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Review Article 
TGF-β signaling and its targeting for glioma treatment 
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Abstract: Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine, secreted by a variety of cells including 
immune cells, tumor cells, and stromal cells. TGF-β signaling is dysregulated in cancer patients, and this aberrant 
signaling at least in part contributes to initiation and progression of many cancers including glioma. The dysregu-
lated signaling components provide molecular targets for the treatment of glioma. In this article, we review TGF-β 
signaling and its targeting in glioma. 
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Introduction 

Transforming growth factor-beta (TGF-β) is a 
multifunctional cytokine that regulates cell pro-
liferation, differentiation and tissue homeosta-
sis [1]. The TGF-β superfamily includes various 
TGF-βs (TGF-β1, -β2, and -β3, which are highly 
homologous), Activin, Nodal, growth and differ-
entiation factors (GDFs), bone morphogenetic 
proteins (BMPs), and anti-mullerian hormone 
(AMH) [2].

In the latent form, TGF-β binds with latent TGF-β 
binding protein (LTBP) and latency-associated 
peptide (LAP) to form a latent complex [3]. 
Many kinds of proteases such as plasmin can 
catalyze the latent complex of TGF-β to release 
the active TGF-β. Active TGF-β signals via a het-
eromeric complex of type I and type II trans-
membrane serine/threonine kinase receptors 
and activates different intracellular signaling 
pathways. TGF-β first binds to TGF-β receptor II 
(TGFβRII) and alters its conformation, and then 
TGFβRII phosphorylates TGF-β receptor I 
[TGFβRI, also termed activin receptor-like 
kinase (ALK) 5] (Figure 1). Subsequently, 
TGFβRI phosphorylates receptor-regulated (R-)
Smad proteins (Smad 2, 3) on the C-terminal 
Ser-Ser-X-Ser motif. Activated R-Smads form 
heteromeric complexes with the Co-Smad, 
Smad-4, and translocate to the nucleus (Figure 

1), where they cooperate with other transcrip-
tional regulators to regulate the expression of 
target genes such as plasminogen activator 
inhibitor-1, fibronectin, and collagen type I [4]. 
Smads consist of conserved Mad homology 1 
(MH1), intermediate linker (L) and MH2 domains 
[5]. In most cell types, TGF-β transduces signals 
through TGFβRI. However, in endothelial cells, 
TGF-β signals through two distinct type I recep-
tors, TGFβRI and ALK1, which lead to phosphor-
ylation of Smad2/3 and Smad1/5, respectively 
[6]. Besides Smad-dependent pathways, vari-
ous Smad-independent pathways have been 
identified, including MAPK, PI3K/Akt, JNK/p38, 
and Rho-like GTPase signaling in a cell type-
specific and context-dependent manner [7].

In normal epithelial cells, TGF-β acts as a strong 
tumor suppressor at least in part due to its 
inhibitory effect on cell proliferation. This is at 
least in part attributed to TGF-β mediated 
pSmad3C (C-terminally phosphorylated Smad3) 
signaling that results in resistance to prolifera-
tive responses induced by mitogenic signals [8]. 
Even in premalignant stages of cancer, TGF-β 
can still act as a tumor suppressor by inhibiting 
epithelial cell proliferation and inducing apopto-
sis. However, during malignant transformation, 
epithelial cells or lymphoid cells, which consti-
tute the basis of the majority of cancers in 
humans, become resistant to the growth inhibi-
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tory properties of TGF-β by reductions and/or 
mutations in TGF-β receptors or intracellular 
Smads [9, 10]. At this malignant transformation 
stage, Smad3 signaling may shift from a tumor-
suppressive pSmad3C to a tumorigenic 
pSmad3L (linker-phosphorylated Smad 3) path-
way [8]. Finally, TGF-β signaling changes to 
more invasive and proliferative pSmad2L/C 
and pSmad3L/C signaling (dually phosphory-
lated at linker and C-terminal regions of Smad2 
and Smad3) [8], resulting in tumor metastasis.

Beyond the tumor suppressor and oncogenic 
functions of TGF-β, it is also implicated in sev-
eral other aspects of the tumor microenviron-
ment. In later stages of oncogenesis, tumor 
cells as well as tumor stromal cells frequently 

secrete high levels of TGF-β resulting in a favor-
able microenvironment for angiogenesis [11] 
and immunoevasion [12]. Furthermore, TGF-β 
also acts on tumor cells directly by stimulating 
an epithelial to mesenchymal transition (EMT), 
allowing migration, extravasation and meta-
static dissemination [13].

TGF-β signaling and glioma

Gliomas represent 80% of primary malignant 
brain tumors [14]. Gliomas are categorized into 
four grades according to the 2007 World Health 
Organization (WHO) classification criteria: gra- 
de I, grade II, grade III (anaplastic) and grade IV 
(glioblastoma, GB). GB is the most devastating 
malignant form of primary brain tumors and is 

Figure 1. TGF-β signaling in gliomagenesis and its targeting. The TGF-β/Smads signaling pathway contributes to 
glioma development through induction of multiple carcinogenic processes. This pathway promotes glioma prolif-
eration via PDGF-B and miR-182, invasiveness via miR-182, miR-10 and MMP, as well as angiogenesis via VEGF, 
IGFBP7, and JNK. The TGF-β/Smads signaling pathway induces immunosuppression by inhibiting NK cells, cytotoxic 
T lymphocytes (CTL), dendritic cells (DC), and by upregulating T regulatory (Treg) cells. The TGF-β/Smads signaling 
pathway also drives GSC stemness via LIF, Sox4-Sox2, and Id1-Id3. Aberant TGF-β signaling can be targeted by mul-
tiple apporaches, including blockade of TGF-β mRNA translation using antisense oligonucleotides (AON) (AP12009), 
sequestering TGF-β with soluble receptors (sTGFβRII) or neutralizing antibodies (GC1008), and suppressing TGF-β 
receptors activity with kinase inhibitors (LY2157299, LY2109761 and SB-431542). 
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characterized by high invasiveness, aberrant 
proliferation, chemo- and radiation therapy 
resistance, and relapse after surgical resection 
with a median overall survival of 14.6 months 
[15-17]. Given this poor prognosis, it is critical 
to understand the fundamental molecular path-
ways leading to glioma formation in order to 
develop novel therapeutic strategies for this 
disease. The TGF-β pathway has been identi-
fied as a mediator in glioma initiation and pro-
gression due to its effects on cell proliferation 
[18], tumor invasion [19], angiogenesis [20], 
immunosuppression [21] and the maintenance 
of stemness of glioma stem cells (GSCs) [22]. 
Additionally, human studies have demonstrat-
ed that TGF-β is overexpressed in malignant 
glioma tissues but undetectable in normal 
brain tissues, further suggesting that TGF-β 
contributes to glioma development. In particu-
lar, TGF-β2 is strongly upregulated in GB [23-
25]. Here, we will write a review on the tumor 
promoting role of the TGF-β signaling pathway 
and the potential to target its signaling compo-
nents for the treatment of GB.

TGF-β signaling in glioma cell proliferation

In most normal cells, TGF-βs act as the cell 
growth inhibitor. This cytostatic effect is depen-
dent on its repression of c-myc and Id1-Id3 as 
well as its activation of cyclin-dependent kinase 
inhibitors p21WAF1/CIP1 and p15INK4B [18, 
26]. In contrast, aberrant signaling in GB cells, 
such as alterations to the Smad, PI3K and 
FoxG1 signaling pathways mediate resistance 
to TGF-β-induced cell growth inhibition [26]. In 
addition, in GB cells, it is demonstrated that 
high TGF-β/Smad signing induces induction of 
platelet derived growth factor-B (PDGF-B), thus 
resulting in tumor cell proliferation (Figure 1) 
[27]. In contrast, in gliomas that are not aggres-
sive with a low proliferation index, TGF-β/Smad 
signaling is inactive and the induction of 
PDGF-B by TGF-β is impaired as the PDGF-B 
promoter remains hypermethylated [27].

TGF-β signaling in glioma invasion and migra-
tion

TGF-β is a key player in tumor invasion and 
metastasis [2]. Macrophages/microglia that 
constitute the major tumor-infiltrating immune 
cells in GB are recruited by tumor-secreted 
cytokines such as TGF-β1 and are induced to 
become immunosuppressive and adopt a 

tumor supportive/immune-suppressive pheno-
type (M2) [28]. TGF-β1 produced by glioma-infil-
trating microglia/macrophages itself further 
enhances glioma invasion in vitro and in vivo 
[19]. TGFβRII downregulation with small hairpin 
RNAs (shRNAs) impairs TGF-β-induced GB inva-
siveness and migration in vitro in human T98G 
glioblastoma and rat C6 glioma cells. Moreover, 
C6 glioma cells stably expressing TGFβRII shR-
NAs in nude mice exhibit 50% less tumorigenic-
ity. Microglia enhance glioma invasiveness 
when co-cultured with unmodified glioma cells, 
but this capability is lost when co-cultured with 
glioma cells stably expressing TGFβRII shRNA 
[19]. The invasiveness of GSCs is also crucial 
for the migration of glioma. In a recent study, 
glioma-associated macrophages/microglia wi- 
th high expression of TGF-β1 could recruit 
CD133(+) GSCs. Furthermore, neutralization of 
TGF-β1 or knockdown of TGFβRII in GSCs inhib-
its their invasiveness [29]. Proteases such as 
the matrix metalloproteinases (MMPs) and 
cathepsins degrade the extracellular matrix, 
facilitating tumor cells to spread and invade 
[20, 29]. TGF-β is able to enhance MMPs 
expression and suppress tissue inhibitors of 
metalloproteinase (TIMP) (Figure 1), thus pro-
moting invasiveness of U87 and LN-229 in 
matrigel invasion assays [30]. Additionally, 
TGF-β has been demonstrated to induce miR-
10a/10b expression, which enhances glioma 
cell migration through suppression of PTEN 
(Figure 1) [31].

Radiation is considered an effective way to pro-
long survival of GB patients; however, tumor 
progression with enhanced invasiveness fre-
quently occurs at or close to the original radia-
tion treatment site [32]. Previous studies have 
demonstrated that irradiation increases the 
tumor cell invasion in malignant gliomas, but 
the mechanisms underlying this process are 
largely unknown. A study shows that, after irra-
diation, it is observed that both TGF-β and 
β1-integrin are increased and the invasion 
capability of U87 cells is enhanced in matrigel 
invasion assays [33], suggesting that increased 
TGF-beta may be associated with enhanced 
invasiveness of GB cells after irradiation.

Recently, TGF-β was also found to induce the 
expression of miR-182, a microRNA that direct-
ly suppresses cylindromatosis (CYLD). CYLD 
negatively regulates NF-κB activity by ubiquitin 
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deconjugation. TGF-β-mediated suppression of 
CYLD leads to NF-κB activation, thus promoting 
glioma invasion and increasing its aggressive-
ness (Figure 1) [34]. 

TGF-β and angiogenesis

The growth of solid tumors including glioma 
requires neovascularization for nutrient deliv-
ery and debris management [35, 36]. The cor-
relation between TGF-β and angiogenesis was 
reported in Chinese hamster ovary (CHO) cells 
which overexpress recombinant TGF-β1 [20]. 
After the subcutaneous injection of the modi-
fied CHO cells into nude mice, enhanced tumor 
proliferation and angiogenesis were observed 
compared to parental CHO cells. Treatment 
with TGF-β1 neutralizing antibody inhibited 
tumor growth and angiogenesis, confirming the 
role of TGF-β1 in angiogenesis [20]. TGF-β, 
especially TGF-β1, mediates this effect by up-
regulation and activation of various angiogenic 
factors including vascular endothelial growth 
factor (VEGF), fibroblast growth factor (FGF) 
and plasminogen activator inhibitor (PAI-1) [35]. 
A transcriptional profiling study in human GB 
vessels further suggested that VEGF-A and 
TGF-β2 played key roles in GB angiogenesis 
[37]. Some studies have demonstrated that 
TGF-β signaling pathways and hypoxia syner-
gize in VEGF gene regulation at the transcrip-
tional level (Figure 1). Consistent with this 
observation, the human VEGF gene promoter 
region at -1006 to -954 is demonstrated con-
taining functional DNA binding sites for both 
Smads and HIF-1 (hypoxia-inducible factor) 
[38].

In a zebrafish glioma model study, glioma U87 
cells expressing red fluorescent protein (RFP) 
were transplanted in green fluorescent protein 
(GFP) transgenic zebrafish embryos as a model 
for studying angiogenesis [39]. TGF-β1 incre- 
ased glioma-induced angiogenesis; however, 
this was abrogated by the c-Jun N-terminal 
kinase (JNK) inhibitor SP600125 but not by the 
ERK inhibitor PD98059, PI3K inhibitor 
LY294002, or p38 MAPK inhibitor SB202190. 
These findings demonstrated the critical role of 
TGF-β1 and JNK pathways in mediating angio-
genesis (Figure 1) [39]. 

Insulin-like growth factor-binding protein 7 
(IGFBP7) is highly expressed in tumor endothe-
lial cells and vascular basement membrane, 
which makes it a biomarker of tumor vessels in 

GB [40]. Human brain endothelial cells (HBECs) 
treated with U87-conditioned media (CM) up-
regulated IGFBP7 mRNA and protein in com-
parison to untreated HBECs [40]. ELISA assay 
showed that U87-CM contained sufficient TGF-
β1 (5 pM) to stimulate IGFBP7 in HBEC. U87-
CM-induced IGFBP7 expression in HBECs can 
be blocked by both TGFβR1 antagonist 
SB431542 and pan-TGF-β neutralizing anti-
body (1D11), indicating that TGF-β1 may be 
able to induce IGFBP7-dependent angiogenesis 
in brain endothelial cells (Figure 1) [40]. 

TGF-β signaling in tumor-mediated immuno-
suppression

Gliomas mediate an immunosuppressive tumor 
microenvironment through a variety of mecha-
nisms (Figure 1). The immunosuppressive cyto-
kines such as interleukin (IL)-10, TGF-β2, cyclo-
oxygenase-2 (COX2) and prostaglandin E2 
(PGE2) secreted by gliomas have been proven 
to play a major role in impeding anti-tumor 
immune responses in the microenvironment 
[41]. TGF-β2 down-regulates HLA-DR antigen 
expression on human malignant glioma cells, 
facilitating their immune escape from T lympho-
cytes [42]. Moreover, TGF-β has been reported 
to specifically inhibit the expression of perforin, 
granzyme A, granzyme B, IFN-γ, and Fas ligand, 
which are co-responsible for cytotoxic T lym-
phocyte (CTL)-mediated tumor cytotoxicity [43]. 
TGF-β also promotes the generation of immu-
nosuppressive regulatory T (Treg) cells (Figure 
1) [44] and TGF-β1 increases macrophage 
capacity to produce immunosuppressive cyto-
kine IL-10 [45]. Furthermore, TGF-β1 suppress-
es the activating receptor NKG2D on the sur-
face of CD8+ T cells and NK cells in glioma 
patients, rendering them less effective at cyto-
toxicity against glioma cells [46]. TGF-β is 
upregulated during malignant glioma progres-
sion, and this correlates with MICA (NKG2D 
ligand) downregulation. Consequently, NKG2D 
ligand-dependent NK cell-mediated lysis is 
decreased [47]. NKG2D down-regulation is pre-
vented on the NK cell line, NKL, when incubat-
ed with supernatant from LN-229 glioma cells 
with TGF-β1/β2 knock-down by siRNA com-
pared with supernatant from control LN-229 
cells [48]. The TGF-β1/β2 knock-down in 
LN-229 cells also strongly up-regulates expres-
sion of MICA and renders the tumor cells more 
susceptible to killing by NK cells. LN-229 glio-
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ma cells deficient in TGF-β show less subcuta-
neous and orthotopic tumorigenicity after 
implantation in nude mice, and isolated NK 
cells from these mice show an activated pheno-
type [48]. Additionally, TGF-β inhibits NK cell 
activity through Smad2, Smad3, and Smad4 
(Figure 1) to suppress IFN-γ production by NK 
cells at least in part through inhibition of T-BET, 
a positive regulator of human NK cell function 
[49]. Additional work demonstrates that TGF-β/
Smad signaling inhibits CD16-mediated human 
NK cell IFN-γ production and ADCC [50]. These 
negative modulations of T or NK cell activity by 
TGF-β in the tumor microenvironment are likely 
to be important for the immunosuppression 
observed in glioma patients, as T and NK cells 
have been identified as important immune cells 
for eradicating glioma cells [51-53]. 

There are a variety of antibodies and targeted 
inhibitors of TGF-β that aim to subvert TGF-β-
mediated immunosuppression. Examples 
including the TGFβR1 kinase inhibitor SD-208 
and the anti-TGF-β neutralizing monoclonal 
antibody (1D11) have been reported useful for 
enhancing the tumor-directed immune re- 
sponse and improving the therapeutic efficacy 
in the treatment of gliomas [36, 54]. Together, 
these findings demonstrate that immunothera-
peutic strategies to suppress TGF-β signaling 
may be promising for improving the prognosis 
of patients with malignant gliomas.

TGF-β and glioma-initiating cells

Cancer stem cells or tumor-initiating cells are a 
subpopulation of tumor cells with the capability 
to undergo self-renewal and multi-lineage dif-
ferentiation and to recapitulate the entire tumor 
population [55]. Autocrine TGF-β signaling has 
been shown to play an essential role in the 
maintenance of tumorigenicity of glioma stem 
cells (GSC) [22]. It has been demonstrated that 
human GSC express higher amounts of TGF-β2 
than differentiated glioma cells, and the secret-
ed TGF-β2 appears to correlate with the patho-
logical grade of the glioma [56]. TGF-β pro-
duced by GSC enhances effective DNA damage 
response and self-renewal capacity, leading to 
microenvironment-mediated resistance to ion-
izing radiation (IR), while these effects are 
reversed by TGF-β inhibition through LY364947 
(TGFβR1 kinase inhibitor) [57]. The Sox family 
of proteins have been demonstrated to main-

tain the GSC population. TGF-β is implicated in 
this pathway by directly inducing expression of 
Sox4, which promotes Sox2 expression by 
associating with the Sox2 enhancer region 
(Figure 1). Sox2 is an essential factor for main-
tenance of GSC stemness [22]. Sox2 knock-
down by siRNA results in a significant decrease 
of GSC sphere-forming ability and self-renewal 
capacity. Inhibition of TGF-β signaling leads to 
Sox2 downregulation, depriving GSC of stem-
ness, promoting GSC differentiation, and reduc-
ing their tumorigenicity in orthotopic immune 
compromised mice. There are also other GSC-
related signaling pathways in which TGF-β is 
involved. Penuelas et al. demonstrated that 
TGF-β increases GSC self-renewal capacity 
through the Smad-dependent induction of leu-
kemia inhibitory factor (LIF) and the subse-
quent activation of the JAK-STAT signaling path-
way (Figure 1) [58]. Furthermore, GB neuro- 
spheres that are pretreated with TGF-β or LIF 
generate tumors earlier and decrease survival 
significantly in mice compared with untreated 
GB neurospheres [58].

A GSC-enriched cell population has been found 
to express high levels of CD44 and inhibitor of 
DNA-binding protein1 (Id1) and tend to be locat-
ed in a perivascular niche [59], a place suitable 
for GSC expansion and tumor development 
[60]. High CD44 and Id1 levels correlate with 
poor prognosis in GB patients [59]. Inhibition of 
the TGF-β signaling cascade by blockade of 
TGFβRI decreases the CD44high/Id1high GSC 
population through reduction of Id1 and Id3 
transcription factors levels, resulting in an inhi-
bition of their ability to initiate tumors (Figure 1) 
[59].

GSC not only often locate in perivascular nich-
es, but also generate vascular pericytes to pro-
mote vessel function and tumor growth [61]. 
CXCR4-expressing GSC are recruited toward 
endothelial cells in brain and GB through 
SDF-1/CXCR4 axis, and are induced to become 
pericytes mainly by TGF-β [61].

Preclinical and clinical studies on TGF-β inhibi-
tion in glioma

Therapeutic inhibition of TGF-β signaling can be 
accomplished by inhibiting translation of TGF-β 
mRNA using antisense oligonucleotides (AON), 
sequestering the ligands using soluble recep-
tors or their ectodomain constructs (ligand 



TGF-β signaling and its targeting for glioma treatment

950 Am J Cancer Res 2015;5(3):945-955

traps) and antibodies, and suppressing TGF-β 
receptor kinase activity (Figure 1) [62]. Below, 
we show a summary of pre-clinical studies and 
clinical trials exploring TGF-β inhibition as a 
therapeutic approach in glioma. Several thera-
peutic approaches explored to inhibit oncogen-
ic TGF-β signaling involved in glioma, which are 
documented in the clinical study database 
(www.clinicaltrials.gov), are summarized in 
Table 1.

Antisense TGF-β oligonucleotides

The most effective AON so far for high-grade 
glioma therapy is a phosphorothioate-modified 
AON, AP12009 (trabedersen), which is comple-
mentary to the human TGF-β2 mRNA sequence 
(Figure 1, Table 1). Based on three early-pas-
sage primary tumor cell cultures isolated from 
high-grade glioma patients, AP12009 treat-
ment significantly reduced TGF-β2 protein 
secretion by 49% to 73% compared to untreat-
ed and nonsense controls [63]. AP12009 also 
reduces glioma cell proliferation and migration 
and reverses the immunosuppressive effects 
resulted from TGF-β2 [64]. In a phase IIb study, 
AP12009 was infused intratumorally by a con-
vection-enhanced delivery, which bypassed the 
blood-brain-barrier and achieved a homoge-
neous distribution throughout the tumor. In 
anaplastic astrocytoma (AA, grade III glioma) 
patients, the median survivals were 39.1 
months in the 10 µM AP12009 arm (n = 12) 
and 35.2 months in the 80 µM AP12009 arm (n 
= 15), compared with 21.7 months in the che-
motherapy arm (n = 12). In this study with lim-
ited numbers of patients, AP12009 shows the 
trend of treatment benefits, but the trend is not 
statistically significant. However, the benefit 
was not observed in the patients with GB [65]. 
In addition, the frequency of glioma patients 
(with AA or GB) experiencing adverse events 
was higher with standard chemotherapy (64%) 
than with 10 or 80 µM AP12009 (27% and 

43%, respectively) [65]. Information from the 
clinical study database (Table 1) indicated that 
a phase III clinical trial with AP12009 has been 
temporarily terminated due to insufficient num-
ber of suitable participants recruited within the 
planned period. 

Modulation of TGF-β receptors

Soluble receptors can bind to TGF-β, thereby 
preventing it from binding to its cell surface 
receptors (Figure 1) [66]. Naumann et al. used 
adenoviral gene transfer to express secreted 
TGFβRII in the human glioma cell line LN-229, 
leading to reduced Smad2 phosphorylation 
and enhanced NK cell cytotoxicity against glio-
ma cells. LN-308 glioma cells expressing the 
secreted TGFβRII had significantly delayed 
growth compared to control cells in an intrace-
rebral xenograft nude mouse model [66]. 
Another therapeutic method to inhibit TGF-β 
signaling is to block TGFβRI or TGFβRII kinase 
activity, thereby preventing phosphorylation of 
downstream effectors such as R-Smads. 
SB-431542 is a novel, small molecule kinase 
inhibitor of type I TGF-β receptor (Figure 1) [67]. 
It is not surprising that SB-431542 treatment 
results in blockade of Smad phosphorylation 
and nuclear translocation, and inhibition of 
expression of TGF-β downstream targets, VEGF 
and PAI-1. Consequently, SB-431542 treat-
ment inhibits in vitro glioma proliferation and 
migration [67]. LY2109761, a novel TGF-β 
receptor type I and type II dual inhibitor (Figure 
1), has been shown to inhibit tumor develop-
ment in a variety of murine tumor models 
including pancreatic cancer and hepatocellular 
carcinoma [68, 69]. LY2109761 reduces in 
vitro survival of U87 and T98 glioma cell lines 
along with an anti-migratory and anti-angiogen-
ic effects. Using a subcutaneous xenograft U87 
or T98 model, LY2109761 impedes tumor 
growth alone or in combination with radiation 
and temozolomide (TMZ). LY2109761 also 

Table 1. Anti-TGF-β compounds currently under clinical development for glioma treatment (summa-
rized from www.clinicaltrials.gov)
Drug Type Target Clinical trial identifier and status
AP12009 AON TGF-β2 NCT00431561, Phase IIb completed [65]

NCT00761280, Phase III terminated
LY2157299 Kinase inhibitor TGFβR1 (ALK-5) NCT01682187, Phase I recruiting [71, 72]

NCT01220271, Phase I/II recruiting
NCT01582269, Phase II recruiting

GC1008 Antibodies TGF-β NCT01472731, Phase II completed [74]

http://www.clinicaltrials.gov


TGF-β signaling and its targeting for glioma treatment

951 Am J Cancer Res 2015;5(3):945-955

decreases tumor blood perfusion as measured 
by noninvasive dynamic contrast-enhanced 
magnetic resonance imaging [70]. 

In a phase 1 dose-escalation study regarding 
TGFβRI inhibitor LY2157299 monohydrate 
(Figure 1, Table 1), 16.6% (5/30) and 7.7% 
(2/26) of patients with glioma had either a 
complete response (CR) or a partial response 
(PR) in the LY2157299 monotherapy arm and 
the LY2157299-lomustine combination arm, 
respectively [71, 72]. In both groups, 15 
patients with glioma had stable disease (SD), 
among whom 5 had SD ≥ 6 cycles of treatment. 
In total, 12/56 (21.4%) of glioma patients had a 
clinical benefit (CR, PR, or SD ≥ 6 cycles), which 
correlated with low expression of pSmad2 (nor-
malized to total Smad2) in their tumors. 
LY2157299 was safe on intermittent adminis-
tration (14 days on/14 days off) of 300 mg/day 
for 28 days without cardiac adverse effects 
[71, 72]. 

Antibodies 

The pan-TGF-β neutralizing antibody 1D11 
(Figure 1) enters both subcutaneous and intra-
cranial implanted gliomas after intravenous 
injection and remains detectable within the 
tumor for several days, while only minimal 
amounts of 1D11 are found in other organs and 
tissues [73]. However, 1D11 shows different 
effects on the treatment of gliomas in immuno-
competent and immunodeficient mice [73]. 
Treatment of immunocompetent mice bearing 
subcutaneous GL261 tumors with 1D11 results 
in complete remission, but for unknown rea-
sons, repetition of the treatment in immune 
deficient mice with subcutaneous GL261 
tumors shows an opposite effect [73]. In addi-
tion, while intracranially implanted GL261 glio-
ma cells in immunocompetent C57BL/6J mice 
show no tumor reduction after the 1D11 treat-
ment, the glioma cells show less invasion into 
the adjacent areas of the brain [73]. A Phase II 
study of the human analog of the 1D11 anti-
body, GC1008 (Figure 1, Table 1), for the treat-
ment of glioma has been completed [74].  
89Zirkonium (Zr)-GC1008 showed excellent and 
specific uptake by recurrent gliomas, deter-
mined by positron emission tomography (PET) 
scan. No major toxicity was observed in 
GC1008 treatment, but all patients showed 
clinical and/or radiological disease progression 
after 1 to 3 rounds of the treatment. Thus, in 

this study with 12 patients, clinical benefit of 
GC1008 was not achieved [74].

Concluding remarks

Gliomas are characterized by aggressive prolif-
eration, diffuse infiltration and resistance to 
radio- and chemotherapy. As TGF-β plays a 
major role in glioma progression, targeting of 
TGF-β or its downstream signaling in combina-
tion with radio-chemotherapy might be a prom-
ising therapeutic approach. Inhibitors of the 
TGF-β pathway developed so far comprise sev-
eral classes, as listed above. Some of these 
classes have entered clinical trials for the treat-
ment of glioma as well as other types of cancer. 
Although various studies have demonstrated 
the potential benefits of targeting the TGF-β sig-
naling pathway in glioma, data are not consis-
tently encouraging. The reason could be that 
inhibition of either the TGF-β receptor binding 
or kinase activity may also result in alternative 
compensatory pathways mediated by other 
activators of the Smad pathway or Smad inde-
pendent factors [2]. Thus, in addition to target-
ing the TGF-β signaling pathway alone, a syner-
gistic response may be achieved by simu- 
ltaneously targeting other aberrant signaling 
pathways such as EGFR, PI3K/Akt, NF-κB, JAK/
STAT, etc. Indeed, in preclinical studies in pan-
creatic tumors, targeting the EGFR and TGF-β 
signaling pathways concurrently shows better 
efficacy than targeting either signaling pathway 
alone [75]. Several clinical trials evaluating the 
effects of the TGFβRI kinase inhibitor LY- 
2157299 in combination with Sorafenib (a 
small molecular inhibitor of multiple tyrosine 
protein kinases and Raf kinases) in hepatocel-
lular carcinoma are also ongoing (NCT02240- 
433, NCT02178358, NCT01246986). Impor- 
tantly, the combination of TGF-β signaling inhib-
itors with U.S. FDA-approved immune check-
point blockade agents, such as anti-PD1, anti-
PD-L1, and anti-CTLA4 antibodies, most likely 
would improve clinical outcomes over targeting 
a single pathway, especially as these antibod-
ies have recently been shown to have efficacy 
in murine models of glioma [76-78].
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