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Review Article
TOX gene: a novel target for human cancer gene therapy
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Abstract: Thymocyte selection-associated high mobility group box factor (TOX) is a member of an evolutionarily con-
served DNA-binding protein family and is expressed in several immune-relevant cell subsets. TOX encodes a nuclear 
protein of the high-mobility group box superfamily. It contains a DNA-binding domain, which allows it to regulate tran-
scription by modifying local chromatin structure and modulating the formation of multi-protein complexes. Previous 
studies have shown that TOX play important roles in immune system. More recently, several studies have described 
TOX expression is frequently upregulated in diverse types of human tumors and the overregulation often associates 
with tumor progression. Moreover, TOXis involved in the control of cell apoptosis, growth, metastasis, DNA repair and 
so on. In this review, we provide an overview of current knowledge concerning the role of TOX in tumor development 
and progression biology function. To our knowledge, this is the first review about the role of thisnew oncogene in 
tumor development and progression.
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Introduction

TOX (Thymocyte selection-associated HMG 
bOX) genes represent a novel gene family and 
encode a novel nuclear DNA binding protein 
belonging to a large superfamily of HMG (high 
mobility group)-box family. TOX proteins consist 
a small subfamily of proteins, including TOX1, 
TOX2, TOX3, and TOX4. Although they shared 
similar structures, different member of TOX 
family plays different biological roles. TOX1 was 
originally identified by microarray as a thymic 
transcript that was highly upregulated in 
CD4+CD8+ double positive (DP) thymocytes by 
Wilkinson B et al. TOX1 is proved to be a crucial 
regulator in immune system differentiation. 
However, the biological roles of the other mem-
bers of TOX family remain largely unspecified. 
TOX3 is predominantly expressed in brain neu-
rons and breast while TOX4 is recently proved 
to be a DNA interacting protein with unknown 
biological role.

Recently, emerging evidence has shown that 
TOX genes are aberrantly expressed or mutat-
ed in various diseases, especially in several dif-
ferent kinds of malignancies, such as lung can-
cer, breast cancer, gastric cancer, lymphomas 

and leukemia. In addition, TOX family members 
were also involved in non-tumor diseases, such 
as pulmonary tuberculosis and HIV infection. In 
some cases, TOX acted as an oncogene, con-
trolling cancer cells physiology via promoting 
oncogenic signaling. Among them, expressions 
and roles of TOX1 and TOX3 in malignancies 
were largely studied while studies on TOX2 and 
TOX4 are relatively limited. TOX members were 
also proved to be potential diagnostic or prog-
nostic markers in some malignancies, such as 
breast cancer and cutaneous lymphomas. 
However, the roles and molecular mechanisms 
of TOX in malignancies remain unspecified.

In this review, we summarize the current infor-
mation on TOX, focusing on their biological roles 
and their involvement in human malignancies.

The structure of TOX genes and proteins

TOX gene family members are located on four 
different human chromosomes. TOX1, originally 
identified as KIAA0808, is located at chromo-
some 8q12.1 in human and on chromosome 4 
A1 in mice. TOX2 is located on 20q13.12 with 
12 exons [1, 2]. TOX3, also known as TNRC9 
(trinucleotide-repeat-containing 9), is located 
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on 16q12 and consists of seven exons. TOX3 
was first identified in brain in a screen for tran-
scripts containing trinucleotide (CAG) repeat 
expansions in 1997 [3]. TOX3 protects neuro- 
ns from death by inducing Ca2+-dependent  
transcription from different cytoprotective pro-
moters in neurons [4, 5]. TOX3 is also a co-fac-
tor of CREB and CBP. TOX4 is located on 
14q11.2 with 9 exons. TOX4, also known as 
migration-inducing protein 7 or epidermal 
Langerhans cell protein LCP1, interact with a 
phosphatase complex involved in cell cycle pro-
gression from mitosis into interphase [6]. In 
addition, similar to other HMG box proteins, 
TOX4 protein is proved to be involved in the pro-
cess of DNA repair damaged by platinum anti-
cancer drugs [6].

TOX proteins belong to a large superfamily of 
HMG (high mobility group)-box family and con-
tain a DNA-binding domain (the HMG-box) [7]. 

TOX1 is proved to be a crucial regulator in 
immune system differentiation while the bio-
logical roles of the other members of TOX family 
remain largely unspecified. In this section, we 
will discuss the expression patterns and bio-
logical roles of TOX family, focusing on the 
expressions and roles of TOX1 in immune sys-
tem differentiation and maturation. 

TOX1 gene is most abundantly expressed in the 
thymus. It is also highly expressed in the liver 
and brain. However, TOX1 is poorly expressed 
or even absent in other tissues, including heart, 
kidney, lung, muscle, skin, intestine, spleen 
stomach and testis [1]. TOX1 is expressed in 
many subsets of immune cells, suggesting its 
significant roles in immune system, including 
development of CD4 T cells and NK cells, as 
well as lymph node organogenesis [10-12]. 

TOX1 is transiently upregulated in thymus dur-
ing β-selection and positive selection of devel-

Figure 1. TOX expression in T cell development in the thymus during 
positive selection. Downregulation of CD4 and CD8 receptors in DP cells 
yield a double dull (DD) phenotype. Re-expression of CD4 receptor in DD 
results in CD4+CD8lo cells. CD4+CD8lo are precursors of both CD4+CD8-

(CD4SP) and CD4-CD8+ (CD8SP) thymocytes. CD8SP can derive either 
from CD4+CD8lo or directly from DD cells. TOX is induced to unregulated 
when DP cells were selected to DD cells. TOX were significantly up-regulat-
ed at the CD4+CD8lo stage. After thymocytes differentiated into mature SP 
cells, TOX returned to baseline levels.

TOX proteins include a small sub-
family of proteins, which include 
TOX1, TOX2, TOX3, and TOX4 [8]. 
The TOX subfamily members are 
highly conserved among verte-
brates [2]. Similar to other HMG-
box proteins, the sequences of 
the TOX family members contain 
an HMG-box DNA binding 
domain, which comprises three 
helices folding into an L-shaped 
structure. The DNA binding 
domains between different TOX 
family members are nearly iden-
tical. In addition, the N-terminal 
domain is fairly conserved while 
the C-terminal domain is family-
member specific. Similar to other 
HMG proteins, TOX seem to 
operate by bending DNA, there-
by altering chromatin structure 
and modifying the accessibility 
of transcription factors to DNA 
[9]. However, the genomic bind-
ing sites of TOX remain unspeci-
fied. Further studies are needed 
to understand how this DNA 
binding factor is targeted to spe-
cific regions of DNA.

Expression patterns and biologi-
cal roles of TOX
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oping thymocytes [7]. Accumulating evidence 
has proved that TOX1 plays a critical role in the 
generation of all T lineage subsets, including 
CD4 and CD8 thymocytes. In the absence of 
TOX1 (TKO), the development of CD4 T cells 
was blocked, suggesting its important role in 
CD4 T cell lineage development [10]. TOX-/-
(TKO) mice blocked all CD4 T lineage cells, 
including not only production of conventional 
CD4 thymocytes, but also development of NKT 
and FOXP3+ regulatory T cells as well. However, 
CD8SP T cells developed in TKO mice. These 
results emphasize that the CD4+ SP transitional 
stage of development is not necessary for all 
CD8 T cell development [10, 13]. In addition, 
transgenic mice that express TOX1 (TOX-
transgenic [Tg]) in the majority of thymocytes 
showed an increased CD8 SP thymocytes and 
decreased CD4 SP thymocytes [10]. There 
might exist another pathway for CD8 but not 
CD4 T cell development (Figure 1).

TOX1 was also highly expressed during in vitro 
NK differentiation and down-regulation of TOX1 
led to a decreased population of natural killer 
(NK) cells, suggesting that TOX1 plays a critical 
role in human NK cell development [14]. 
Furthermore, Tox-/- hematopoietic stem cells 
can differentiate into NK cell precursors, but 
the NK cell precursors do not differentiate fur-
ther. Thus TOX1 is considered to play a critical 
role in immature NK cells [15]. In addition, TOX1 
was proved to play key roles in differentiation of 
cultured CD34+ human cord blood precursor 
cells into NK cells [14]. 

In addition, TKO mice lacked lymph nodes and 
had a significant decrease in the frequency and 
size of Peyer’s patches, suggesting its role in 
lymph node organogenesis. LTi cells were 
proved to be the central hematopoietic system-
derived orchestrators of lymphoid tissue organ-

ogenesis [16]. TOX1 is broadly induced and 
reciprocally controls classical NK and lymphoid 
tissue-inducer (LTi) cells [17]. TOX1-/- mice also 
lack identified fetal and adult LTi cells, explain-
ing the cause of the absence of Peyer’s patches 
and lymph node [15]. 

While TOX1 is proved to be a crucial regulator in 
immune system differentiation, little is known 
about the expressions and roles of other TOX 
family members. The role of TOX2 in humans 
remains unclear. The rat ortholog of TOX2 with 
100% HMG-box domain homology (GCX-1) is 
primarily expressed and functions in the hypo-
thalamic-pituitary-gonadal axis of reproduction 
[1]. A recent study has shown that TOX2 is high-
ly expressed in mature NK cells and is upregu-
lated during the differentiation of NK cells from 
human umbilical cord blood (UCB)-derived 
CD34+ cells [2]. Furthermore, silence of TOX2 
expression inhibited the early differentiation of 
NK cells and overexpression of TOX2 promoted 
UCB CD34+ cells to differentiate into mature NK 
cells [2]. TOX3 is predominantly expressed in 
brain neurons. It is also highly expressed in 
breast. In addition, breast cancer expresses 
higher levels of TOX3 than the normal breast 
tissue [4, 18]. The biological role of TOX4 
remains to be elucidated. Its N-terminus 
domain contains a strong transcription activa-
tor and it was recently proved to be a platinat-
ed-DNA interacting protein [6, 19].

TOX and cancer

Increasing evidence has demonstrated that 
TOX gene family members are aberrantly 
expressed or mutated in various human diseas-
es, especially in many kinds of malignancies. In 
this section, we will discuss the current findings 
of TOX in various human diseases, focusing on 
their roles in malignancies (Table 1).

Table 1. Clinical relevances of TOX
Cancer Expression or gene abnormality Function in the clinic References
Breast cancer Downregulated and hypermethylated TOX hypermethylation improves diagnosis; 

TOX3 and LOC643714 predict adverse outcome.
[21, 33, 35]

Lung cancer Downregulated and hypermethylated Not mentioned [21]

Cutaneous lymphoma Upregulated Molecular marker for diagnosis of mycosis fungoides;  
High TOX mRNA levels correlated with increased risks of  
disease progression and disease-specific mortality.

[36-41]

Gastric cancer Not investigated TOX3 associated with favorable prognosis [42]

Leukemia Downregulated and deleted Not mentioned [43, 44]

Central neural lymphoma Downregulated and deleted Not mentioned [47]
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TOX and breast cancer

It is now well known that aberrant methylation 
of hundreds of genes is prevalent during cancer 
development [20]. Gene silencing through aber-
rant promoter CpG island hypermethylation is 
the most frequent epigenetic abnormality 
observed in various malignancies. In a genome-
wide comparison of DNA methylation, the pro-
moter CpG islands of TOX1 are hypermethyl-
ated in 43% of breast tumors while it was 
unmethylated and in the distant normal breast 
tissue. In addition, in vitro studies proved that 
TOX1 was completely or partially methylated in 
three out of four breast cancer cell lines. The 
expression of TOX1 in the methylated cell lines 
is downregulated compared to the unmethyl-
ated cell line, indicating that TOX1 is epigeneti-
cally silenced by promoter hypermethylation 
[21]. In conclusion, TOX1 was hypermethylated 
in breast cancers but not in the adjacent nor-
mal tissue, suggesting it might be a potential 
novel tumor biomarker. Another study proved 
that TOX2 was unmethylated in normal cells 
but it was methylated in 23% breast (n=80) 
tumors. Furthermore, expression of two novel 
TOX2 transcripts was silenced in methylated 
breast cancer cells [21].

Recent genome-wide association studies 
(GWAS) have identified several single-nucleo-
tide polymorphisms (SNPs) related with breast 
cancer risk [22]. TOX3 gene is located on 
16q12, a region commonly lost in breast can-
cers and recently proved as the risk of breast 
cancer [23]. Several polymorphisms existed in 
the TOX3 gene, including the SNP rs3803662, 
rs12443621, and rs805154. Among them, 
SNP rs3803662 was proved to have a strong 
association of breast cancer [24-29]. No asso-
ciation was found between the rs12443621 or 
rs3803662 alleles and breast cancer risk [24, 
25, 28-31]. However, the role of the germline 
polymorphisms in the TOX3 remains unspeci-
fied [29]. Although it was previously reported in 
one study that TOX3 expression was not associ-
ated with prognosis of breast cancer patients 
[32]. Another study showed that the expression 
levels of TOX3 and/or LOC643714 associated 
with the progression of breast cancer, depend-
ing on the subtype and developmental stage of 
the tumor [33]. TOX3 might act as a tumor sup-
pressor gene since the risk allele rs3803662 is 
significantly associated with lower expression 

of TOX3 in breast cancer [34]. In addition, 
knockdown of TOX3 expression increased cel-
lular proliferation in breast cancer [35].

TOX and lung cancer

In a genome-wide comparison of DNA methyla-
tion between normal and tumor cells, the pro-
moter CpG islands of TOX1 were also methylat-
ed in 20% lung cancers cell lines, whereas the 
distant normal lung tissue from lung cancer 
patients were unmethylated. In addition, in 
methylated lung cancer, the TOX1 transcripts 
expression was silenced [21]. It was considered 
that TOX1 was silenced through CpG hyper-
methylation in lung cancer, which provide a 
possible mechanism for the development lung 
cancer. TOX2 were methylated in 28% lung 
(n=190) tumors while it was unmethylated in 
normal cells. Expression of TOX2 transcripts 
was significantly decreased in methylated lung 
cancer cells [21]. 

TOX1 and cutaneous lymphoma

Primary cutaneous lymphomas (PCLs) are a 
heterogeneous group of neoplasias that are 
characterized clonal proliferations of neoplas-
tic T or B lymphocyte in the skin with no evi-
dence of extracutaneous disease at the time of 
diagnosis [36, 37]. PCLs can be classified into 
to cutaneous T-cell lymphomas (CTCL) and 
cutaneous B-cell lymphomas (CBCL). In CTCL, 
there are indolent subtypes such as mycosis 
fungoides (MF) and lymphomatoid papulosis, 
whereas other CTCL subtypes have a more 
pejorative prognosis such as Sézary syndrome 
(SS) and CD30-lymphomas. Recently, Youwen 
Zhou et al. proved that TOX1 was highly 
expressed in early MF skin biopsies in immuno-
histochemistry and immunofluorescence [38]. 
The authors further found that thicker MF 
lesions such as plaques and tumors expressed 
higher TOX1 levels than thinner patches, sug-
gesting its association with MF progression. 
High TOX1 mRNA levels correlated with 
increased risks of disease prognosis [39]. In 
addition, SohshiMorimura et al. demonstrated 
higher levels of TOX1 mRNA in SS using immu-
nohistochemistry [40]. Furthermore, TOX1 is a 
direct target of microRNA-223, which could 
reduce cell growth and clonogenic potential  
of MF [41]. In conclusion, TOX1 was highly 
expressed in some CTCLs, such as MF and SS, 
suggesting its role in the pathogenesis of CTCL.
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TOX3 and gastric cancer

In a recent study, the effect of TOX3 rs3803662 
on survival of gastric cancer patients was 
investigated. TOX3 rs3803662 was proved to 
be associated with a significantly favorable 
effect among diffuse-type gastric cancer 
patients. Thus it was concluded that TOX3 
rs3803662 might play an important role in the 
prognostic outcome and treatment of gastric 
cancer [42]. 

TOX1 and leukemia

Most childhood acute lymphoblastic leukemia 
(ALL) can be cured, but the prognosis is dismal 
in patients who relapse after treatment. 
Genome-wide DNA copy number analyses on 
61 pediatric patients with relapsed ALL identi-
fied copy number alterations of TOX1 (8q12.1) 
at relapse [43]. In contrast to acute lympho-
blastic leukemia in children, adult cases are 
associated with a very poor prognosis. 
Recurrent deletions of TOX1 were also seen in 
relapse samples of adult ALL, suggested that 
TOX might be associated with relapsing ALL 
[44]. 

TOX1 and primary central nervous system lym-
phomas

Primary central nervous system lymphoma 
(PCNSL) is a very aggressive rare brain tumor 
characterized by accumulation of malignant 
cells. The prognosis of PCNSL is typically worse 
without treatment and the incidence of PCNSL 
is increasing [45, 46]. In patients with newly 
diagnosed PCNSL, the molecular characteriza-
tion of TOX1 showed biallelic deletions in copy 
number abnormalities (CNA) [47].

TOX as prognostic markers

Given that deregulated expressions of TOX 
were identified many cancers, it provides an 
attractive approach for cancer management. 
First of all, TOX can be used as biomarkers for 
cancer diagnosis and prognosis. By monitoring 
TOX status in an individual tumor, the risk of 
cancer development and progression can be 
predicted, as well as the prognosis of the can-
cer. For example, early MF diagnosis is a major 
challenge in the clinical practice. TOX1 was 
highly expressed in early MF skin biopsies and 
TOX1 mRNA levels had good discriminatory 

power for MF, demonstrated by an area under 
the curve (AUC) value of 0.87. For MFdiagnosis, 
TOX1 mRNA levels showed sensitivity of 90.3% 
75.0% specificity of 75.0%, when cutoff was set 
at 2.99. In addition, high TOX1 mRNA levels cor-
related with increased risks of disease progres-
sion and disease-specific mortality [39]. In 
diagnosing breast cancer, the combination of 
EGFR5 or TOX1 hypermethylation showed a 
sensitivity of 92% and specificity of 92% and 
accuracy of 93%. The combination of DPYS or 
TOX1 hypermethylation showed a sensitivity of 
88%, specificity of 96% and accuracy of 91% 
[48]. Expression levels of TOX3 and/or 
LOC643714 were proved to affect the progno-
sis of breast cancer. Tumors with the risk allele 
had shorter overall survival (OS) and high TOX3 
and/or LOC643714 correlated with positive 
lymph nodes in breast cancer [33]. The TOX3 
rs3803662 CT/TT genotype associated with 
better survival among diffuse-type gastric can-
cer patients, serving as an independent prog-
nostic marker [42].

Mechanisms of TOX deregulation in cancers

As mentioned above, TOX was frequently dereg-
ulated in a variety of human malignances. 
Deregulation of gene expression can be caused 
by two mechanisms: one is genetic alteration, 
namely gene mutation or loss of heterozygosity 
(LOH), and the other is epigenetic event, such 
as CpG island promoter hypermethylation. In 
this section, we will discuss the upstream regu-
lations of deregulation TOX gene expression in 
diseases.

One possible mechanism is that TOX1 itself is 
mutated and subsequently resulted in its aber-
rant expression. Evidence to support this notion 
is that recurrent deletions of TOX1 was seen in 
relapse samples of adult ALL and childhood 
ALL [43, 44]. In addition, in patients with newly 
diagnosed PCNSL, TOX1 showed biallelic dele-
tions in copy number abnormalities (CNA) [47]. 
In a mutation screen study for TOX3, four muta-
tions were identified (three missense, one in-
frame deletion of 30 base pairs) in six primary 
tumors out of 133 breast tumors [49].

The other upstream regulation might due to the 
epigenetic change in TOX genes. Epigenetic 
change refers to a stable change in gene 
expression that can be inherited through sub-
sequent cell divisions, without a change in DNA 
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sequence. Epigenetic regulation plays an 
important role during carcinogenesis and tumor 
development. Epigenetic changes include DNA 
methylation and histone modifications [50, 51]. 
DNA methylation results in transcriptional 
repression, which occurs mainly in CpG islands 
of the promoter region [52, 53]. The promoter 
CpG islands of TOX1 were hypermethylated in 
both lung cancers and breast cancer, which 
silenced TOX1 transcripts expression [21]. Thus 
TOX1 was supposed to be silenced through 
CpG hypermethylation in cancers [54-56]. 
However, the methylation status in other can-
cers remains unknown. Further studies are 
needed to elucidate the possible relationship 
between the expression of TOX1 and promo- 
ter hypermethylation in other malignancies. 
MicroRNAs (miRs) are endogenous 18-25 
nucleotide non-coding RNAs that target specific 
mRNA for translational repression or degrada-
tion [57, 58]. MiRs can regulate various cellular 
functions, including cell survival, proliferation, 
migration, invasion and metastasis and expres-
sion levels of miRs is often deregulated in can-
cer. TOX1 is a direct target of microRNA-223, 
which could reduce cell growth and clonoge 
nic potential of MF [41]. The study provides a  
novel sight involving a miR-TOX1 axis to un- 
derstand the mechanism of TOX deregu- 
lation.

Conclusions and future perspectives

TOX was initially identified through its associa-
tion with T lymphocyte differentiation. TOX pro-
teins contain a small subfamily of proteins, 
including TOX1, TOX2, TOX3, and TOX4. 
Different member of TOX family plays different 
biological and pathological roles. It is known 
that TOX is a DNA binding protein; however the 
genomic binding site of TOX is unknown. Future 
investigations are needed to identify genomic 
binding sites of TOX, to understand how it is tar-
geted to specific regions of DNA. In addition, 
although emerging evidence has shown that 
TOX was deregulated in many tumors, the func-
tional roles of TOX in tumors remain unspeci-
fied, which also requires future investigations. 
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