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Abstract: Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially ex-
pressed genes have been identified as being associated with gastric cancer progression, however, little is known 
about the underlying regulatory mechanisms. To address this problem, we developed a differential networking ap-
proach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two 
novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of 
gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer 
progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by us-
ing linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To 
investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative meth-
ods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was 
found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma 
DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation 
to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. 
adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. 
Based on our inferred differential networking information and known signaling pathways, we generated testable 
hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with 
established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, 
the present one proved to be better at enriching cancer genes and drug targets, and prioritizing disease-related 
genes on the dataset we considered. We propose this extendable differential networking framework as a promising 
way to gain insights into gene regulatory mechanisms underlying cancer progression and other phenotypic changes.

Keywords: Gastric cancer (GC), gene regulation network (GRN), differential network analysis, differential coexpres-
sion analysis (DCEA), differentially regulated genes (DRGs), carcinogenesis, gene regulatory mechanisms

Introduction

Gastric Carcinoma (GC) is one of the most  
common and lethal tumor in human, which is 
characterized by unlimited proliferation, a high 
degree of metastasis, and relatively poor prog-
nosis [1]. During the last decade, quite a series 
of high-throughput studies, including genetic 
variation study [2-5], genome-wide association 
study (GWAS) [6], gene expression profiling and 
analysis [7-9], epigenetic variation study [10], 
and very recent integrative genomic analysis 

[11-14], have substantially contributed to the 
comprehensive understanding of GC. A large 
number of genes have been identified as being 
associated with gastric cancer progression, 
however, the underlying dysregulation mecha-
nisms of gastric carcinogenesis remain poorly 
understood.

Cancer is believed to involve dysregulation of 
multiple fundamental cell processes such as 
proliferation, differentiation, migration, apopto-
sis, etc. Gene regulatory network (GRN) model-
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ling has be widely used to obtain novel insights 
into the pathogenesis of complex diseases 
[15]. In recent years, numerous reverse engi-
neering approaches have been developed to 
infer GRNs from gene expression data, includ-
ing Boolean model [16], Bayesian model [17], 
relevance model [18], differential equation 
model [19], etc. In order to reduce the false 
positive rate, prior knowledge such as tran-
scription factor (TF)-target regulatory relation-
ships and miRNA-target regulatory relation-
ships, could also be integrated into modelling 
framework, leading to reverse and forward  
integrated approaches [20, 21]. These expres-
sion data-based methods theoretically enable 
cellular context-specific, or conditional GRNs to 
be constructed, which are the basis for explor-
ing transcriptomic behavior under certain  
conditions. However, for the sake of the limita-
tion of available data for specific subjects, in a 
quite long period of time, people had to infer 
conceptual GRNs based on gene expression 
profiles across various cellular contexts, for 
example, building a carcinoma GRN based on 
expression profiles of 60 National Cancer 
Institute cell lines (NCI60) in our previous work 
[21]. In this case, there was no chance to  
decipher differential regulatory relationships 
between tumor types, let alone the gene regu-
lation dynamics of a certain tumor. It is only 
recently that the accumulation of transcrip-
tome data and the improvement of computa-
tional strategies have allowed researchers to 
infer conditional GRNs [22-30], and greatly 
inspired the newly emerging theme “differential 
networking” [31-33]. It has been widely accept-
ed that differential network analysis helps to 
identify specific regulatory relationships that 
are dysfunctional in a given disease state, 
which is essential for the elucidation of the 
pathophysiological processes.

Network analysis offers the possibility to com-
prehensively understand biology, however, it 
dramatically increases the computational com-
plexity. In order to reduce the computational 
burden and generate testable hypotheses, the 
search space needs to be narrowed down. A 
commonly used strategy is to build a subnet-
work around a given set of genes, for example, 
previously reported disease-related genes [22-
24]. In this way, a large number of relations 
which are not directly associated with the sub-
ject of interest are pre-filtered out. However, 

this strategy highly depends on prior knowledge 
and may lose the chance to find out novel regu-
lators or regulatory relationships that have not 
yet been documented as critical. Therefore, 
researchers recently set out to build subnet-
works around differentially expressed genes 
[25-27], which proved to be capable of discov-
ering context related genes. 

In the transcriptome analysis domain, differen-
tial co-expression analysis (DCEA) is emerging 
as a prospective complement to differential 
expression analysis (DEA) [31]. Rather than cal-
culating expression level changes of individual 
genes between two phenotypes (e.g., normal 
and cancer), DCEA looks at changes in gene  
co-expression patterns, and thus offers hints 
about the disrupted regulatory relationships  
or abnormal regulations specific to the pheno-
type of interest (in this case, cancer) [34-36]. 
Following this sense, we speculated that the 
subnetwork around differentially coexpressed 
genes (DCGs), instead of differentially exp- 
ressed genes (DEGs), may lead to more insight-
ful findings on regulatory mechanisms of phe-
notypic changes.

In this work, we first identified a set of differen-
tially co-expressed genes or gene pairs from 
gene expression data of gastric normal muco-
sa, adenoma and carcinoma samples, by using 
differential coexpression analysis methods  
we developed previously [34, 35], and then 
inferred stage-specific GRNs among these 
genes with reverse-forward integrated model-
ling method [21]. The topological properties 
and functional relevance of the three GRNs 
specific for normal, adenoma and carcinoma 
were analyzed, and the enrichment of known 
cancer genes and drug targets was observed  
in these stage-specific GRNs. We then imple-
mented two quantitative methods to prioritize 
differentially regulated genes (DRGs) and links 
(DRLs) between adjacent stages (normal vs. 
adenoma; adenoma vs. carcinoma). It was 
found that known cancer genes and drug tar-
gets are significantly higher ranked, and most 
of the genes in two top-10 DRG lists have been 
reported to be GC related (~62%), or cancer rel-
evant (~93%). Furthermore, the top 4% normal 
vs. adenoma DRGs (36 genes) and top 6% ade-
noma vs. carcinoma DRGs (56 genes) are wor-
thy of further investigation to determine their 
association with gastric cancer. The differential 
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networking information around these genes 
offers insightful clues to explore differential 
regulation mechanisms underlying gastric car-
cinogenesis. Finally, we compared our strategy 
with the previously established ones which 
model GRNs at the whole genome level, or 
model subnetworks around differentially exp- 
ressed genes. Our strategy turns out to outper-
form the others in terms of enriching cancer 
genes and drug targets, and prioritizing dis-
ease-related genes. This study represents a 
complete framework for exploring differential 
regulation mechanisms underlying phenotypic 
changes, and the application to gastric cancer 
demonstrates its potential in cancer research.

Materials and methods

Gene expression datasets, cancer genes and 
drug targets

The normalized gene expression profile of gas-
tric carcinoma GSE24375 [7] was downloaded 
from Gene Expression Omnibus (GEO) and all 
measurements were log2 transformed. The 
dataset involved eight patient-matched gastric 
normal mucosa, adenoma and carcinoma sam-
ples and two additional carcinoma samples. 
Probe sets with more than 20% missing values 
were discarded, while probe sets with less 
missing values were filled up with KNN method. 
After probe sets filtering, 18468 probe sets 
were mapped to Gene Symbols based on their 
platform annotations and 12658 unique genes 
were obtained.

We also downloaded the mRNA expression 
dataset of stomach adenocarcinoma (STAD) 
from The Cancer Genome Atlas (TCGA) Da- 
ta Protal (https://tcga-data.nci.nih.gov/tcga/), 
which contains sequenced 28 matched tumor-
normal pairs with IlluminaHiseq platform. After 
discarding genes with more than 20% missing 
values, we got 19211 RPKM normalized and 
log2 transformed unique genes.

A total of 486 cancer genes and 2093 drug  
targets were downloaded from Cancer Gene 
Census (http://cancer.sanger.ac.uk/cancerge-
nome/projects/census/) [37] and DrugBank 
(http://www.drugbank.ca/) [38], respectively, 
out of which 347 cancer genes and 1654 drug 
targets were covered by the 12658 unique 
genes in the processed GSE24375 dataset.

Identification of DCGs, DCLs and DEGs

Differentially coexpressed genes (DCGs) and 
differentially coexpressed links (DCLs) were 
identified with differential coexpression analy-
sis (DCEA) algorithms developed in our previ-
ous studies [34, 35]. Specifically, DCGs with 
q-value less than 0.05 were picked out by using 
DCp method in DCGL package, while DCLs  
were identified by modified LFC model incorpo-
rated in DCe method in DCGL package [35]. 
Differentially expressed genes (DEGs) were 
selected by limma method with p-value less 
than 0.05 [39].

Characterization of network topology

For a network G(V,E) with N nodes and M edges, 
the degree of a node is defined as the number 
of connections or edges the node has to other 
nodes. If the network is directed, the in-degree 
is the number of inward edges, and the out-
degree is the number of outward edges.

Betweenness [40] which measures how fre-
quently a node locates on all shortest paths 
between two other nodes is defined as 
following:

s t v VBet (v)
(v)
st

st= ! ! !

v

v/            (Equation 1)

Where σst is the number of shortest paths link-
ing vertex s and vertex t; σst(v) is the number of 
shortest paths that must pass vertex v. Nodes 
with high betweenness are bottle-necks for 
information transmission.

Closeness [40] is defined as the average short-
est paths from vertex v to all other reachable 
vertices except itself. The measure of Closeness 
centrality of node v is defined as following:

t vCls (v) v\ dist (v, t) / (N 1)= -!/     (Equation 2)

Where dist(v,t) means the shortest path dis-
tance between node v and node t. Closeness is 
the mean distance between a node and all 
other nodes in the network indicating its reach-
able ability.

Clustering Coefficient [40] is a count of the 
probability that any two nodes are linked 
together if they have a neighbor in common. Let 
vertex j and vertex t be two neighbors of vertex 
v and e(j,t) be the edge between them. The 
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clustering coefficient of vertex v is defined as 
following:

v v
CC (v)

k (k 1)
2 e (j, t)

=
-

; " ,
                        (Equation 3)

Where kv is the number of neighbors of node v; 
e (j, t); ;" ,  is the number of edges existing 

among kv neighbors.

Modelling of gene regulatory network

The multivariant linear regression model has 
been successfully utilized to infer gene regula-
tory relationships from gene expression data 
[20, 21, 41]. In this work, still by using the linear 
regression model, we constructed stage-specif-
ic gene regulatory networks based on forward 
predicted TF-target relationships and gene ex- 
pression profiles. Using the protocol described 
in our previous work [20], a set of candidate 
TF-target regulatory relationships were gener-
ated based on the information from UCSC 
(http://genome.ucsc.edu/), including 214,607 
regulatory relationships involving 215 human 
TFs and 16,835 targets. For a specific target g 
which has m regulators, its expression level 
(log2 expression value), Ag, is modeled by the 
following multivariate linear regression equa-
tion (Equation 5):

Ag = Atf1
 * b1 + Atfi

 * bi + ... + Atfm
 * bm + intercep-

tion + err                                          (Equation 4)

Atfi
 is the mRNA levels (log2 expression value) of 

regulator i, while bi is the to-be-estimated regu-
lation efficacy of regulator TFi which regulates 
gene g. Interception is a constant across all 
genes, and err, assumed to follow a normal dis-
tribution with a zero mean, represents the vari-
ation of gene g’s mRNA level that cannot  
be interpreted by its regulators. In brief, the 
expression level of a particular gene g is mod-
eled by all of its candidate regulators, and the 
eventual regulators and their regulation effica-
cies are determined by the stepwise linear 
regression.

In the candidate TF-target relationships, a tar-
get can be regulated by more than 50 TFs (WG_
targets, Figure S1), which is inconsistent with 
the common sense that a gene is rarely regu-
lated by over 20 regulators [42]. Therefore, 
when we inferred gene regulatory networks at 
the whole genome level, we conducted a pre-
filtering step to filter out those insignificant reg-

ulation relationships as we did previously [21]. 
However, since the differentially coexpressed 
or differentially expressed genes in GSE24375 
are averagely regulated by only two TFs accord-
ing to the candidate relationships, with max 
number of 15 (Figure S1), the pre-filtering step 
was ignored when modelling from DCGs or 
DEGs.

Prioritization of differentially regulated genes 
and links

We first proposed a quantitative metric (Equa- 
tion 6) to measure the differential regulation of 
a gene across conditions. For a specific gene i 
(TF or target), which has N neighbors in condi-
tion A and M neighbors in condition B, the regu-
lation efficacy between gene ii and its neigh-
bors calculated by linear regression model in 
two conditions are X=(Xi1,...,Xik,....Xin), Y=(Yi1, 
...,Yik,....Yim), the differential regulation (DR) of 
gene i is defined as following:

i

ij ij

DR n

(X Y )j 1

n 2

=
-

=
/

                  (Equation 5)

Xik and Yik are regulation efficacies between 
gene i and k in GRN A and B, respectively. Since 
gene ii could have different neighbor sets in 
two GRNs, when a neighbor gene exists only in 
one GRN, we assume its counterpart regulation 
efficacy in another GRN to be zero. DR measure 
captures the average regulation changes of a 
gene between two GRNs. 

We then implemented modified LFC model [35] 
to screen gene pairs which display significant 
changes in regulation efficacy between two 
GRNs, say, differentially regulated gene pairs or 
links (DCLs). Similar to our previous work [35], 
for gene pairs (links) which have both positive 
or both negative regulation efficacy in two 
GRNs, we categorized them into bins according 
to their maximum regulatory efficiency, and 
within each bin, we selected 10% links with 
highest log fold changes to fit a curve y=a+(b/x), 
in which y is the log ratio of regulation efficacy 
and x is the maximum regulation efficacy. Links 
lying above the fitted curve were regarded as 
differentially regulated links (DRLs). For links 
which have positive regulation efficacy in one 
GRN and negative regulation efficacy in anoth-
er GRN, we exchanged x and y to fit y=a+(b/x) 
curve, and picked out the links lying above the 
curve as DRLs.



Differential regulation network analysis in gastric carcinogenesis

2609 Am J Cancer Res 2015;5(9):2605-2625

Results

Construction of stage-specific gene regulatory 
networks

Gene expression profile of gastric cancer pro-
gression was downloaded from the Gene 
Expression Omnibus (GEO), where eight patient-
matched gastric normal mucosa, adenomas 
and carcinomas, and two additional carcino-
mas were examined (GSE24375) [7]. We first 
applied DCGL package [35] to extract differen-
tially coexpressed genes (DCGs) and differen-
tially coexpressed gene pairs, or links (DCLs) 
between adjacent stages, resulting in a total of 
309 DCGs and 18407 DCLs for normal vs. ade-
noma, 237 DCGs and 22719 DCLs for adeno-
ma vs. carcinoma. All DCGs and the gene pairs 
in the DCLs which involved at least one DCG 
were included in the following network con-
struction procedure. In total, two gene sets 
including 1793 and 2066 genes were obtained, 
corresponding to normal vs. adenoma and ade-
noma vs. carcinoma, respectively. According  
to the philosophy of differential coexpression 
analysis (DCEA), these genes were potentially 

enrich differential regulatory relationships. The 
network statistics are included in Table 1. Out 
of 28 TFs in the starting 2524 DR-relevant 
genes, 22 are retained in all the three GRNs, 
and the other six do not exist in any of the three. 
We propose these 22 TFs to be relevant to dif-
ferential regulation underlying carcinogenesis, 
while the other six probably do not have signifi-
cant regulatory relationships with their targets 
during cancer progression. It is interesting that 
the adenoma network has the most links (1173) 
or regulatory relationships among the three, 
about 33.9% more than the normal network 
(876), and the carcinoma network has the least 
links (816) (Table 1). The detailed topological 
comparison of the three networks will be 
described in the next section.

To globally understand the functional relevance 
of the three stage-specific networks, we per-
formed functional enrichment analysis of the 
genes in each network in Gene Ontology (GO) 
by using DAVID [43]. It was found that the terms 
of “positive regulation of cell differentiation”, 
“positive regulation of apoptosis”, “positive reg-
ulation of cell death” and “negative regulation 

Table 1. Cancer genes and drug targets enrichment of GRNs

Subtypes Stage-specific 
GRNs

No. of 
genes

No. of 
links

No. of cancer 
genes (p-value)

No. of drug  
targets (p-value)

DCG_GRNs Normal 521 878 26 (0.0034) 84 (0.039)
Adenoma 766 1173 32 (0.0159) 133 (0.0005)

Carcinoma 575 816 29 (0.0015) 106 (0.0002)
DEG_GRNs Normal 621 1087 28 (0.001) 90 (0.307)

Adenoma 706 1184 26 (0.12) 119 (0.0098)
Carcinoma 604 955 25 (0.039) 95 (0.058)

WG_GRNs Normal 3344 4063 136 (0.43) 456 (0.256)
Adenoma 4072 5498 149 (0.489) 558 (0.142)

Carcinoma 4099 5428 156 (0.92) 573 (0.037)
The enrichment significance (p-value) was calculated by Fisher’s Exact Test. Three types 
of GRNs, DCG-GRNs, DEG-GRNs and WG-GRNs, were included in this table. The latter two, 
DEG-GRNs and WG-GRNs, were described in the section of “Method comparison”.

relevant to different- 
ial regulation (DR) dur-
ing phenotypic changes 
[31, 34, 36], and thus 
named as DR-relevant 
genes for short. The two 
DR-relevant gene sets 
were merged into a 
union set containing a 
total of 2524 genes. 
Based on the stage- 
specific expression da- 
ta of the union gene  
set, we separately bu- 
ilt three stage-specific 
GRNs with comparable 
sizes, corresponding to 
normal, adenoma and 
carcinoma, by using ste- 
pwise linear regression 
method [20, 21]. It sho- 
uld be noted that due to 
the usage of DCEA, the 
regulatory relationships 
which keep stable dur-
ing cancer progression 
tend to be ignored by 
our model, that is, the 
resultant network would 

Table 2. Topological comparison of adjacent stage-specific GRNs
Stages Out-Deg In-Deg Bet CC Cls
Normal_GRN* 39.9 1.68 0.83 0.036 3.70E-06
Normal vs. Adenoma (p-value) 0.638 0.0167 0.72 2.87E-08 < 2.2e-16
Adenoma_GRN* 53.3 1.53 0.78 0.163 1.70E-06
Adenoma vs. Carcinoma (p-value) 0.24 0.24 0.38 0.033 < 2.2e-16
Cancer_GRN* 37.09 1.42 0.709 0.1428 3.04E-06
*Means the mean value of a topological measure of a GRN. Topological difference signifi-
cance (p-value) was calculated by Wilcoxon rank-sum test.
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of cell migration” were exclusively enriched in 
normal GRN, the terms of “negative regulation 
of protein ubiquitination” and “negative regula-
tion of ubiquitin-protein ligase activity during 
mitotic cell cycle” were exclusively enriched in 
adenoma GRN, while the terms of “negative 
regulation of apoptosis”, “growth factor activi-
ty” and “negative regulation of cell death” were 
exclusively enriched in carcinoma GRN. These 
observations are consistent with our basic 
understanding of cancer progression. Further- 
more, we estimated the enrichment of known 
cancer genes and drug targets in the three net-
works by Fisher’s Exact Test. As shown in Table 
1, the three DCG-GRNs (normal, adenoma and 
carcinoma) were all enriched with known can-
cer genes and therapeutic targets. It is sug-
gested that our stage-specific GRNs have the 
potential to highlight crucial cancer-related 

regulation relationships, thus proving the ratio-
nality of our modelling strategy.

Global topological comparison of stage-specific 
grns

In order to investigate the dynamic changes of 
gene regulation in gastric cancer progression, 
we first assessed the topological differences 
between stage-specific GRNs. In-degree (In- 
Deg), out-degree (Out-Deg), betweenness (Bet), 
clustering coefficient (CC) and closeness (Cls) 
of each gene in three networks and those of 
three networks were calculated, and their dif-
ferences between adjacent stages were tested 
by Wilcoxon rank-sum test (Table 2). For a cer-
tain node in a network, Deg reflects its connect-
edness, with In-Deg and Out-Deg correspond-
ing to inward and outward links respectively; 
Bet represents its bridging character in con-

Figure 1. Distribution of Out-degree and TDR values of TFs in three stage-specific GRNs. A. Out-degree distribution 
of 22 TFs involved in three stage-specific GRNs. B. Distribution of TDR values of 22 TFs in normal vs. adenoma and 
adenoma vs. carcinoma comparisons.
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necting two other nodes; CC measures the 
closeness of its neighbors while Cls measures 
its closeness to all other nodes in the network. 
Generally speaking, these parameters describe 
the centrality of a node from diverse angles, 
and their counterparts for a network reflect the 
network compactness from both global and 
local perspectives [44].

Since the network In-Deg, CC and Cls signifi-
cantly change in both comparisons, normal  
vs. adenoma and adenoma vs. carcinoma, we  
conclude that the compactness of gene regula-
tion significantly alters as gastric cancer pro-
gresses. Noticing that the adenoma network 
has the highest CC value, the lowest Cls, the 
highest Out-Deg, and the most regulatory rela-
tionships (1173) among the three networks 
(Table 1), we propose that adenoma seems to 
be an intermediate stage with a more compact 
network topology compared with both normal 
and carcinoma. This is at least partly resulted 

from quite a batch of transient regulatory  
relationships which occur specifically at the 
stage of adenoma. These transient regulations 
enable the GRN to achieve more efficiency  
in spreading information among nodes, which 
probably contribute to the promotion of cellular 
proliferation in the early stage of carcino- 
genesis.

Since the network Out-Deg didn’t display any 
significant difference for both comparisons 
(Table 2), we turned to check the Out-Deg val-
ues of every TFs in the networks. As shown in 
Figure 1A, the Out-Deg values of the 22 TFs 
show similar patterns across the three GRNs. 
We furthermore defined a measure, targets 
diversity of a regulator (TDR), to examine how 
the TF targets changed between adjacent 
GRNs. For TFi, the TDR is as following (Equation 
6):

TDR (i) 1 (tg1, tg2) / (tg1, tg2)= -k j       (Equation 6)

Figure 2. Venn diagrams for targets (A) and regulatory relationships (B) involved in three stage-specific GRNs. (A) 
illustrates the target numbers. (B) illustrates the number of gene regulatory relationships (links).

Table 3. Classification of targets and links contained in two adjacent GRNs
Comparison Groups No. of targets (%) No. of links (%)
Normal vs. Adenoma Common 132 (15.2%) 285 (18.1%)

Differential (varied and stage-specific) 770 (84.8%) 1228 (81.9%)
Adenoma vs. Carcinoma Common 145 (15.7%) 241 (15.4%)

Differential (varied and stage-specific) 781 (84.3%) 1323 (84.5%)
“Differential” means targets or links with substantial changes between two stage-specific GRNs; “common” means targets or 
links with only slight or no changes between two stage-specific GRNs.
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Where tg1 and tg2 are targets of TFi in GRN1 
and GRN2, respectively. The TDR value reaches 
its maximum value, 1, when gene set tg1 and 
gene set tg2 do not overlap at all. While in this 
case, the Out-Deg of TFi could still be stable 
across GRNs, which would blur the distinction 
of TFi between adjacent stages in terms of its 
regulation functions. According to Figure 1B, 
more than 50% targets regulated by a certain 
TF change between adjacent GRNs, although 
the Out-Deg of the TF keeps stable across stag-
es, which is consistent with previous report 
[45]. This also coincides with our inference that 
the 22 TFs involved in our GRNs would be rele-
vant to differential regulation underlying gastric 
carcinogenesis.

Classification of target genes and regulatory 
relationships in terms of regulation change 
between stages

As found above, the regulators involved in the 
three stage-specific GRNs are the same while 
the targets regulated by a certain TF remark-
ably change between adjacent GRNs. We there-
fore examined the change of regulation in 
detail, both qualitatively and quantitatively. For 
a certain comparison, normal vs. adenoma or 
adenoma vs. carcinoma, the targets and regu-
latory relationships (links) in each network 
could be classified into “overlapped” and 
“stage-specific”. The numbers of “overlapped” 
targets (Figure 2A) or links (Figure 2B), and 
“stage-specific” targets (Figure 2A) or links 
(Figure 2B), are shown as Venn diagrams. In 
this step, the link weight, or regulation efficacy, 
was not taken into consideration.

Still for a certain comparison, we further classi-
fied the overlapped targets in Figure 2A into 
“common” group and “varied” group (Table 3). 
Targets in “common” group are regulated by 

identical TFs in two GRNs, while targets in  
“varied” group are regulated by diverse TFs. 
Meanwhile, the overlapped links were also 
grouped as “common” and “varied”. If the 
change of the regulation efficacy of a link is 
equal to or smaller than the average value, it is 
“common”, otherwise it is “varied”. Since tar-
gets and links in “stage-specific” group and 
“varied” group involve regulation changes more 
than those in “common” group, they were com-
bined to be a “differential” group as shown in 
Table 3. The ”differential” targets or links repre-
sent over 80% of total targets or links in two 
comparisons, indicating that our stage-specific 
GRNs are indeed enriched with differential reg-
ulatory relationships as expected.

In order to evaluate the power of our grouping 
strategy, we then analyzed the enrichment of 
cancer genes and drug targets in four groups of 
targets, and found that two “differential” target 
groups were enriched with cancer genes and 
drug targets, whereas two “common” target 
groups were not enriched with cancer genes or 
drug targets (Table 4, Table S1). It demon-
strates that by combining DCEA strategy and 
linear regression modelling method, we effi-
ciently narrowed down the search space and 
obtained stage-specific networks enriching 
subject relevant genes.

Prioritization of differentially regulated genes 
and links

A key issue in differential regulation analysis is 
how to quantitatively analyze dynamic changes 
of gene regulation. To address this problem, we 
developed two methods to measure the differ-
ential regulation of a specific gene or a gene 
pair across GRNs, based on which we could pri-
oritize differentially regulated genes (DRGs) 
and differentially regulated gene pairs or links 

Table 4. Enrichment analysis of cancer genes and drug targets in common and differential targets

Comparison Groups No. of 
targets No. of Control Genes No. of cancer 

genes (p-value)
No. of drug targets 

(p-value)
Normal vs. Adenoma Common 132 12526 (12658-132) 4 (0.785) 26 (0.027)

Differential 770 11888 (12658-770) 33 (0.012) 134 (0.0003)
Adenoma vs. Carcinoma Common 145 12513 (12658-145) 6 (0.297) 25 (0.137)

Differential 781 11877 (12658-781) 32 (0.023) 148 (1.67e-6)
The significance (p-value) of the enrichment of cancer genes or drug targets in a targets group was calculated by Fisher’s Exact 
Test. The 12658 genes assayed by Affymetrix Microarray GPL10982 were taken as the respondents population. The calcula-
tion of the p values of every “common” or “differential” groups were displayed in Table S1.
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(DRLs). The differential regulation (DR) of a 
gene is defined with Equation 5 in Materials 
and Methods, which captures the average regu-
lation change between a gene and its GRN 
neighbors during phenotypic changes. In this 
way, genes involved in two adjacent GRNs could 
be ranked by their DRs in a descending order. 
Additionally, differentially regulated links (DRLs) 
between adjacent GRNs could be obtained  
by utilizing an modified LFC model [35], and 
ranked by their absolute changes of regulation 
efficacy in a descending order. It is our assump-
tion that genes or gene pairs with higher ranks 
in the DRG or DRL lists play more important 
roles in gastric cancer progression.

To estimate the power of DR ranking, we car-
ried out perturbation tests in which the gene 
order of DRG lists was randomly perturbed for 
5000 times. Cancer genes or drug targets were 
then separately mapped to the 5000 random 
lists, forming an empirical null distribution of 
rank sums. It was found that cancer genes and 
drug targets were significantly higher ranked in 
normal vs. adenoma DRG list compared with 

those ranked in random lists, with p values of 
0.026 and 0.023, respectively. For adenoma 
vs. carcinoma, p values of cancer genes and 
drug targets were 0.06 and 0.03. These results 
verified the effectiveness of DR measure in pri-
oritizing disease-related genes. Coinciding with 
our basic understanding that transcription fac-
tors (TFs) play crucial roles in the proliferation 
and differentiation of cells, TFs were overrepre-
sented at the extreme top of two DRGs lists 
with p values of 1.88e-14 for normal vs. adeno-
ma and 3.85e-13 for adenoma vs. carcinoma.

In order to further test the DR measure in pre-
dicting disease genes, we calculated the per-
centage of known cancer genes in top x% of 
DRG list (x=1, 2, 3,…., 100). According to Figure 
3, top 4% DRGs for normal vs. adenoma and 
top 6% DRGs for adenoma vs. carcinoma con-
tained the highest percentage of cancer genes. 
We then randomly selected 4% and 6% of 
genes from two DRG lists and calculated the 
percentage of cancer genes in the random set 
for 5000 times to generate empirical null distri-
butions for two DRG lists. For normal vs. adeno-

Figure 3. The distribution of the percentages of cancer genes in two DRG lists. A. The percentages of cancer genes 
in normal vs. adenoma DRG list. B. The percentages of cancer genes in adenoma vs. carcinoma DRG list.
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ma DRGs, the percentage of cancer genes in 
the top 4% DRGs is 11%, while the average per-
centage of cancer genes in random gene sets 
is about 4%. For adenoma vs. carcinoma DRGs, 
the percentage of cancer genes in the top 6% 
DRGs is 5%, while the average percentage of 
cancer genes in random gene sets is 2%. The 
statistical significances (p values) of the top 4% 
normal vs. adenoma DRGs and top 6% adeno-
ma vs. carcinoma DRGs in prioritizing cancer 
genes are 0.012 and 0.067, respectively. After 
doing a literature review in PubMed, we found 
that more than 50% genes contained in top 4% 
normal vs. adenoma DRGs and top 6% adeno-
ma vs. carcinoma DRGs were reported to be GC 
related (Table S2). We therefore propose that 
our top 4%, 36 DRGs for normal vs. adenoma 
and top 6%, 56 DRGs for adenoma vs. carcino-
ma are worthy of further investigation to deter-
mine their association with gastric cancer. It is 
noted that the top 3% genes from adenoma vs 
carcinoma have no cancer genes. We specu-
late they probably include promising novel can-
cer genes relevant to gastric cancer. Compared 
to the transition from normal to cancer, or nor-
mal to adenoma, the transition from adenoma 
to carcinoma have been studied less frequent-
ly, which might be a reason that there are no 
cancer genes in the top 3% genes from adeno-
ma vs carcinoma.

We also examined the performance of DRL 
ranking by checking the rank of cancer genes 
and drug targets. When a gene was involved in 
more than one DRLs, we took the highest rank 

as the unique one of the gene. Similarly, pertur-
bation tests indicate that cancer genes and 
drug targets are significantly higher ranked in 
normal vs. adenoma DRG list compared with 
those ranked in perturbed random DRL lists, 
with p values of 0.02 and 0.07. The p values of 
cancer genes and drug targets in adenoma vs. 
carcinoma DRL list are 0.08 and 0.06. Although 
these p values are greater than those for DRG 
lists, and three of them are even not significant 
at the 0.05 level, the DRL rank could still be 
useful in prioritizing regulation relationships 
around a certain DRG.

Table 5 lists the top ten genes in two DRG lists 
corresponding to normal vs. adenoma and ade-
noma vs. carcinoma. Among the 16 genes in 
Table 5, ten (ESRRG [46], LIMS1 [47, 48], 
CEBPB [49], AHR [50], POU2F1 [51], TGIF1 [52], 
GATA3 [53], GATA6 [54], SOX9 [55], HEPH [56]) 
have been reported to be associated with gast-
ric carcinoma (GC); another five genes (IRF2 
[57], RGS3 [58], MRPL36 [59], TRIB1 [60] and 
FOSB [61] are cancer related, all of which are 
transcriptionally regulated by known GC related 
genes according to FANTOM database [62], 
including IRF1, NFKB1, MYC and SP1; the left 
one gene (RIC8B) is probably GC related since it 
was transcriptionally regulated by GC genes in 
our networks, such as STAT5A. Additionally, 
among the 16 top ranked genes, ESRRG [46], 
IRF2 [57] and CEBPB [49] are known cancer 
drug targets in CancerResource database [63], 
and they might be promising targets for gastric 
cancer therapy.

Table 5. The top ten ranked genes in DRG lists and DRL lists
DRG lists DRL lists

Normal vs. Adenoma Adenoma vs. Carcinoma Normal vs. Adenoma Adenoma vs. Carcinoma
Genes Rank Genes Rank TF Target Rank TF Target Rank
LIMS1 1 ESRRG 1 GATA3 LIMS1 1 IRF2 ESRRG 1
FOSB 2 LIMS1 2 SOX9 LIMS1 2 CEBPB ESRRG 2
MRPL36 3 IRF2 3 FOSB RIC8B 3 FOSB ESRRG 3
GATA3 4 RGS3 4 MRPL36 MME 4 POU2F1 ESRRG 4
RGS3 5 FOSB 5 MRPL36 HEPH 5 CEBPB RGS3 5
TRIB1 6 CEBPB 6 FOSB PDGFRB 6 IRF1 ESRRG 6
GATA6 7 TRIB1 7 GATA3 FABP2 7 CEBPB DMKN 7
SOX9 8 AHR 8 FOSB ID1 8 FOSB ID1 8
HEPH 9 POU2F1 9 TGIF1 PFN1 9 STAT2 ID1 9
RIC8B 10 TGIF1 10 STAT5A RGS3 10 TGIF1 NAV2 10
The genes are sorted by the DR values. Genes in bold refer to GC-related genes; genes in italic refer to cancer-related genes.
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Table 5 also lists the top ten ranked gene pairs 
in two DRLs lists corresponding to normal vs. 
adenoma and adenoma vs. carcinoma in com-
parison. Among the 23 genes in the two top ten 
ranked DRLs (Table 5), 12 are GC related genes 
(ESRRG [46], LIMS1 [47,48], CEBPB [49], 
POU2F1 [51], TGIF1 [52], GATA3 [53], SOX9 
[55], HEPH [56], IRF1 [64], ID1 [65], PDGFRB 
[66] , STAT5A [67]); 8 are cancer related genes 
(IRF2 [57], RGS3 [58], MRPL36 [59], FOSB 
[61], MME [68], STAT2 [69], FABP2 [70], PFN1 
[71]); the left 3 are probably GC related genes 
(RIC8B, NAV2, DMKN) since they are regulated 
by GC genes in our GRNs as seen in Table 5. 
Additionally, ID1, PDGFRB, STAT5A, STAT2, 
MME and IRF1 are known cancer drug targets 
in CancerResource database [63].

We then focused on the top ranked DRGs and 
their surrounding top ranked DRLs to generate 
hypotheses on the regulation mechanisms of 
gastric carcinogenesis. For example, GATA6, 
one of the top-10 DRGs in normal vs. adenoma 
comparison, has been reported to play a key 
role in controlling cell apoptosis and cell cycle 
of gastric cancer, while the dynamic mecha-
nisms of gene regulation during cancer pro-
gression remains unclear [54]. In our differen-
tial networking analysis, GATA6 forms DRLs 
with LIMS1 and FMOD in normal vs. adenoma, 
and with PTTG1 in adenoma vs. carcinoma 
(Figure 4A). As shown in Figure 4A, the nega-
tive regulation of LIMS1 by GATA6 decreased 
sharply from normal to adenoma, and was even 
lost in carcinoma. LIMS1 was reported to pro-
mote the tumorigenesis of gastric tumor cells 
by physically interacting with ILK [48] and inhib-
it apoptosis in fibrosarcoma cell through the 
suppression of BIM [72]. The decrease of nega-
tive regulation of LIMS1 by GATA6 in adenoma 
and carcinoma stage may lead to the over-
expression of LIMS1, which further induces 
tumorigenesis and inhibits apoptosis as plot-
ted in Figure 4B. The over-expression of LIMS1 
and down-expressin of GATA6 in carcinoma 
stage was verified by data from TCGA, as well 
as the present GSE24375 (Figure S2). Similarly, 
the negative regulation of FMOD by GATA6 dis-
appeared from normal to adenoma (Figure 4A). 
FMOD is not a known GC gene, but it was 
reported to be up-regulated in chronic lympho-
cytic leukaemia (CLL) cells and the silencing of 
FMOD resulted in the apoptosis of CLL cells 
[73]. The loss of negative regulation of FMOD 

by GATA6 in adenoma and carcinoma stage 
may cause the over-expression of FMOD, which 
inhibits apoptosis and thus promotes tumori-
genesis (Figure 4B). The over-expression of 
FMOD in adenoma and carcinoma stage was 
observed in both GSE24375 and TCGA dataset 
(Figure S2). As for PTTG1, the positive regula-
tion of PTTG1 by GATA6 was reversed to be 
negative from normal to adenoma, while the 
change was slight, and then disappeared in 
carcinoma stage; however, the expression level 
of PTTG1 was found to continuously rise in 
GSE24375 from normal to adenoma and to car-
cinoma, which is consistent with the observa-
tion in TCGA data (Figure S2). PTTG1, promoting 
cancer by inhibiting p53, was reported to be 
over-expressed in gastric carcinoma and corre-
lated to lymph node metastasis of gastric carci-
noma [74]. It seems that GATA6 exerts its 
PTTG1-mediated cancerigenic function mainly 
at the late stage (Figure 4B). In addition, we 
noticed that the positive regulation of CAPN1 by 
GATA6 in normal stage disappeared in adeno-
ma and reappeared in carcinoma (Figure 4A). 
Although CAPN1 does not fall in the top 4% or 
top 6% DRGs, and the link from GATA6 to CAPN1 
is not a DRL either, CAPN1 was reported to pro-
mote the cell apoptosis through the activation 
of P53 (KEGG pathway ID: hsa04210). We 
therefore proposed that the loss of positive 
regulation of CAPN1 by GATA6 may lead to the 
inhibition of P53 and thus the suppression of 
apoptosis, which may induce the progression of 
normal to adenoma (Figure 4B). In this sense, 
decreased expression of CAPN1 gene might be 
a potential early stage biomarker for gastric 
cancer. The down-expression of CAPN1 in ade-
noma and carcinoma stage was observed in 
both GSE24375 and TCGA data (Figure S2). 
Recently, a whole genome sequencing study of 
gastric carcinoma found a non-synonymous 
mutation (YH323Y deletion) located in the tran-
scriptional activation domain (residue 147-381) 
of GATA6 protein [12]. To decipher the potential 
functional impact of the YH323Y deletion, we 
generated a three-dimensional protein struc-
ture model of GATA6 by using the software 
FR-t5-M [75]. As shown in Figure 4C, although 
the normal (left) and mutation (right) GATA6 
proteins have similar topology, the YH323H 
deletion remarkably affects the local region so 
that a pair of antiparallel beta sheets disappear 
in the mutated GATA6 protein. We speculate 
that the YH323H deletion might affect the func-
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tion of GATA6 through altering its conformat- 
ion in the DNA binding domain. The temporal 

molecular events underlying gastric cancer pro-
gression involving GATA6 and its down-stream 

Figure 4. The proposed dysregulation mechanisms around GATA6. A. GATA6-centered subnetworks out of the three 
GRNs corresponding to normal, adenoma and carcinoma. GATA6 is a TF, and the other nodes are its targets. Nodes 
in solid-line ovals represent DRLs related targets; nodes in dotted-line ovals are unrelated to DRLs. Links in red, 
green and grey represent positive, negative and absent regulation relationships calculated with dataset GES24375; 
links in bold are DRL related. Numbers on the links indicate the regulation efficacies. B. The proposed mecha-
nism by which GATA6 induces gastric adenoma. Links in red, green and grey still represent positive, negative and 
absent regulation relationships at normal (Nm), adenoma (Ad) and carcinoma (Ca) stage calculated with dataset 
GES24375. The darker the color, the larger the absolute regulation efficacy. Links in black are gene-gene intercon-
nections obtained from literatures. The color of gene symbol, red or green, represents up- or down-expression in 
stage transition according to dataset GES24375 and TCGA data. Boxes indicate biological processes, with red color 
referring to activation and green color referring to inhibition. C. Homology models of normal and mutation GATA6 
protein are represented in cyan cartoon and yellow cartoon, respectively. The mutated local region (residue 323-
332) is shown in red.



Differential regulation network analysis in gastric carcinogenesis

2617 Am J Cancer Res 2015;5(9):2605-2625

signaling pathway are worth further experimen-
tal exploration.

Another interesting example is ESRRG, which is 
ranked top one in our adenoma vs. carcinoma 
DRG list (Table 5), and has been reported to be 
one of five gastric prognostic signature genes 
[46]. Although ESRRG is not a TF in our GRNs, it 
is a nuclear receptor, and functions as a tran-
scription activator in the absence of bound 
ligand. ESRRG was also reported to promote 
the development of breast cancer by activating 
HIF1A [76] and DNMT1 [77]. Since ESRRG is 
the top one DRG for adenoma vs. carcinoma 
comparison, while ranks 656 (top 72%) for nor-
mal vs. adenoma, we propose that ESRRG may 
stimulate gastric carcinogenesis at relatively 

late stage. According to our differential network 
analysis, CEBPB, IRF2, FOSB, IRF1, and POU2F1 
form 5 DRLs with ESRRG respectively (Figure 
5A), which are all top ten ranked in adenoma 
vs. carcinoma DRL list (Table 5). From adeno-
ma to carcinoma, CEBPB, IRF2 and FOSB ele-
vated their positive regulation to ESRRG, while 
IRF1 and POU2F1 increased their inhibition to 
ESRRG. In all, the positive regulation of ESRRG 
was enhanced in carcinoma stage, and its over-
expression was indeed observed in both 
GSE24375 and TCGA data (Figure S3). Among 
ESRRG’s regulators, CEBPB is a known GC 
related gene, whose over-expression was cor-
related with metastasis [49]; IRF2 was a cancer 
gene, and it was reported to promote cell 
growth and inhibit cell apoptosis in pancreatic 

Figure 5. The proposed dysregulation mechanisms around ESRRG. A. ESRRG-centered subnetworks out of the three 
GRNs corresponding to normal, adenoma and carcinoma. ESRRG is a target, and the other nodes are its regula-
tors. Nodes in solid-line ovals represent DRL related targets; nodes in dotted-line ovals are unrelated to DRLs. Links 
in red, green and grey represent positive, negative and absent regulation relationships calculated with dataset 
GES24375; Links in bold are DRL related. Numbers on the links indicate the regulation efficacies. B. The proposed 
mechanisms by which ESRRG induces gastric carcinoma. Links in red, green and grey still represent positive, nega-
tive and absent regulation relationships at normal (Nm), adenoma (Ad) and carcinoma (Ca) stage calculated with 
dataset GES24375. The darker the color, the larger the absolute regulation efficacy. Links in black are gene-gene in-
terconnections obtained from literatures. The color of gene symbol, red or green, represents up- or down-expression 
in stage transition according to dataset GES24375 and TCGA data. Boxes indicate biological processes, with red 
color referring to activation and green color referring to inhibition.
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cancer [57]; FOSB is a cofactor of AP1 and 
functions as a driver of skin cancer develop-
ment [78]. The over-expressions of CEBPB, 
IRF2 and FOSB in carcinoma stage were also 
observed in both GSE24375 and TCGA data 
(Figure S3). Therefore, we speculated that the 
positive regulators, CEBPB, IRF2 and FOSB may 
promote the gastric carcinogenesis by activat-
ing ESRRG (Figure 5B). IRF1, a known suppres-
sor of gastric carcinoma [79], was observed to 
enhance its inhibition to ESRRG from adenoma 
to carcinoma according to our networks, while 
in this case, it failed to reverse the carcinogen-
esis process (Figure 5B). The down-expression 
of IRF1 in carcinoma stage was observed in 
both GSE24375 and TCGA data (Figure S3). 
POU2F1, a known GC related gene, increases 
cell proliferation by activating ERK signalling, 
and its over-expression correlates with gastric 
poor prognosis [51]; however, POU2F1 was 
found to negatively regulate ESRRG in our carci-
noma GRN, suggesting that POU2F1 should 
have alternative down-stream signaling path-
ways which effectively promote gastric carcino- 
genesis.

Method comparison

As described in Introduction, to reduce the 
computational complexity, researchers built 
subnetworks around previously reported dis-
ease-related genes [22-24], or differentially 
expressed genes [25-27], which enabled the 
discovery of context related genes. In order to 
evaluate the power of our DCEA-based differen-
tial network modelling and analysis method in 
prioritizing disease related genes, we com-
pared DCEA-based method with differential 
expression analysis based method and whole 
genome method, with three types of networks 
shortly named as DCG-GRNs, DEG-GRNs and 
WG-GRNs, respectively.

For WG-GRN modelling, all 12658 genes (whole 
genome, WG for short) contained in the 
GSE24375 gene expression profiles were all 
used. The statistics of three types of stage-spe-
cific networks, DCG-GRNs, DEG-GRNs and 
WG-GRNs, are listed in Table 1. Functional 
enrichment analysis of network genes shows 
that DCG-GRNs enrich cancer genes and drug 
targets more significantly than DEG-GRNs and 
WG-GRNs (Table 1), suggesting that GRN mod-
elling started from DR-relevant genes can 
effectively highlight context relevant genes 
compared with DEGs based modelling, as well 
as whole genome modelling. The insignificant 
enrichment of cancer genes and drug targets in 
WG-GRNs implies the necessity of seed genes 
selection in reducing not only the computation-
al complexity but also the background noise.

Similar to the above section, we also estimated 
the differential regulation extent (DRs) of genes 
in DEG-GRNs and WG-GRNs. In order to com-
pare the power of DRG lists from DCG-GRNs, 
DEG-GRNs and WG-GRNs in prioritizing can- 
cer genes, we calculated the percentages of 
cancer genes and drug targets in their top  
5%, 10%, 15%....80% DRG lists, respectively. 
Wilcoxon-test of the percentages of cancer 
genes and drug targets in DRG lists (Table 6) 
suggests that DRG lists for DCG-GRNs are more 
efficient than DRG lists of DEG-GRNs and 
WG-GRNs in prioritizing disease genes.

Discussion

Differential network analysis, aiming to identify 
different networking, is a new emerging area in 
systems biology. For gene regulation network, 
the biological idea underlying differential net-
working is differential regulation. As is well 
known, gene regulation is cellular context-spe-
cific and dynamic in nature. That is, regulatory 

Table 6. Comparison of DRG lists of DCG-GRNs, DEG-GRNs and 
WG-GRNs

DRG list Gene sets
DCG-GRNs 

vs. DEG-GRNs 
(p-value)

DCG-GRNs 
vs. WG-GRNs 

(p-value)
Normal vs. Adenoma Cancer Genes 0.005 0.00029

Drug Targets 0.00024 0.00042
Adenoma vs. Carcinoma Cancer Genes 0.013 0.0123

Drug Targets 0.00087 0.0122
p-value: significance of Wilcoxon test of percentages of cancer genes and drug 
targets in different DRG lists.

To infer DEG-GRNs, we first uti-
lized limma method [39] to obtain 
two DEG lists (P<0.05) for normal 
vs. adenoma and adenoma vs. 
carcinoma comparisons, includ-
ing 1822 and 994 genes respec-
tively. We then utilized stratified 
sampling method to extract DEGs 
from the two DEG lists in equal 
proportion, resulting in a final list 
with the gene number equal to 
the number of DR-relevent genes 
used to infer DCG-GRNs, 2524. 



Differential regulation network analysis in gastric carcinogenesis

2619 Am J Cancer Res 2015;5(9):2605-2625

components are differently activated or inhibit-
ed under varying conditions, and the topology 
of the underlying networks changes according-
ly, which is considered causal to phenotypic 
changes. Since cancer has a nature of multi-
step, inferring stage-specific GRN and finding 
out the dysregulation mechanisms during carci-
nogenesis with the aid of differential network 
analysis is worthwhile, yet challenging, for both 
computational and experimental biologists. In 
this work, we proposed a novel framework for 
differential network modelling and analysis, 
and applied it to a gastric cancer dataset. 

In the current efforts in carcinogenesis studies, 
lots of attention has been paid on differential 
expression. Differentially expressed functional-
relevant genes are always selected to explain 
regulation mechanisms underlying pathogene-
sis. The two terms, differentially expressed 
genes and differentially regulated genes, are 
even regarded as the same in quite a lot of lit-
eratures. When performing network modelling, 
in order to reduce the computational complexi-
ty, some researchers built gene regulatory sub-
networks around differentially expressed 
genes, and did manage to identify potential 
drug targets or context related genes [26, 27]. 
However, it has been well accepted that can-
cers originates from genomic changes in genes 
regulating cell growth and differentiation, fol-
lowed by the dysregulation of cell signaling 
transduction, which causes abnormal expres-
sion of a large number of genes, and eventual 
over-activation of cell proliferation [80]. That is 
to say, causal signals would be submerged 
within differentially expressed genes, and in 
this sense, differentially expressed genes are 
more likely to be the consequences of differen-
tial regulation mechanisms, rather than the 
causes of phenotypic changes. More impor-
tantly, causal factors are not necessarily differ-
entially expressed. For example, if a mutation 
occurs to DNA binding domain or activation 
domain of a TF, the TF could no longer activate 
its target genes, even though it keeps its origi-
nal expression level. Taking p53 as an example, 
it has been well established that p53 pathway 
could be disrupted through a point mutation 
that inactivates its capacity to bind specifically 
to its cognate recognition sequence [81]. In this 
case, the expression correlation of the TF with 
its targets is disrupted in the abnormal state, 
which could be captured by a new emerging 

strategy, differential coexpression analysis 
(DCEA) [31, 34, 35]. DCEA was designed to 
explore gene interconnection changes, instead 
of expression level changes, and has been con-
sidered more promising in identifying differen-
tial regulation mechanisms of phenotypic 
changes than differential expression analysis 
[31]. Therefore, in the present work, we built 
stage-specific subnetworks around differential-
ly coexpressed genes (DCGs) identified with our 
previously developed DCEA methods [34, 35], 
instead of around differentially expressed 
genes as previous studies did [25-27]. 
Benefiting from the use of DCEA, the search 
space of gene regulatory network modelling 
was successfully narrowed down to the genes 
most relevant to differential regulation, which 
was verified by the observation of the enrich-
ment of cancer genes and drug targets in our 
stage-specific networks (Table 1), and espe-
cially in the “differential” groups of target genes 
(Tables 3, 4). The comparison of DCEA-based 
modelling method with differential expression 
analysis based modelling and whole genome 
modelling methods proved that DCG-GRNs 
highlighted context relevant genes more effec-
tively than DEG-GRNs and WG-GRNs did (Table 
6). 

The final goal of differential regulatory network 
analysis is to explore the dynamic changes of 
gene regulation and identify differential regula-
tory relationships. It is assumed that differen-
tial regulatory relationships play crucial roles in 
carcinogenesis, and the involved genes have 
the potential to be drug targets. The more sig-
nificant the difference is, the more promising 
the genes would be. However, network compar-
ison is always a challenge in systems biology, 
especially when the networks are large and 
complex. In previous differential network analy-
sis studies, some of them ignored the quantita-
tive information in the original GRNs, and con-
structed qualitative differential network by 
removing common interactions/regulations of 
conditional networks [23, 24, 26, 29]; some 
semi-quantitatively compared small-scale net-
works under varying conditions [22, 25, 27, 28, 
30]. Generally speaking, all these efforts great-
ly reduced the calculation complexity by dis-
carding quantitative information or inferring 
subnetworks around a given set of genes, while 
they did not make full use of regulation strength 
information involved in GRNs. In our design, by 
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integrating DCEA to linear regression modelling 
method, we first obtained stage-specific differ-
ential regulation-enriched networks with links 
weighted by regulation efficacy. After that, by 
implementing DR measure (Equation 5) and 
the modified LFC model [34], the change in reg-
ulation strength of a certain gene with its neigh-
bors in the GRN, and the change in regulation 
strength of a certain link could be estimated 
and ranked. In this way, all genes and links in 
the regulatory networks could be prioritized 
based on the extent of differential regulation. 
Furthermore, the modelling and anlysis pipeline 
is not limited by known disease-related genes, 
and therefore enables the discovery of novel 
regulators or regulatory relationships that have 
not yet been associated to the disease of inter-
est. By using the present pipeline, we identified 
36 DRGs for normal to adenoma transition and 
56 DRGs for adenoma to carcinoma transition, 
out of which more than 50% have been report-
ed to be GC related (Table S1). The rest genes 
are therefore worthy of further experimental 
investigation to determine their association 
with gastric cancer. 

Among the 16 differentially regulated genes 
(DRGs) involved in the two top-10 DRG lists  
corresponding to normal vs. adenoma and  
adenoma vs. carcinoma comparison, 10 have 
been reported to be gastric cancer, and 5 to be 
cancer related. We noticed that out of the 16 
DRGs, only one gene, TRIB1, was differentially 
expressed between normal and adenoma 
(adjusted P=0.03) in GSE24375, and no one 
was differentially expressed between adenoma 
and carcinoma. This strongly supports the 
necessity of DCEA-based methods in discover-
ing disease related genes. To make it clear, we 
also specially tested the power of DEGs in pri-
oritizing cancer genes. Two DEG sets discov-
ered in normal vs. adenoma and adenoma vs. 
carcinoma comparison by limma method were 
separately ranked by their p values in an 
ascending order. The two gene lists were then 
cut to the same length as the corresponding 
DRG lists. Perturbation tests showed that can-
cer genes were not significantly higher ranked 
in both normal vs. adenoma DEG list (p value 
=0.11) and adenoma vs. carcinoma DEG list (p 
value =0.48). It is our belief that the differential 
networking information involved in DRGs and 
DRLs, together with prior knowledge on tran-
scriptional regulation and the changes in abso-

lute expression level, help to elucidate the regu-
latory mechanisms of phenotypic changes, 
which starts from disruption or switch of regula-
tion relationships, results in changes of gene 
expression and thus functional alterations of 
crucial processes. 

It is widely accepted that carcinogenesis is a 
multistep process, especially for intestinal gas-
tric carcinoma, progressing through the stages 
of chronic gastritis, atrophy, intestinal metapla-
sia, adenoma, and finally gastric carcinoma 
[82]. The study of sequential changes of GRNs 
from normal to premalignant lesions and to 
cancers would provide insights into the global 
landscape of the dynamics of carcinogenesis. 
Recently, a colon cancer research of state- 
specific gene-gene interaction networks with 
respect to normal, adenoma and cancer found 
that the gene and link numbers, the mean 
degree and the mean clustering coefficient 
increased in the progression from normal to 
adenoma and to cancer [44]; however, our dif-
ferential networks analysis of gastric cancer 
GRNs with respect to normal, adenoma and 
carcinoma found that the network size and 
complexity expanded from normal to adenoma 
and then shrank from adenoma to carcinoma. 
This up and down trend was also observed in 
our DEG based GRNs and whole genome GRNs 
(Table 1). According to our observation, adeno-
ma seems to be an intermediate stage with 
most compact network topology compared with 
normal and carcinoma. Quite a lot of regulatory 
relationships transiently occur at the stage of 
adenoma, and then disappear when adenoma 
develop into carcinoma. Specifically, the target 
number of a TF (so called out-degree) increased 
from 39.9 (normal) to 53.3 (adenoma), and 
then decreased to 37.09 (carcinoma). After 
checking the transient regulations specific for 
adenoma, we found that Wnt/β-catenin path-
way are more active in gastric adenoma than 
both normal and carcinoma, which is consis-
tent with some previous reports [83, 84]. In our 
GRNs, AXIN2 is negatively regulated by GATA3 
specifically in adenoma stage, which could lead 
to the accumulation of β-catenin, and thus  
the activation of Wnt signaling pathway [83]. 
Furthermore, we identified the Wnt pathway 
related DRLs for normal vs. adenoma and ade-
noma vs. carcinoma, and found that the regula-
tion efficacy related to Wnt pathway averagely 
increased from normal to adenoma (0.48), and 
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then decreased from adenoma to carcinoma 
(-0.31), quantitatively proving the activation of 
Wnt pathway in adenoma stage. It seems that 
at the early stage of carcinogenesis, a number 
of transient regulations accumulate, which 
accelerate the celluar proliferation by affecting 
some crucial signal pathways, and eventually 
result in a drastic transition to carcinoma. This 
is consistent with the speculation that the pro-
gression of cancer may involve a critical transi-
tion [85]. Our observation is also coherent with 
some previous reports. A transcriptomic study 
of colorectal carcinogenesis found that majori-
ty of gene expression changes occur in the 
transition from normal to adenoma rather than 
from adenoma to carcinoma [86]. A DNA meth-
ylation study of gastric carcinogenesis suggest-
ed that accumulation of DNA methylation occur 
during the early stages of carcinogenesis and 
predetermines the future cancer type [87]. At 
this point, the dynamic changes from normal to 
adenoma seem to be more worthy of investiga-
tion although the phenotype has not deterio-
rated to the worst.

In all, the present framework combines our pre-
viously developed differential coexpression 
analysis (DCEA) strategy [34, 35], reverse-for-
ward integrated GRN modelling method [20, 
21] and novel quantitative methods for prioriti-
zation of differential regulation, to implement 
differential network modelling and analysis. 
DCEA enriches differential regulations, forward 
engineering strategy reduces the false positive 
rate, reverse engineering strategy utilizes the 
temporary information from expression data, 
and the methods for quantifying differential 
regulation fully exploit the quantitative informa-
tion in the model. As expected, all these factors 
efficiently facilitate the differential network 
analysis with reasonable time consuming, and 
help to generate insightful hints on dysfucntion-
al regulation mechanisms underlying carcino-
genesis. In the case study, based on the quite 
limited sample size, we obtained valuable 
observations worthy of further exploration. We 
believe that if applied to data with a larger sam-
ple size, the performance of our approach will 
be enhanced significantly. The last but not 
least, the present framework could be easily 
applied to other clinical topics, and other phe-
notypic changes associated with development, 
aging, or other case-control settings. Four years 
ago, de la Fuente reviewed as follows, “Although 

we still have not reached a stage where the  
elucidation of differential regulatory networks 
is commonly feasible, recent advances have 
described the first steps towards this goal - the 
identification of differential coexpression net-
works.” With the accumulation of whole genome 
expression data, and the improvement of com-
putational algorithms, it is time to decipher the 
dysfunctional regulators and their relevant sig-
naling pathway through efficient differential 
network analysis.
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Figure S1. The distribution of number of TFs for DCG targets, DEG targets and 
WG targets in the candidate TF-target relationships. The horizontal axis repre-
sents each group of targets and the vertical axis represents the number of TFs.
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Table S1. The enrichment p values of cancer genes and drug targets in four groups of targets
Group Interest genes Common group Differential group
Normal vs. adenoma Cancer genes Common Non Common Total Differential Non Differential Total

Known cancer gene 4 343 347 Known cancer gene 33 314 347
Other genes 128 12183 12311 Other genes 737 11574 12311

Total 132 12526 12658 Total 770 11888 12658
p-value 0.785 p-value 0.012

Drug targets Common Non Common Total Differential Non Differential Total
Drug targets 26 1628 1654 Drug targets 134 1520 1654
Other genes 106 10898 11004 Other genes 636 10368 11004

Total 132 12526 12658 Total 770 11888 12658
p-value 0.027 p-value 0.0003

Adenoma vs. carcinoma Cancer genes Common Non Common Total Differential Non Differential Total
Known cancer gene 6 341 347 Known cancer gene 32 315 347

Other genes 139 12172 12311 Other genes 749 11562 12311
Total 145 12513 12658 Total 781 11877 12658

p-value 0.297 p-value 0.023
Drug targets Common Non Common Total Differential Non Differential Total

Drug targets 25 1629 1654 Drug targets 148 1506 1654
Other genes 120 10884 11004 Other genes 633 10371 11004

Total 145 12513 12658 Total 781 11877 12658
p-value 0.137 p-value 1.67E-06
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Table S2. Top 4% genes of normal vs. adenoma DRG list and top 6% genes of 
adenoma vs. carcinoma DRG list

Normal vs. Adenoma Adenoma vs. Carcinoma
Genes DR_rank Genes DR_rank Genes DR_rank
LIMS1 1 ESRRG 1 HEPH 37
FOSB 2 LIMS1 2 PTK7 38
MRPL36 3 IRF2 3 SYNPO 39
GATA3 4 RGS3 4 ACSL5 40
RGS3 5 FOSB 5 ETFB 41
TRIB1 6 CEBPB 6 MMP7 42
GATA6 7 TRIB1 7 CTSA 43
SOX9 8 AHR 8 PPP1R1B 44
HEPH 9 POU2F1 9 E2F3 45
RIC8B 10 TGIF1 10 STAM 46
AHR 11 FOSL1 11 CCND2 47
MGAM 12 ID1 12 PBX3 48
GIF 13 GSTP1 13 ABR 49
MME 14 CITED1 14 ITM2C 50
RARA 15 EYA1 15 GATA6 51
CEBPB 16 ERBB3 16 DDIT3 52
TGIF1 17 IRF1 17 CRLS1 53
POU2F1 18 ELF1 18 ITGB1BP2 54
FABP2 19 IL10 19 GK 55
RGS5 20 PFN1 20 CDX1 56
TM4SF20 21 STAT5A 21
CITED1 22 PRKACB 22
SYNPO 23 ZMYND8 23
DDIT3 24 CYP8B1 24
ZNF609 25 SOX9 25
EYA1 26 ID3 26
STAM 27 DMKN 27
PDGFRB 28 SERPINA1 28
MYO15B 29 NAV2 29
ID1 30 GATA3 30
DMKN 31 MRPL36 31
IRF1 32 SOX5 32
PRKACB 33 GKN1 33
PFN1 34 STAT2 34
ACSL5 35 GABRA5 35
MYL9 36 ISG15 36
The genes are sorted by the DR values. Genes in bold refer to GC-related genes.
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Figure S2. The expression level of GATA6, CAPN1, FMOD, LIMS1 and PTTG1 in GSE24375 (A) and TCGA (B) data 
sets. (A) The log2 transformed expression level of GATA6, CAPN1, FMOD, LIMS1 and PTTG1 in normal, adenoma 
and carcinoma samples of GSE24375 dataset. (B) The log2 transformed expression level of GATA6, CAPN1, FMOD, 
LIMS1 and PTTG1 in normal and carcinoma samples of TCGA dataset.
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Figure S3. The expression level of ESRRG, FOSB, IRF2, CEBPB and IRF1 in GSE24375 (A) and TCGA (B) data sets. 
(A) The expression level of ESRRG, FOSB, IRF2, CEBPB and IRF1 in normal, adenoma and carcinoma samples of 
GSE24375 dataset. (B) The expression level of ESRRG, FOSB, IRF2, CEBPB and IRF1 in normal and carcinoma 
samples of TCGA dataset.


