. 
Amplification of BRAF has been described as 
an alternative upstream mechanism of resis-
tance to the MEK inhibitor AZD6244. This 
mechanism leads to increased MEK phosphor-
ylation and consequently ERK activation, which 
no longer can be inhibited by AZD6244 [90, 
91]. In addition, an oncogenic PIK3CA activat-
ing mutation was sufficient to cause gefitinib 
resistance in EGFR mutant cancer cells and 
has also been observed in an erlotinib-EGFR 
mutant tumor, thus indicating that downstream 
effectors may ultimately become relevant in 
this context as well [92, 93]. 

MYC expression and resistance to PI3K path-
way targeted inhibitors

MYC overexpression is sufficient to confer 
resistance to PI3K and mTOR inhibitors. 

Diversity for 8q24 (this chromosomal region 
harbors several important oncogenes including 
MYC) was consistently higher in HER2+ tumors 
compared to other subtype. Interestingly, diver-
sity of 8q24 was lower in primary triple negative 
breast cancers and increased in both distant 
and lymph node metastases, whereas the 
opposite trend was observed for HER2 cases 
[94]. 

It was an initial general consensus that muta-
tions in the oncogenic PI3K, possibly in the 
kinase domain (inhibitor binding domain), would 
yield resistance to catalytic PI3K inhibition. But 
the success of the PI3K pathway-specific inhibi-
tors at least in preclinical settings and also in 
some extent in clinical settings with other tar-
geted inhibitors, translational scientists 
thought and found that acquired drug resis-
tance may involve alterations that deregulated 
signaling component acting downstream of the 
targeted protein. Using an integrated copy num-
ber and expression-based-approach within the 
dual PI3K/mTOR inhibitor (BEZ235) resistant 
cells, Thomas M. Roberts and colleagues deter-
mined that MYC, a commonly deregulated 
breast cancer oncogene, was responsible for 
the acquired BEZ235 resistance [76]. Following 
their study, Pixu Liu and group have demon-
strated by using transgenic mouse models and 
a series of elegant experiments that MYC con-
tributed to PIK3CA independent of tumor 
growth and resistance to PI3K-catalytic inhibi-
tion. They found that in some mice tumors rap-
idly and completely regressed to a non-palpa-
ble state within 1-2 months following inacti- 
vation of oncogenic PIK3CA with no re-growth 
indicating that these tumors remained addict-
ed on PIK3CA for their maintenance. However, 
in another group of mice tumors partially 
regressed but then resumed growth in the 
absence of PIK3CA activation [95]. These stud-
ies clearly specify that some tumors although 
initiated with PIK3CA activating mutation but 
during the tumor progression they are no longer 
dependent on PIK3CA status and probably not 
respond to catalytic inhibition of PI3K. Their 
SNP array analyses of recurrent tumors 
revealed a common amplification on chromo-
some 15 spanning 1.48 Mb (Chromosome 
15:61,271,320-62,750,432), which contains 
the coding sequence for a single gene, MYC 
and knockdown of MYC dramatically reduced 
tumor incidence and extended the time to 
tumor onset. A chemical genetic screen identi-
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fied MYC and NOTCH pathway activation as 
mechanisms of resistance to PI3K inhibitors in 
breast cancer cell lines [96]. Molecular analy-
ses revealed that both the mouse and human 
MYC genes are direct transcriptional target of 
NOTCH not only in breast cancer but also in 
T-cell acute lymphoblastic leukemia/lymphoma 
(as mentioned before) [97-99]. Klinakis and 
groups’ mouse genetic results clearly demon-
strated that MYC was indispensable for the 
development of NOTCH regressing mammary 
carcinoma. They also demonstrated by using 
immune-staining that >90% of the cases 
(20/22) exhibited high MYC expression, NOTCH 
was also highly expressed [97]. It has been also 
reported by others that treatment of cells with 
dual PI3K/mTOR inhibitor (PI-103) led to upreg-
ulation of MYC, which was blocked by co-incu-
bation with g-secretase inhibitor, indicating 
that dual PI3K/mTOR inhibition resulted in acti-
vation of the NOTCH-MYC pathway. The NOTCH-
MYC pathway-induced resistance to PI3K/
mTOR inhibition was supported by synergistic 
cell death induction by PI-103 plus MYC inhibi-
tion, and by reduction of cytotoxic effect of 
PI-103 plus g-secretase inhibitor by MYC over-
expression [64]. Experiments carried out by 
Muellner MK et al showed that cells transduced 
with MYC displayed high level of resistance to 
dual PI3K/mTOR inhibitor or PI3K inhibitors. 
Similarly, knockdown of MYC to levels compa-
rable to non-transformed control cells com-
pletely reversed the resistance to dual PI3K/
mTOR inhibitor. Interestingly, overexpression of 
the NOTCH canonical target genes HES1, HEY1 
or HEY2 did not confer PI3K pathway inhibitor 
resistance [96]. Furthermore, there are several 
human breast cancer data bases confirming 
increased MYC expression in PIK3CA mutant 
breast cancers with frequencies ranging from 
27% to 47% [38, 100].

It has been known for quite some time that 
MYC is one of the downstream target molecules 
of the PI3K-AKT signaling pathway in AKT-
mediated phosphorylation and inhibition of 
GSK3β prevents the phosphorylation and deg-
radation of MYC protein [101]. MYC is also a 
downstream effector molecule of the mTOR 
pathway. The stimulation of translation of MYC 
through the induction of eukaryotic initiation 
factor 4E (a major mediator of cap-dependent 
mRNA translation and tightly regulated by 
mTOR pathway) is one of the known mecha-

nisms MYC drives protein translation and is 
implicated in MYC-mediated tumorigenesis 
[102, 103]. Recently, Ilic et al reported that 
eIF4E gene amplification/overexpression devel-
oped as a compensatory resistance mecha-
nism in cells initially sensitive to the combined 
PI3K/mTOR inhibition. Considering that the 
gene encoding eIF4E is an established MYC-
regulated target, cooperation between MYC 
and eIF4E in regulating resistance mechanism 
is a possibility [76, 104]. These findings sug-
gest that aberrant elevation of MYC represents 
a potential mechanism by which tumors devel-
op resistance to PI3K inhibition, and thus com-
bination therapies targeting both PI3K and 
MYC (or its upstream affector molecule, like 
g-secretase since MYC lacks critical hydropho-
bic pockets it is highly challenging to target by 
small molecule compounds, [105, 106] may be 
necessary and sufficient to circumvent resis-
tance to PI3K-targeted therapy. Recently, 
Elkabrts and colleagues have reported that 
despite the presence of activating PIK3CA 
mutations, not all patients benefited from 
BYL719 (p110α-specfic inhibitor) treatment, 
suggesting that their tumors may be intrinsi-
cally resistant to p110α-specfic inhibitor [107]. 
Their cell line-based mechanistic data revealed 
that breast cancer cells resistant to BYL719 
had persistent activation of mTORC1 signaling, 
although AKT phosphorylation was dampened. 
Here, we can argue that mTOR-dependent 
upregulation in MYC expression may be the 
cause for BYL719 resistant in PIK3CA mutated 
breast cancer cells [please see Rodrik, V. et al., 
2005 [74]].

Beside breast cancer, in anaplastic thyroid car-
cinoma model MYC cooperates with PI3K acti-
vation to induce more aggressive features, 
including pan-PI3K drug (BKM120) resistance 
and also enhanced metastatic behavior[108]. 
In addition to activating PI3K-AKT and MEK-
ERK signaling, mTOR inhibition by rapamycin 
can also induce MYC protein phosphorylation 
and accumulation in colorectal cancer cells. 
Functional analysis indicates that rapamycin-
induced MYC phosphorylation is dependent on 
PDK1 but independent of PI3K and AKT activity 
[109]. They also reported that rapamycin-
induced MYC activation is associated with the 
loss of PPP2R2B, which encodes for the B55β 
regulatory subunit of the serine/threonine pro-
tein phosphatase PP2A and loss of PPP2R2B 
results in aberrant activation of PDK1. They fur-
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ther demonstrated that pharmacological or 
genetic inhibition of PDK1 markedly inhibited 
MYC phosphorylation, leading to enhance sen-
sitivity to rapamycin in colon cancer cells. 

Factors other than MYC activation are also 
responsible for PI3K inhibitor resistance in 
PIK3CA mutated conditions. Multiple studies 
have described clinically relevant and poten-
tially targetable adaptive responses as well as 
pre-existing or acquired genetic resistance to 
PI3K inhibitor, including downstream activation 
of mTOR (via variety of mechanisms indepen-
dent of AKT activation) or the RAS-RAF-MEK-
ERK pathway activation or increased expres-
sion of anti-apoptotic BCL2 family members 
[101, 110]. Recently, Vora et al developed PI3K 
inhibitor resistant breast cancer cell lines and 
demonstrated PI3K inhibitor independent 
CyclinD1/CDK4-dependent RB phosphoryla-
tion leading to E2F dependent cell survival and 
proliferation. They also demonstrated that a 
combination of CDK4/6 inhibitor plus PI3K 
inhibitor synergistically reduced in vitro cell via-
bility and in vivo tumor regression in BYL719-
resistant/PIK3CA mutant xenografts [111].

Treatment strategy and future perspective

The MYC is involved in many critical processes 
in malignant cells, including proliferation, 
growth, differentiation, and metabolism [112]. 
Since MYC activation/amplification is an impor-
tant mechanism underlying resistance to the 
PI3K-AKT-mTOR pathway inhibitors, developing 
an effective therapeutic strategy for targeting 
MYC may be necessary to overcome this path-
way-targeted drug-resistance. Furthermore, 
MYC also plays an important role for cancer 
stem cells initiation and maintenance and its 
association with tumor recurrence following 
treatment indicate that MYC induction following 
the PI3K-AKT-mTOR pathway-specific inhibition 
may be a serious issue in the clinic. Although 
MYC is a valid candidate for cancer target, 
direct inhibition of MYC has not successful yet 
in the clinics. Thus, alternative strategies 
include targeting MYC by (a) context dependent 
upstream of MYC affector candidates like 
NOTCH, PDK1 and (b) interfering with key MYC 
downstream target gene(s). Future clinical trial 
design for PI3K-pathawy specific inhibitor 
should focus on (1) continued efforts to select 
appropriate patients following genomic profil-
ing, (2) continued efforts for the tissue collec-

tion in post-neoadjuvent as well as metastatic 
settings for better understanding of the signifi-
cant pathway(s) alterations that are associated 
with tumor pathogenesis and development of 
therapeutic resistance and (3) combination of 
complementary pathway inhibitor to maximize 
the clinical efficacy and minimize resistance to 
the therapy.

Conclusion

In an ideal world, a resistance will be predict-
able based on (1) the genomic background pre-
existing within the tumor and (2) the nature of 
signals the drug impedes. Our collective goal 
will be to establish a knowledge base that can 
be utilized to predict possible mechanisms of 
resistance to these inhibitors, especially if such 
mechanisms may preexist within the tumors. It 
would be crucial to obtain such information 
beforehand because this would render clini-
cians the advantage of “first strike” in their war 
against drug-induced resistance in breast can-
cers; choosing patients who might benefit max-
imally from this pharmacological intervention. 
Like other targeted therapies, understanding 
the diversity of mechanisms that give rise to 
PI3K inhibitor resistance utilizing laboratory-
based preclinical models is expected to help 
clinical hypothesis testing and ultimately pro-
vide the rational of right combination strategy 
that can overcome resistance mechanism(s). 
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