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Abstract: Breast cancer is composed of multiple subtypes with distinct morphologies and clinical implications. The 
advent of microarrays has led to a new paradigm in deciphering breast cancer heterogeneity, based on which the 
intrinsic subtyping system using prognostic multigene classifiers was developed. Subtypes identified using different 
gene panels, though overlap to a great extent, do not completely converge, and the avail of new information and 
perspectives has led to the emergence of novel subtypes, which complicate our understanding towards breast tu-
mor heterogeneity. This review explores and summarizes the existing intrinsic subtypes, patient clinical features and 
management, commercial signature panels, as well as various information used for tumor classification. Two trends 
are pointed out in the end on breast cancer subtyping, i.e., either diverging to more refined groups or converging to 
the major subtypes. This review improves our understandings towards breast cancer intrinsic classification, current 
status on clinical application, and future trends.
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Introduction

Breast carcinoma is the leading cause among 
women in most developed countries [1]. It is 
not a single disease, which comprises of many 
biologically different entities with distinct path-
ological features and clinical implications [1-7]. 
Accumulating evidence has suggested that 
breast cancers with different histopathological 
and biological features exhibit distinct behav-
iors that lead to different treatment responses 
and should be given different therapeutic strat-
egies [8]. Thus, accurate grouping of breast 
cancers into clinically relevant subtypes is of 
particular importance for therapeutic decision 
making and thus urgently called for.

Classical immunohistochemistry (IHC) markers 
such as ER, PR and HER2, together with tradi-
tional clinicopathological variables including, 
e.g., tumor size, tumor grade and nodal involve-
ment, are conventionally used for patient prog-
nosis and management [9, 10]. The advent of 
high-throughput platforms for gene expression 
analysis such as microarrays has shown that 
tumor cell response to treatment is not deter-

mined by anatomical prognostic factors but 
rather intrinsic molecular characteristics that 
can be probed using molecular methods [4-7]. 
This conceptual change has led to a new para-
digm on how breast cancer patients are strati-
fied and treated, which provides an incremental 
increase on the reproducibility and accuracy of 
disease prognosis and therapeutic decision 
making [11]. Integrating information from mul-
tiple levels or dissecting this problem from the 
pathway point of view, has led to an expanding 
spectrum on breast cancer subtypes or the 
other way around. With our incremental knowl-
edge on this complex tumorigenesis progress, 
novel molecules with emerging roles are gain-
ing their importance which, though contribute 
to deciphering breast cancer heterogeneity, 
complicate our understanding towards subtyp-
ing of this complex disease.

This review clarifies breast tumor intrinsic clas-
sification, clinical features and therapeutic 
strategies of each major intrinsic subtype, and 
the current status of the commercial classifica-
tion signatures. Emerging information and 
novel perspectives on breast cancer subtyping 
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are provided, with the future trends forecasted 
to conclude this paper.

Gene expression profiling and intrinsic sub-
types

With the development of microarrays, gene 
expression profiling (GEP) has been used for 
breast cancer prognosis, specifically aiming at 
identifying patients with sufficiently good prog-
nosis to allow the safe omission of adjuvant 
chemotherapy [6, 7]. The pioneer studies con-
ducted by Sørlie et al. reported a distinctive 
‘molecular portrait’ of breast cancer using 456 
cDNA clones, according to which tumors were 
classified into five intrinsic subtypes with dis-
tinct clinical outcomes, i.e., luminal A, luminal 
B, HER2 over-expression, basal and normal-like 
tumors [12, 13]. The rational underlying such 
classification is that the differences underlying 
the gene expression patterns among cancer 
subtypes reflect the fundamental differences 
of the tumors at the molecular level [14]. Each 
of the five intrinsic subtypes is nicely mapped 
to an IHC-defined subtype (Table 1) except for 
the normal-like tumors which account for 7.8% 
of all breast cancer cases in a lymph-node neg-
ative cohort [15], shares a similar IHC status 
with the luminal A subtype and are character-
ized by a normal breast tissue profiling [16].

These five intrinsic subtypes have been repeat-
ed by several other studies with varying num-
bers of genes included in the signature. For 
instance, Hu et al. found a signature containing 
306 genes that can distinguish these subtypes 
with significant differences observed on rela- 
pse-free and overall survival [17]. Parker et al. 
reported a 50-gene classifier (PAM50, which 
contains mostly hormone receptor and prolif-
eration related genes, and genes exhibiting 
myoepithelial and basal features), which has 
significant prognostic and predictive values on 

breast tumors [18-20] and can be widely 
applied in the clinical setting [21]. It is worth 
noting that although different in gene composi-
tion, the signatures identified by different stud-
ies should converge to the pathways they imply, 
based on which the same sample should not be 
classified into different categories. However, 
this is not the case due to, e.g., lack of stringent 
standardization of the methodology and breast 
cancer intrinsic subtype definition [22].

The development of tissue microarray (TMA) 
technology has enabled the validation of gene 
signatures at the translational level. A study 
exploring the combined protein expression pro-
files of a large panel of well-characterized com-
mercially available biomarkers revealed 5 ma- 
jor groups [23]. In particular, they identified two 
large subtypes exhibiting luminal epithelial cell 
phenotypic characteristics, hormone receptors 
positivity, absence of basal epithelial pheno-
typic features and HER2 protein over-expres-
sion; two subgroups characterized by high 
HER2 positivity and negative hormone receptor 
expression, and differ from each other by MUC1 
and E-cadherin expression; and one group 
characteristic of strong basal epithelial marker 
expression, TP53 positivity, absent hormone 
receptor expression and weak luminal epitheli-
al and cytokeratin expression [23]. These sub-
types accord well with those intrinsic subtypes 
based on GEP, which confirms the biological 
heterogeneity of breast cancer and demon-
strates the clinical relevance of the intrinsic 
subtypes identified using high-throughput tech-
nologies [23].

Though Sørlie’s subtyping has set the standard 
for intrinsic breast tumor categorization, other 
classifications also exist. For instance, Sotiriou 
et al. identified 6 groups among breast carcino-
mas using a signature containing 706 cDNA 
probe elements, which include 3 luminal-like, 1 

Table 1. Summary of the breast tumor molecular subtypes
Intrinsic subtype IHC status Grade Outcome PrevalenceΔ

Luminal A* [ER+|PR+] HER2-KI67- 1|2 Good 23.7% [p1] [10] 
Luminal B* [ER+|PR+] HER2-KI67+ 2|3 Intermediate 38.8% [p1] [10]

[ER+|PR+] HER2+KI67+ |Poor 14% [p1] [10] 
HER2 over-expression* [ER-PR-] HER2+ 2|3 Poor 11.2% [p1] [10] 
Basal* [ER-PR-] HER2-, basal marker+ 3 Poor 12.3% [p1] [10]
Normal-like [ER+|PR+] HER2-KI67- 1|2|3 Intermediate 7.8% [p2] [15] 
*Subtypes with detailed expression patterns and clinical implications discussed in the text, which take the majority of the 
breast tumor cases and are most commonly referred to. ΔThe prevalence of each subtype is taken from the publication indi-
cated in the square bracket.
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HER2-like and 2 basal-like subtypes [24]. Fan 
et al. have suggested a 70-gene signature to 
classify tumors into 4 groups where the normal-
like subtype was not identified according to 
Sørlie’s subtyping [25]. Lehmann et al. have 
subdivided triple negative tumors into 6 stable 
groups, i.e., 2 basal-like (BL1 and BL2), 1 immu-
nomodulatory (IM), 1 mesenchymal (M), 1 mes-
enchymal stem-like (MSL) and 1 luminal andro-
gen receptor (LAR) subtype using GEP. The BL1 
subtype is heavily enriched in cell cycle and cell 
division components, suggesting the potential 
response to anti-mitotic agents such as tax-
anes (paclitaxel or docetaxel) of tumors belong-
ing to this subtype. The BL2 subtype displays 
unique gene ontologies involving growth factor 
signaling and has features suggestive of basal/
myoepithelial origin. The IM subtype is enriched 
for genes involved in immune cell processes. 
The M subtype displays a variety of unique 
gene ontologies that are heavily enriched in cell 
motility, ECM receptor interaction, and cell dif-
ferentiation pathways. The MSL subtype sha- 
res genes for similar biological processes with 

the M subtype. Besides, this subtype contains 
genes involved in growth factor signaling, and 
displays low expression of claudin 3, 4, 7 (simi-
lar to the claudin-low subtype). The LAR sub-
type is ER negative but displays luminal gene 
expression patterns [26].

Despite these inconsistent naming and num- 
ber of categories grouped by different studies 
(Figure 1), breast tumors fall primarily into 
three major classes, i.e., luminal, HER2 over-
expression and triple negative phenotypic tu- 
mors (TNP), where triple negative tumors are 
the most heterogeneous and comprise largely 
of the basal subtype. The expression pattern, 
treatment response and clinical outcome of the 
major breast tumor subgroups, i.e., luminal, 
HER2 over-expression, basal, are discussed 
below [27]. All basic breast tumor intrinsic sub-
types, their intrinsic nomenclature, featured 
IHC status, prevalence, as well as the associa-
tion with clinical variables, i.e., tumor grade and 
patient outcome, are summarized in Table 1.

Figure 1. Intrinsic breast tumor subtypes identified according to the example studies listed in the text. Gray blocks 
show subtypes identified from the study, white blocks are out of the scope of the corresponding study or 0 subtype is 
found. The value in each block shows the number of subtypes identified for each subtype. The corresponding blocks 
are unified for the identified group comprising of multiple tumor subtypes. GEP: gene expression profiling. Subtyp-
ing using gene expression data. TMA: tissue microarray. Subtyping using protein expression data. PATH: pathway. 
Subtyping based on pathway. INT: integrative view. Subyping using data integrated from multiple levels.
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Expression and clinical features of basic intrin-
sic subtypes

Luminal tumors 

The luminal-like tumors express hormone re- 
ceptors, with expression profiles reminiscent of 
the luminal epithelial component of the breast 
[16]. These patterns include the expression of 
luminal cytokeratins 8/18, ER and genes asso-
ciated with ER activation such as LIV1 and 
CCND1 [16, 24]. At least two subtypes exist 
within luminal-like tumors, i.e., luminal A and 
luminal B. Approximately speaking, the luminal 
A and luminal B tumors each represents the 
[ER+|PR+]HER2- (tumors with ER or PR positiv-
ity and HER2 negativity) and [ER+|PR+]HER2+ 
(tumors with ER or PR positivity and HER2 posi-
tivity) subtype, respectively, using the IHC 
nomenclature introduced in the previous sec-
tion [28]. However, this equivalence does not 
always hold as, e.g., only part of luminal B 
tumors are HER2+ [10]. Luminal A tumors have 
higher expression of ER-related genes and 
lower expression of proliferative genes than 
luminal B cancers [12, 14]. Luminal B tumors 
tend to be of higher grade than luminal A 
tumors.

Luminal tumors are the most common sub-
types among breast cancer, with luminal A 
being the majority. In the Carolina Breast 
Cancer Study [29], luminal breast tumors repre-
sent 64.3% of all patients, where luminal A can-
cers account for 54.3% (i.e., 57%, 67%, 40% 
and 55% of premenopausal white, postmeno-
pausal white, premenopausal African American 
and postmenopausal African American women, 
respectively). In general, the luminal subtypes 
carry a good prognosis, and luminal B tumors 
have a significantly worse prognosis than the 
luminal A subtype [14]. Luminal tumors res- 
ponse well to hormone therapy but poorly to 
conventional chemotherapy [27]. Treatment 
response differs between luminal subtypes. 
According to the Recurrence Score, which is 
resulted from a RT-PCR based 16-gene predic-
tor (half of them are ER and proliferation-relat-
ed genes), tumors with low Recurrence Scores 
are luminal A while those with high Recurrence 
Scores are luminal B [30]. Thus, luminal A 
tumors could be adequately treated with endo-
crine therapy, while luminal B tumors which are 
more proliferative may benefit more from the 
combined therapeutic strategy of chemothera-

py and hormonal treatment. Other targeted 
approaches such as anti-angiogenic strategies 
were suggested to be effective for luminal 
tumors as well. For example, the anti-VEGF anti-
body, bevacizumab, was shown to improve pro-
gression free survival in metastatic breast can-
cer when combined with paclitaxel, among 
which 60% of the patients carrying luminal 
tumors [27]. In 2012, the mTOR inhibitor ev- 
erolimus (Afinitor) was approved in combinati- 
on with exemestane for treating ER-positive, 
HER2-negative advanced breast cancer that 
recurs on standard therapies [31]. In addition, 
Palbociclib (under development by Pfizer), a 
cyclin-dependent kinase (CDK) 4/6 inhibitor, is 
approaching approval for treating such patients 
on the basis of data from a phase II study [32].

HER2 over-expression tumors 

The intrinsic HER2 over-expression tumors 
refer to those identified using gene expression 
array, which is similar to the ER-PR-HER2+ (ER 
negative, PR negative, HER2 positive) subgroup 
by immunostaining or fluorescence in situ 
hybridization (FISH) [28]. However, tumors clas-
sified by these two systems do not perfectly 
match, as not all clinically HER2-positive tumors 
show changes at the transcriptional level. The 
HER2 over-expression tumors are character-
ized by over-expressing other genes in the 
HER2 amplicon such as GRB7 [16, 33] and 
PGAP3 [33]. 40% to 80% of these tumors har-
bor TP53 mutation. HER2 over-expression tu- 
mors are more likely to be of grade 3.

No association with age or race was found for 
HER2 over-expression tumors [29], as well as 
known risk factors [27, 34]. Though HER2 over-
expression breast tumors carry a poor progno-
sis [12, 14, 24], they are sensitive to anthracy-
cline and taxane-based neoadjuvant chemo- 
therapy, with significantly higher pathological 
complete response than luminal breast tumors 
[27]. The poor prognosis of this subtype as well 
as the basal tumors seem to derive from a high-
er risk of early relapse among those without 
complete eradication of tumor cells, and can-
cers of these two classes are suggested to 
derive the most benefit from improvements in 
chemotherapy [27]. Unlike the basal tumors, 
molecularly targeted agents such as the anti-
HER2 monoclonal antibody, trastuzumab, are 
available for HER2 over-expression cancers. 
Not all HER2 over-expression tumors respond 
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to trastuzumab. PTEN loss [35] and CXCR4 up-
regulation [27] have been implicated in trastu-
zumab resistance which provide targets in the 
combined strategies to improve clinical out-
come in the future.

Basal tumors 

As discussed before, the basal subtype is com-
posed of ER-PR-HER2- (triple negative) tumors 
with expression profiles mimicking that of the 
basal epithelial cells of other parts of the body 
and normal breast myoepithelial cells [16]. 
Such expression patterns include lacking or low 
expression of hormone receptors and HER2, 
and high expression of basal markers (such as 
keratins 5, 6, 14, 17, EGFR) and proliferation 
related genes [16, 24]. Tumors characterized 
by basal cytokeratin expression are more prob-
able to have low BRCA1 expression [23] and 
harbor TP53 mutation [12, 29]. Similar with 
HER2 over-expression tumors, basal cancers 
are likely to be of grade 3 tumors [12, 29].

Basal tumors account for 60% to 90% triple 
negative cases [25, 36]. These tumors are of 
particular interest because they follow aggres-
sive clinical course and currently lack any form 
of standard targeted systemic therapy. Com- 
pared with the other subtypes, these tumors 
are associated with younger patient age, more 
common to develop in African-American women 
and especially among pre-menopausal individ-

uals [37]. Risk factors for this subtype include 
earlier menarche, high waist-to-hip ratio, and a 
lack of breast-feeding together with high parity 
[38]. Unlike the luminal A subtype, where hav-
ing multiple children and a younger age at the 
first full-term pregnancy are protective, these 
factors increase the hazard for basal tumors 
[39]. These tumors are associated with a lower 
disease-specific survival and a higher risk of 
local and regional relapse. Follow-up studies 
have revealed a time-dependent survival pro-
file for basal breast tumors, with a very poor 
early outlook diminishing after around 5 years. 
The metastasis pattern also separates basal 
tumors from the other breast cancers, with a 
tendency towards visceral organs (excluding 
bone) and less likely to involve lymph nodes 
[39]. The size of basal tumors is, in general, 
larger than the other subtypes, with a median 
size of 2 cm in one series [40]. Also, tumors of 
this class tend to show rapid growth [39]. Given 
the triple negative receptor status, basal 
tumors are not amenable to conventional tar-
geted breast cancer therapies, leaving chemo-
therapy the only option in the therapeutic arma-
mentarium. Two independent studies examining 
the chemo-resistance of basal cancers have 
shed light on patients experiencing tumors of 
this subtype. Their studies converge to the view 
that these aggressive tumors are sensitive to 
conventional chemotherapies such as anthra-
cycline and taxane, and their poor prognosis is 

Figure 2. Patient outcome based on breast tumor intrinsic subtypes.
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Table 2. Commercially available prognostic multi-gene signatures for breast cancer patients [6, 54]
MammaPrint [43, 44] Veridex 76-gene [44] MapQuant Dx [45] MapQuant Dx simplified [46] Oncotype DX [30, 47] Theros [48, 49]

Technique DNA microarray DNA microarray DNA microarray qRT-PCR qRT-PCR qRT-PCR

Provider Agendia Currently not commer-
cially available

Ipsogen Ipsogen Genomic Health bioTheranostics

Assay type 70-gene signiture 76-gene signiture 97-gene signiture 8-gene signature 21-gene recurrence score 2-gene ratio of HOXB13 
to IL17R (H/l)/molecular 
grade index

Tissue type Fresh or frozen Fresh or Frozen Fresh or Frozen FFPE FFPE FFPE

Discovery set 78 ER±, N0, < 5 cm 
diameter cancers, age < 
55 years

115 ER±, N0 cancers 64 ER+ cancers 64 ER+ cancers 447 ER+ samples, including 
samples from the tamoxifen 
only group of the NSABP 
B-20 trial

60 ER+ tumors, tamoxi-
fen only treated patients 
20 microdissected FFPE 
samples

Initial validation set 295 ER±, N±, < 5 cm 
diameter cancer, age < 
52 years

171 ER±, N0 cancers 597 ER± cancers, of 
which 125 profiled in-
house

597 ER± cancers, of which 125 
profiled in-house

668 ER+ samples from 
NSABP B-14trial90 (tamoxi-
fen-treated)

20 ER+ FFPE samples

Outcome Distant metastasis at 5 
years

Distant metastasis at 
5 years

Good (GG II) or poor (GG I 
III) prognosis

Good (GG II) or poor (GG I III) 
prognosis

Disease-free relapse at 10 
years

Relapse-free and overall 
survival

Clinical application To aid in prognostic 
prediction in patients < 
61 year of age with stage 
I or II, N0 disease with a 
tumor size of ≤ 5 cm

To prognose N0 patients To restratify grade 2 
tumors into low-risk grade 
1 or high-risk grade 3 
tumors, specifically for 
invasive, primary, ER+ 
grade 2 tumors

To restratify grade 2 tumors 
into low-risk grade 1 or high-risk 
grade 3 tumors, specifically for 
invasive, primary, ER+ grade 2 
tumors

To predict the risk of 
recurrence in patients with 
ER+, N0 disease treated 
with tamoxifen; to identify 
patients with a low risk of re-
currence who may not need 
adjuvant chemotherapy

To stratify ER+ patients 
into groups with a pre-
dicted low-risk or high-
risk of recurrence and a 
predicted good or poor 
response to endocrine 
therapy

Resulets presentation Dichotomous; good or 
poor prognosis

Dichotomous; good or 
poor prognosis

Dichotomous, GGII or 
GG I III

Dichotomous, GGII or GG I III Continuous variable; recur-
rence score

Continuous variable; risk 
of recurrence score

Additional information provided mRNA levels of ER, PR, 
and HER2 (Targetprint); 
Intrinsic subtypes (Blue-
print)

- - - mRNA levels of ER, PR, and 
HER2

Molecular grade index

Prognostic value in other populations Up to 3 positive nodes, 
and HER2+ disease

ER+, N0 patients treated 
with tamoxifen

ER+, receiving aromatase 
inhibitors

ER+, receiving aromatase 
inhibitors

ER+ and 1-3 N+, ER+ 
postmenopausal receiving 
aromatase inhibitors

-

Predictive value Chemotherapy response 
(poor prognosis group)

Chemotherapy response 
(poor prognosis group)

Chemotherapy response 
(GG I III)

Chemotherapy response (GG I III) Chemotherapy response 
(high recurrence score)

Chemotherapy response 
(high risk of recurrence 
score)*

Level of evidence II III III III I III

FDA approval Yes No No No No No

Availability Europe and USA Europe Europe Europe and USA USA
FDA: US Food and Drug Administration; MGI: molecular grade index; GGI: genomic grade index; FFPE: formalin-fixed paraffin-embedded; ER: oestrogen receptor; PR: progesterone receptor; N: lymph nodes; ±: positive and negative; +: positive; 
*: based on indirect evidence.
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not driven by the initial chemoresistance but 
rather due to the relatively few treatment 
options available for triple negative tumors 
[27]. Besides these conventional therapeutic 
strategies, many studies have kept suggesting 
novel targets for basal tumors. It has been sug-
gested that basal tumors may be EGFR-driven 
[41]. The ‘wound response’ signature, encom-
passing genes involved in matrix remodelling 
and angiogenesis, has been shown to be asso-
ciated with basal tumors, suggesting other po- 
tential avenues of targeting [42].

Patient outcome of these basic intrinsic sub-
types are compared in Figure 2.

Commercial multi-gene signatures for breast 
cancer prognosis

Commercially, six genomic assays, i.e., Mam- 
maPrint [43, 44], Veridex 76-gene signature 
[44], MapQuant Dx [45] and its simplified ver-
sion [46], Oncotype DX [30, 47] and Theros [48, 
49] were developed for the prediction of clinical 
outcome among breast cancer patients, which 
are summarized in Table 2.

MammaPrint (Agendia, Amsterdam, Netherlan- 
ds), a feature set containing 70 genes, is the 
first successfully developed prognostic signa-
ture [43, 44]. It has been approved by the US 
Food and Drug Administration (FDA), and used 
for the prognostication of patient with stage 1 
or 2, node negative, invasive breast tumors of 
size less than 5 cm. Level II evidence suggests 
that in cases where the clinicopathological 
measures disagree with MammaPrint, the lat-
ter predicts outcome with higher accuracy [50, 
51]. Following MammaPrint, Veridex 76-gene 
signature was developed [44]. By contrast wi- 
th MammaPrint, this signature was identified  
by conducting the analysis, separately, within 
ER-positive and ER-negative cancers, leading 
to 60 genes diagnostic of distant metastasis 
within 5 years in ER-positive patients and 16 
genes prognostic of distant metastasis among 
ER-negative patients [44]. A test of this signa-
ture using 171 node negative patients revealed 
that this 76-gene signature was a strong prog-
nostic factor for 5 years distant metastasis, 
which outperforms the St Gallen’s and NCI 
guidelines in identifying patients with good 
prognosis and could forgo chemotherapy [44]. 
MapQuant Dx (Ipsogen SA, Marseille, France) is 
a hypothesis-driven prognostic signature based 
on the premise that histological grade is a 

strong prognostic factor in ER positive tumors 
[30]. This signature could stratify grade II can-
cers into grade I-like (with a low frequency of 
distant relapses) and grade III-like (having a 
clinical behavior similar to that of grade III) can-
cers [45, 52]. Akin to MammaPrint, MapQuant 
Dx correlates with the benefit from chemother-
apy. However, the prognostic value provided by 
MapQuant Dx is only applicable to ER positive 
tumors [53]. MammaPrint, the Veridex 76-gene 
signature, and MapQuant Dx are all DNA micro-
arrays based and require fresh or frozen sam-
ples for the assays. This poses challenges for 
the prospective validation, limiting their prog-
nostic power supported by the evidence level. 
The prognostic information of these three 
assays stem almost exclusively from the 
expression of the proliferation-related genes 
and time dependent, setting further limitations 
for their application [54].

In parallel with microarray-based prognostic 
signatures, the technique of qRT-PCR has also 
been used for developing the prognostic assay. 
These methods extract RNA from formalin-fixed 
paraffin-embedded (FFPE) tissue samples, 
thus do not have difficulties in specimen pro-
curement. The simplified version of MapQuant 
Dx [46], Oncotype DX [30, 47], and Theros [48, 
49] belong to this category. Simplified Map- 
Quant Dx contains 8 genes and has the same 
predictive value as the microarray-based ver-
sion [46]. Oncotype DX measures the expres-
sion of 21 genes, including 16 cancer-related 
and 5 reference genes [30, 47]. The recurrence 
score is used to prognose the risk of distant 
relapse at 10 years for ER positive, node nega-
tive breast cancer patients, and an indepen-
dent predictive factor for these patients receiv-
ing adjuvant tamoxifen [30]. Also, evidences 
show that the recurrence score has predictive 
value among ER positive patients treated with 
aromatase inhibitors [55], and is prognostic of 
patients with ER positive tumors harboring up 
to three positive lymph nodes [56]. The prog-
nostic use of Oncotype DX is supported by level 
I evidence, and this test has been incorporated 
in the National Comprehensive Cancer Network 
as a predictor of recurrence and a guide when 
making therapeutic decisions among early ER 
positive node negative breast tumors [54]. 
Oncotype DX assay has also been included in 
American Society of Clinical Oncology guide-
lines as a tumor marker of recurrence [54]. 
Theros measures the ratio between two genes 
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HOXB13 and IL17R (H/I ratio) to provide the 
prognostic value on the relapse-free and over-
all survival among ER positive patients [48, 49]. 
It is also predictive of the treatment response 
to endocrine among these patients, with a high 
H/I ratio being associated with a high recur-
rence risk [48, 49]. The accuracy of the H/I 
assay was improved by including the molecular-
grade index which contains 5 genes and mainly 
measures cell proliferation [48].

Different gene signatures share very few genes 
in common due to the complexity of gene 
expression data containing large numbers of 
highly correlated variables [6]. However, stud-
ies comparing the performance of different sig-
natures have revealed a concordant risk assign-
ment despite the few common genes shared 
[25], e.g., only one gene (SCUBE2) is in com-
mon between MammaPrint and Oncotype DX.

Emerging information for intrinsic subtyping

MiRNA expression profiling 

MicroRNA (miRNA) is a category of small (ap- 
proximately 22-nucleotide) non-coding RNAs 
with regulatory activities, which functions main-
ly by inhibiting protein synthesis via binding the 
complementary sequences on target mRNA 
genes [57]. It is estimated that miRNAs could 
regulate the expression of 30% to 60% of all 
human protein-coding genes [58, 59]. Also, 
miRNA expression profiles are unique for a wide 
range of human diseases including different 
stages of tumor progression and metastasis 
[60], and circulating miRNAs are extremely sta-
ble in blood and serum [61, 62]. These fea-
tures, altogether, empower miRNAs a new class 
of promising diagnostic and prognostic mark-
ers in the clinic. The first comprehensive report 
on miRNA signatures for breast tumors was 
published in 2005 [63], where a number of 
miRNAs were shown deregulated in such tu- 
mors. MiR-125b, miR-145, miR-21 and miR-
155 were reported to be the most dysregulated 
miRNAs in their study, and some of these mal-
functional miRNAs were correlated with specif-
ic clinical features of breast tumors including 
the expression of hormone receptors, tumor 
stage, vascular invasion and proliferation [63, 
64]. They later reported that miR-205 is down-
modulated in breast carcinomas as compared 
with normal breast tissues [65]. Another study 
revealed that miR-221 and miR-222 are in- 
volved in a regulatory loop with ER [66]. The 

expression of miR-145 was reported severely 
decreased in tumor specimens [67]. MiRNA145 
was shown to collaborate with TP53 in a death-
promoting regulatory loop and target ER in 
breast tumor cells, suggesting a miR-145 re-
expression therapy for patients with ER+ and/
or TP53 wild-type tumors [67]. MiR-9 was 
shown to participate in a breast tumor metas-
tasis-promoting network involving E-cadherin 
and β–catenin [68].

MiRNA profiling brings an improvement for 
breast cancer subtyping and prediction of treat-
ment response. Our recent study on breast 
tumor subtyping integrating mRNA and miRNA 
profilings revealed 69 miRNAs differentially 
expressed among subgroups classified using 
ER, PR and HER2 status, with the majority 
comes from the triple negative group and espe-
cially the basal subtype [33]. Among the miR-
NAs differentiating breast tumor subtypes in 
this signature, miR-135a, miR-135b, miR-365 
and miR-7 were found to distinguish breast 
tumors by ER status [33]. Blenkiron et al. stud-
ied the miRNA expression profiling among 
breast malignancies classified using intrinsic 
subtypes, and found miR-155 differentially 
expressed in ER+ versus ER- tumors [57]. A 
miRNA panel consisting of largely under-exp- 
ressed miRNAs was identified to characterize 
male from female breast carcinomas [69, 70].

Taken together, miRNAs are potential excellent 
biomarkers of breast carcinomas, and could be 
employed for innovative therapies for targeted 
patients. MiRNA expression profiling could avail 
as a critical means for breast cancer subtyping 
as well as the associated prognosis and thera-
peutic prediction.

lncRNA 

Long non-coding RNA (IncRNA) is originally 
defined as RNA molecules longer than 200 
nucleotides that do not encode a protein. Our 
understandings toward the roles and functions 
of lncRNAs are rapidly advancing nowadays [71-
73]. A recent review distilled the myriad func-
tions of lncRNA into 4 mutually unexclusive 
archetypes, i.e., signals; decoys (acting as 
molecular sponges pulling away RNA binding 
proteins that play regulatory roles such as tran-
scription factors and chromatin modifiers); 
guides (recruiting chromatin-modifying enzy- 
mes to target genes); and ropes (keep multip- 
le proteins together to form ribonucleoprotein 



Breast cancer intrinsic subtying

2937 Am J Cancer Res 2015;5(10):2929-2943

complexes) [73, 74]. Its disease subtyping role 
has also been explored by several studies. A 
recent study has reported that lncRNAs, but 
not mRNAs or miRNAs, could discriminate fail-
ing hearts of different pathologies, i.e., identify-
ing the ischemic and nonischemic failing car-
diomyopathy from nonfailing cases [75]. Using 
lncRNA expression profiles, glioma has been 
classified into three mole cular subtypes [76]. 
The prognostic and predictive roles of lncRNAs 
have been suggested in several cancers includ-
ing breast, prostate, bladder and kidney tumors 
[77, 78]. In breast cancer, several lncRNAs 
including, e.g., HOTAIR, MALAT1, GAS5, BC200, 
SRA-1 and LSINCT5, have been reported differ-
entially expressed in tumor cells [77] and the 
lncRNA such as Zfas1 has been reported as a 
potential marker of such carcinomas [79]. 
Given the prominent roles played by lncRNA in 
breast cancer and its success in disease sub-
typing, it is promising to better decipher the 
high heterogeneity of breast cancer with the 
avail of lncRNA.

Epigenetics 

Epigenetics mainly refers to the modification of 
DNA and histone as well as their roles in regu-
lating the transcriptional program. Similar to 
aberrant gene expression, epigenetic altera-
tions contribute to the pathogenesis and mo- 
lecular heterogeneity of cancers. DNA methyla-
tion signatures were reported to segregate 
patients with CEBPA aberrations from the other 
subtypes of leukemia and define four epigeneti-
cally distinct forms of acute myeloid leukemia 
(AML) with NPM1 mutations [80]. A 15-gene 
methylation classifier was reported to be pre-
dictive of overall survival in AML [80]. Abnormal 
methylation of CpG island in gene promoters 
has been identified as a common mechanism 
for suppressing gene expression in cancer cells 
[81]. CpG Island Methylator Phenotype (CIMP) 
has been reported as novel subtype in colorec-
tal cancers [82]. Though the hypermethylation 
pattern was reported less distinctive across 
subtypes in breast cancer than among tumors 
of different tissue origins [83], the importance 
of hypermethylation in breast cancer classifica-
tion has been recognized lately. A recent study 
revealed that CIMP in breast cancer is associ-
ated with the lobular subtype [84]. The histone 
chaperone HJURP (Holliday Junction Recogni- 
tion Protein), an epigenetic regulator, was iden-
tified as a new independent prognostic marker 

for luminal A breast carcinoma [85]. Epigeneti- 
cs is an indispensible and promising tool in 
assessing breast cancer heterogeneity, with its 
power being unfolded.

Pathways 

Breast cancers are comprised of molecularly 
distinct subtypes that respond differently to 
pathway-targeted therapies. Transcription fac-
tors and signaling proteins associated with 
transcriptional programs were found specific to 
intrinsic subtypes [86], suggesting the link 
between signaling and subtyping. Thus, data 
from microarrays have also been used for path-
way analysis, with the aim of identifying sub-
types sharing common disease-causing func-
tions. Gatza et al. have presented a path- 
way-based method to classify breast cancer 
subtypes based on oncogenic and tumor sup-
pressor pathway deregulation [87]. Seventeen 
groups were identified in [87] where the widely 
accepted intrinsic subtypes were mixed in each 
pathway-defined subgroup. Particularly, sub-
groups 11 and 17 are luminal A tumors; sub-
groups 3, 4, 6, 9 and 16 belong to the luminal B 
subtype; subgroups 7 and 10 contain HER2 
positive tumors, and subgroups 2, 5, 8 are 
basal tumors. Subgroups 1, 12, 13, 15 are 
comprised of luminal tumors, and the subgroup 
14 is a mixture of all intrinsic subtypes [87]. 
These pathway-based subtypes were shown to 
differentiate tumors exhibiting similar clinical 
and biological properties, including distinct pat-
terns of chromosomal alterations that were not 
evident using, e.g., intrinsic subtyping [87].

Trends in breast tumor instrinsic subtyping

With the advent of high-throughput technology, 
overwhelming information on various levels, 
such as genomic, transcriptional, translational 
and epigenetic, has become available for can-
cer research. An increasing effort has been 
devoted to integrating information at multiple 
levels, with the aim of understanding the core 
functional differences driving breast tumor het-
erogeneity and seeking the effective treatment. 
Two emerging trends exist in this area, i.e., 
expanding the subtypes with refined features, 
and converging the subtypes identified using 
various methods.

The METABRIC (Molecular Taxonomy of Breast 
Cancer International Consortium) paved the 
way in the first direction. This study revealed a 
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refined breast cancer molecular taxonomy, i.e., 
10 integrative clusters which are named Int- 
Clust 1 to 10, by integrating copy number and 
GEP of 2000 breast tumors [88]. Among these 
subtypes, IntClusts 3, 7, 8 are primarily com-
posed of luminal A tumors, where IntClust 3 is 
marked by a paucity of copy number and cis-
acting alterations, IntClust7 lacks the 1q altera-
tion, harbors the 16p gain/16q loss and has a 
higher frequency of 8q amplification, and Int- 
Clust 8 is characterized by 1q gain/16q loss; 
IntClusts 1, 6, 9 are enriched for luminal B can-
cers, which are characterized by 17q23/20q 
cis-acting aberrations, 8p12 cis-acting aberra-
tions, and 8q cis-acting aberrations/20q ampli-
fications, respectively; IntClust 5 consists of 
HER2-amplified cancers regardless of ER sta-
tus; IntClust 10 contains the majority of basal 
tumors which is the most instable at the 
genomic level; IntClust 2 is enriched in luminal 
cancers but exhibits a high mortality rate, bear-
ing cis-acting aberrations in the 11q13/14 
region (where several driver genes reside); 
IntClust 4 is composed of both ER+ and ER- 
tumors and varied intrinsic subtypes, and sh- 
ares similar genomic features with IntClust 3, 
i.e., lacking copy number and cis-acting altera-
tions [88].

The Cancer Genome Atlas Network (TCGA) pio-
neers in the second direction. It investigated 
breast cancer subtypes by incorporating infor-
mation from multiple platforms, i.e., genomic 
DNA copy number arrays, DNA methylation, 
exome sequencing, mRNA arrays, miRNA se- 
quencing and reverse-phase protein arrays. By 
classifying tumors using each individual plat-
form and comparing results at different levels, 
they conclude that diverse genetic and epigen-
etic alterations converge phenotypically into 
four major breast tumor subgroups (i.e., luminal 
A, luminal B, HER2 positive, triple negative) that 
are previously identified using mRNA profiling 
[89]. Our previous endeavor on unveiling breast 
tumor heterogeneity using mRNA and miRNA 
expression profiling has also demonstrated the 
power of an integrative view on breast tumor 
subtyping and contributed in this domain [33]. 
A feature set containing 1015 mRNA and 69 
miRNAs was found differentially expressed 
among breast tumor subtypes defined by ER, 
PR and HER2. It could well characterize breast 
tumors into [ER+|PR+]HER2-, [ER+|PR+]HER2+, 
ER-PR-HER2+, ER-PR-HER2-, as validated us- 

ing multiple independent datasets, converging 
breast tumor subtypes obtained using different 
methodologies [33]. We further reduced this 
gene panel to 119 mRNAs using hierarchical 
clustering and nearest-to-center principle for 
the convenience of clinic use (results to be 
published).

Discussion

Among the four intrinsic subtypes, i.e., luminal 
A, luminal B, HER2 over-expression, which are 
commonly referred to, basal tumors are of par-
ticular interest due to the aggressive clinical 
course they follow and the lack of standard tar-
geted systemic therapy. Normal-like and lumi-
nal A tumors share the same status on the 
basic IHC markers, i.e. [ER+|PR+]HER2-KI67- 
(ER or PR positive, HER2 negative, KI67 nega-
tive) but differ on expression pattern, with the 
normal-like tumors resembling the normal 
breast profiling and having poor outcome.

Information such as lncRNA and epigenetic 
data plays critical roles in tumor progression 
and classification, providing novel perspectives 
on breast tumor subtyping. With the available 
information accumulating, taking an integrative 
view on breast tumor subtyping has been gain-
ing increasing interest on deciphering the het-
erogeneity of such tumors. Current studies in- 
corporating multiple types of data, though few, 
cast a relatively comprehensive view and reflect 
two trends on breast tumor subtyping, i.e., 
expansion of and convergence to the current 
four major subtypes.

Despite the growing number of clinically rele-
vant molecular subtypes being identified, cur-
rent breast cancer patient management still 
depends on traditional pathology assessment 
supplemented with biomarker testing using 
validated commercial assays (i.e., MammaPrint, 
MapQuant Dx and its simplified version, On- 
cotype DX, Theros). The clinical relevance of 
molecular subtypes identified using either mo- 
lecular markers or signature patterns, i.e., guid-
ing in individualized therapy, is evident. How- 
ever, it is important to standardize the method-
ology used for molecular subtyping, whose re- 
producibility needs to be extensively tested. 
Further effort is called for to make these theo-
retical advances technically convenient and 
available for clinical use.
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Concluding remarks

Breast cancer is comprised of different enti-
ties, each being associated with distinct out-
come and therapeutic approaches. Intrinsic 
subtyping, born with the advent of high-through-
put technologies, has gained its favour in 
recent years assuming that tumors sharing 
similar expression profiling follow the same 
pathologic pathway and should be given the 
same treatment. Armed with this concept and 
methodology, availed by various emerging infor-
mation and novel perspectives, and equipped 
with our incremental knowledge on the carcino-
genesis of such a complex disease, we are 
ready to decipher breast tumor heterogeneity 
and make it beneficial to clinical patients.
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