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Abstract: DOT1L is a unique histone methyltransferase that targets the histone H3 lysine 79 (H3K79) residue for 
mono-, di- and tri- methylation. Histone H3K79 mono- and di-methylation results in active gene transcription, while 
H3K79 tri-methylation is associated with gene repression. DOT1L has a critical role in regulating gene transcription, 
development, cell cycle progression, somatic reprogramming and DNA damage repair. DOT1L interacts with Mixed 
Lineage Leukemia (MLL) fusion proteins, leading to enhanced H3K79 methylation, maintenance of open chromatin, 
overexpression of downstream oncogenes and leukemogenesis. Importantly, small molecule DOT1L inhibitors have 
been recently developed, and one of the DOT1L inhibitors is already under investigation in a Phase I clinical trial in 
patients with MLL fusion gene-driven leukemia.
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Introduction

Post-translational histone modifications have 
become a focus of research due to their ability 
to regulate gene transcription by modifying 
chromatin structure. Histone modifications can 
interact and crosstalk, forming a complex web 
of gene regulation called the histone code [1]. 
The four well-known histone modifications are 
acetylation [2], methylation [3], phosphoryla-
tion [4] and ubiquitination [5]. 

Histone methylation was the first post-transla-
tional histone modification identified by radio-
labelling cell extracts [6]. It involves the attach-
ment of a methyl group to a basic amino  
residue: lysine (K) [7] or arginine (R) [8]. Lysine 
residue methylation is the best studied, with 
lysine undergoing mono, di-, or tri-methylation 
on the -amine group. 

Methyl groups are generally thought to have 
slowest turnover rate out of the four common 
histone modifications. However, methylation 
marks on different lysine residues have been 
shown to have differing turnover rates [9]. Mass 

spectrometry has identified many lysine resi-
dues in core histone proteins to be dynamically 
methylated and de-methylated [10]. The most 
comprehensively studied lysine methylation 
sites are located on the N-terminal tail (H3K4, 
H3K9, H3K27, H3K36 and H4K20) and in the 
histone core (H3K79) [11, 12].

Cross talk among different histone lysine resi-
due methylation modulates gene transcription 
with H3K9 methylation overlapping with H3K4 
de-methylation in regions of heterochromatin; 
and euchromatic regions show the opposite 
with H3K4 methylated and H3K9 demethylated 
[13].

Histone H3K4 mono-methylation (H3K4me),  
di-methylation (H3K4me2), tri-methylation (H- 
3K4me3), H3K36me3, H3K79me, H3K79- 
me2, H3K9me and H3K27me are linked to 
gene transcription [14-17]. Differing levels of 
methylation at the same histone position has 
been shown to have different effects with 
H3K9me2, H3K9me3, H3K27me2, H3K27me3 
and H4K20me linked to gene repression 
[18-20]. 
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Histone methyltransferases and histone  
demethylases 

Histone methyltransferases target either lysine 
or arginine residues, with the majority belo- 
nging to the SET domain methyltransferase 
protein superfamily [21-24]. SET domain methy-
transferases function by transferring a methyl 
group from S-adenosyl-L-methionine (SAM)  
to the amino group of a lysine residue on the 
histone or non-histone protein, leaving a meth-
ylated lysine residue and S-adeno-L-homo- 
cysteine (SAH) as a by-product [21]. Further 
methyl groups are added progressively to 
achieve di- and tri- methylation.

Many histone methyltransferases have been 
shown to be involved in cancer and neurologi-
cal diseases [25, 26]. One of the most well 
studied is Enhancer of Zest Homologue 2 
(EZH2), a histone lysine methyltransferase 
belonging to the the Polycomb group (PcG) pro-
tein family. EZH2 is the active catalystic subunit 
of the Polycomb Repressive Complex 2 (PRC2), 
targeting histone H3 lysine 27 for mono, di and 
tri-methylation [19]. PRC2 is involved in a range 
of normal cellular processes, including cellular 
differentiation and stem-cell plasticity. Up- 
regulation of EZH2 is a marker for aggressive 
prostate and breast cancers [27, 28]. Recurrent 
gain of function mutations have been identified 
at the Y641, A677 and A687 residues within 
the EZH2 catalytic domain [29, 30]. These 
mutations alter the substrate specificity of 
EZH2, increasing the conversion of H3K27  
di-methylation to tri-methylation, while wild 
type EZH2 preferentially converts H3K79 
mono-methylation to di-methylation. EZH2 gain 
of function mutations have been found in fol-
licular lymphoma and Germinal Centre B-Cell 
like Diffuse Large B-Cell lymphoma [31]. A 
range of small molecular EZH2 inhibitors have 
been synthesized and shown good in vitro  
and in vivo efficacy against lymphoma cells 
[32-34].

Histone methylation was originally believed to 
be irreversible until the discovery of Lysine 
Specific Demethylase 1 (LSD1), also known as 
KDM1A [8]. Since 2004, a total of 15 lysine 
demethylases have been discovered [35], and 
have been separated into 2 families: the LSD 
family consisting of the amine-oxidase related 
enzymes LSD1 and LSD2, and the Jumonji 
C-terminal (JMJC) domain containing family 
[36, 37]. 

LSD1 converts mono- and di-methylated H3K4 
into unmethylated H3K4 [38]. The catalytic 
mechanism of LSD family demethylases 
requires a lone electron pair on the lysine 
ε-nitrogen atom, meaning it cannot demethyl-
ate tri-methylated lysines [39]. LSD1 has been 
shown to require the removal of acetylated 
lysine residues on histone 3 before H3K4me2 
demethylation can efficiently occur, due to 
LSD1 being a part of a complex that includes 
histone deacetylases [40, 41].

The JMJC protein domain has been found in 31 
human proteins with 17 of these demonstrat-
ing demethylase activity [42]. The enzymatic 
mechanism of JMJC demethylases involves two 
cofactors, Fe(II) and 2-oxoglutarate binding to 
the JMJC domain and reacting with dioxygen  
to form an active oxoferryl intermediate that 
hydroxylates the ζ-methyl groups of the methyl-
ated lysine substrate [43]. This results in an 
unstable lysyl hemiaminal that breaks down  
to release methyl groups from nitrogen. This 
mechanism allows the mono-, di- and tri-meth-
ylation of lysine. Currently there are no known 
histone lysine demethylases that target H4K20 
and H3K79 methyl marks.

The histone H3K79 methylatransferase: Dis-
ruptor of telomeric silencing 1-like (DOT1L) 

Disruptor of telomeric silencing 1 (DOT1) was 
first identified through a genetic screen for pro-
teins whose over-expression would lead to 
impaired telomeric silencing in yeast [44]. The 
DOT1 homolog gene, DOT1-like (DOT1L), has 
been found in a range of species, including dro-
sophila [45], protozoa [46] and mammals [47] 
with mouse and human versions of DOT1L 
sharing an 88% similarity at the amino acid 
level [48, 49]. 

DOT1L is the only known histone methyltrans-
ferase that targets the histone H3 lysine 79 
(H3K79) position, located on the nucleosome 
surface instead of the N-terminal tail where epi-
genetic modifications normally occur [48, 49]. 
It adds methyl groups in a non-progressive 
manner, requiring DOT1L to dissociate and 
reassociate to H3K79 as it adds methyl groups 
to generate mono-methylation (H3K79me), di-
methylation (H3K79me2) and tri-methylation 
(H3K79me3) (Figure 1A).

Instead of a SET domain, DOT1L has an AdoMet 
binding motif similar to arginine and DNA meth-
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yltransferases [50]. It is currently the only 
known non-SET histone methyltransferase pro-
tein [48, 49]. This makes DOT1L a key target for 
specific therapeutic treatments, with several 
small molecular inhibitors developed and one 
currently in clinical trials [51-53] (Figure 1B).

Study of the crystal structure of DOT1L has 
shown that the AdoMet binding pocket must  
be near a lysine binding channel and the 
C-terminus of the catalytic domain in order for 
nucleosome binding and enzymatic activity to 

occur [48]. This active site of DOT1L closely 
resembles catechol-O-methyltransferases and 
L-isoaspartyl methyltransferases, which are 
highly conserved in eukaryotic organisms [48]. 

Regulatory functions of DOT1L in gene tran-
scription, somatic reprogramming, cell cycle 
regulation and development

The distribution of all three forms of H3K79 
methylation on human histones has been stud-
ied using mass spectrometry, demonstrating 

Figure 1. Chemical structures of DOT1L inhibitors. A. DOT1L catalyses histone H3K79 methylation by transferring 
a methyl group from its substrate S-adenosyl-L-methionine (SAM) to the amino group of a lysine residue on the 
histone. A methylated H3K79 residue and S-adeno-L-homocysteine (SAH) are produced, and DOT1L then dissoci-
ates. Additional methyl groups are added in a sequential and similar manner. B. Small molecular DOT1L inhibitors: 
EPZ004777, EPZ5676, SGC0946 and SYC-522. All are based on SAH backbone and target the SAM binding pocket 
of DOT1L. 
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that H3K79me is the most abundant and cor-
relates with the fraction of histone H3 modified 
by acetylation [54]. This suggests H3K79 meth-
ylation enrichment at active gene transcription 
sites. Further studies focusing on individual 
genes in mammalian cells have correlated 
H3K79me2 with transcriptional activation [55, 
56]. Subsequent quantitative-chromatin immu-
noprecipitation (q-ChIP) studies of H3K79 
methylation across the human genome reveal 
that H3K79me3 is present at higher levels in 
silent gene regions in comparison to active 
regions, linking it to gene repression [17]. This 
demonstrates the complex regulatory effects 
of DOT1L on a wide range of functions in 
eukaryotic organisms, with H3K79me and 
H3K79me2 associated with active gene tran-
scription and H3K79me3 with gene repression 
in human cells.

DOT1L inhibition may enhance reprogramming 
in a broad range of cell types by facilitating the 
silencing of lineage-specific programs of gene 
expression. Inhibition of DOT1L by shRNA or 
small molecule inhibitors accelerates repro-
gramming, significantly increasing the yield of 
pluripotent stem cell colonies, and substitutes 
for KLF4 and c-Myc [57]. Genome wide analysis 
of H3K79me2 distribution reveals that DOT1L 
inhibition accelerates reprogramming due to 
loss of H3K79me2 among genes fated to be 
repressed in the pluripotent state [57, 58].

Methylation of H3K79, mediated by DOT1 and 
DOT1L, has been implicated in transcriptional 
elongation and cell cycle regulation. Nearly 
90% of histone H3 in Saccharomyces cerevisi-
ae (S. cerevisiae) bears H3K79me, H3K79me2 
or H3K79me3. The level of H3K79me2 fluctu-
ates between different stages of the cell cycle 
in S. cerevisiae, with a low level of H3K79me2 
at the G1 phase, gradually increasing at the S 
phase and peaking at the G2/M phase, while 
H3K79me3 remains constant throughout the 
cell cycle [59]. S. cerevisiae mutants arrested 
at G1 and G2/M phases showed increased 
H3K79me3 levels, demonstrating that H3K79 
methylation levels increase progressively over 
time in arrested cells [60]. 

H3K79me2 associates with gene promoter and 
coding regions during transcriptional activation 
of hepatic genes in G0/G1 enriched human liver 
carcinoma cells [61]. The mechanism respon-
sible for targeted DOT1L binding and conse-
quent H3K79 methylation of actively tran-

scribed genes involves DOT1L binding to the 
phosphorylated C-terminal domain of actively 
transcribing RNA polymerase II (RNAP II) [62]. 
Similarly human liver carcinoma cells arrested 
at the G2/M phases have increased H3K79 
methylation levels compared to G0/G1 enriched 
cells, showing that this methylation mark is 
generated independently of gene transcription 
at the S phase [61].

H3K79 has been shown to control sexual dif-
ferentiation in silk worms (Bombyx mori), with 
higher H3K79me2 levels on the insulin-like 
growth factor II mRNA-binding protein (Imp) 
gene promoter in males than females [63]. 
RNAi-mediated depletion of DOT1L results in a 
total abolishment of male-specific Imp, showing 
H3K79 methylation regulates sex-specific splic-
ing of Imp mRNA [63]. 

H3K79 methylation levels in Drosophila co- 
rrelate to transcriptional activity [55]. The 
Drosophila ortholog of DOT1, grappa (gpp), has 
been identified as a dominant suppressor  
of pair-dependant silencing, necessary for t- 
he maintenance phase of Bithorax complex 
expression [64]. H3K79 methylation expres-
sion during embryogenesis is conserved in 
Drosophila, mouse, rat and human spermatids 
and also independent of H3K4 and H3K9 meth-
ylation [65]. During chromatin reorganisation in 
spermatids, H3K79 methylation is accom- 
panied by H4 hyperacetylation and may be a 
prerequisite for proper histone to protamine 
transition [66]. 

DOT1L serves further developmental roles in a 
wide range of species. It is directly regulated 
during tadpole development in the model sys-
tem Xenopus tropicalis by thyroid hormone 
receptor, which binds to a thyroid hormone 
response element in the DOT1L gene promoter 
region [67]. Embryos treated with DOT1L  
specific transcription activator-like effector 
nuclease show low H3K79 methylation and 
experience growth difficulties as tadpoles, ulti-
mately leading to tadpole mortality [68].

DOT1L has been shown as a crucial regulator of 
early mammalian haematopoiesis by regulating 
the steady state levels of GATA2, a growth fac-
tor essential for early erythropoiesis [69], and 
PU.1, a transcription factor that inhibits eryth-
ropoiesis and promotes myelopoiesis [70]. 
DOT1L knockout mice display reduced GATA2 
and increased PU.1 levels and early embryonic 
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death due to anaemia, indicating that DOT1L is 
essential for embryonic development and pre-
natal haematopoiesis [71]. Conditional DOT1L 
targeting strategies show DOT1L also playing a 
role in adult haematopoiesis maintenance, with 
DOT1L deletion in mice resulting in pancytope-
nia and failure of hematopoietic homeostasis 
[72, 73]. Taken together, these findings demon-
strate that DOT1L plays a critical regulatory role 
in gene transcription, somatic reprogramming, 
cell cycle, development and haematopoiesis, 
via H3K79 methylation.

The role of DOT1L in DNA damage response

DOT1 was identified in a screen of radiation 
sensitive yeast mutants for DNA damage 
checkpoint defects, with DOT1 yeast mutants 
exposed to ionizing radiation becoming defec-
tive at the G1 and intra-S phase checkpoint 
[74]. Checkpoint mediated arrest at the pachy-
tene stage in dmc1 and zip1 S. cerevisiae 
mutants was also shown to be DOT1-dependent, 
with loss of DOT1 leading to continued meiosis 
and the generation of unviable cells [75]. 

In the human osteosarcoma cell line U2OS, in 
vitro experiments established that the double-
stranded DNA break repair protein 53BP1 
bound most efficiently to H3K20me2 [76]. This 
was confirmed using a stable DOT1L knock-
down model system, which showed that H3K79 
methylation was not critical for 53BP1 recruit-
ment to DNA damage sites [77]. However, 
H3K79me2 was shown to be required in an 
alternate pathway of 53BP1 recruitment in 
response to DNA damage during the G1 and 
G2/M cell cycle phases, when H3K20me2 lev-
els dropped [78]. In addition, suppression of 
DOT1L inhibited recruitment of 53BP1 to sites 
of DNA damage in 293T cells [79]. Thus both 
H3K79 and H3K20 methylation are capable  
of 53BP1 recruitment in response to DNA dam-
age repair, with each methylation covering dif-
ferent stages of the cell cycle. 

In mouse embryonic fibroblast cells treated 
with UV, DOT1L reduction leads to UV hypersen-
sitivity and reduced recovery of transcription 
initiation. DOT1L was found to promote an open 
chromatin structure to reactivate RNA Pol 
II-mediated transcription after DNA damage 
and was not involved in the nuclear excision 
repair pathway [80]. In addition, DOT1 was also 
shown to be required for cell cycle arrest in 

response to double stranded DNA breaks [75]. 
Thus, DOT1L-mediated H3K79 methylation may 
play a critical role in DNA damage signalling.

DOT1L and mixed lineage leukaemia

In humans, DOT1L is involved in the oncoge- 
nesis of several leukaemia subtypes, mostly 
characterised by chromosomal translocations 
involving the mixed lineage leukaemia (MLL) 
gene. MLL chromosomal translocations involv-
ing the cytogenetic band 11q23 produce a 
wide array of fusion proteins associated with 
Acute Lymophoblastic Leukaemia (ALL), Acute 
Myeloid Leukaemia (AML) and Mixed Lineage 
Leukaemia [81-83].

DOT1L has been found in the Elongation 
Assisting Proteins (EAP) complex along with 
RNA PII, factors AF4, AF6, AF9, AF10 or ENL 
[84-87], all known to be involved in chromo-
somal translocation-induced fusion with the 
MLL protein. DOT1L and AF10 have been  
isolated from yeast and mammalian two-hybrid 
assays as binding partners of ENL, which is a 
MLL fusion partner with transactivation abili-
ties and known to associate with AF4 [88, 89]. 
AF4 stimulates kinase elongation by P-TEFb 
and interacts with AF9 and AF10 to recruit 
DOT1L to the Pol II elongation complex at ecto-
pic loci, resulting in aberrant gene expression 
and MLL leukaemogenesis [84, 90]. The MLL-
AF6 fusion protein requires H3K79 methylation 
for the maintenance of MLL-AF6 target onco-
genic gene expression, with gene expression 
analysis and ChIP-sequencing finding high lev-
els of H3K79me2 at MLL target gene promot-
ers [87]. Abnormally high levels of H3K79 
methylation on MLL target gene promoters in 
MLL leukaemia cells are indicative of aberrant 
DOT1L activity in these leukaemia cells due to 
MLL fusion oncoproteins recruiting DOT1L, 
causing overexpression of MLL target genes 
[91]. This has further been shown with induc-
ible expression of the MLL-ENL fusion gene 
activating H3K79me2 on MLL target gene  
promoters, while inhibiting DOT1L binding leads  
to the MLL-ENL fusion gene losing its trans-
forming ability [89]. 

A notable family of genes dis-regulated in leu-
kaemia is the homeobox (HOX) gene family, 
which is highly expressed in multipotent hae-
matopoietic stem cells (HSCs) but down-regu-
lated once the HSCs have become differentiat-
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ed [92, 93]. Epigenetic regulation of HOX loci is 
modulated by the MLL protein which introduces 
the H3K4me3 histone mark, resulting in HOX 
transcriptional activation [94]. DOT1L-AF10 
interaction activates HOXA9 gene transcription 
and plays an important part in MLL-AF10-
mediated leukaemogenesis, with AF10 being a 

DOT1L cofactor [95]. DOT1L also contributes  
to clathrin assembly lymphoid myeloid leukae-
mia protein (CALM)-AF10-mediated leukaemic 
transformation by preventing nuclear export of 
CALM-AF10 and by up-regulating HOXA5 gene 
expression through H3K79 methylation [96]. 
Consequently inhibiting DOT1L results in sup-

Figure 2. Model of possible MLL-AF9 and DOT1L-mediated gene transcription mechanism in MLL-driven leukae-
mia. A. SUV39H1 and SIRT1 increase H3K9 methylation and decrease H3K9 acetylation, preventing MLL-AF9 and 
Elongation Assisting Proteins (EAP) complex binding to gene promoters. B. DOT1L inhibits SIRT1 and SUV39H1 
chromatin localization, thereby maintaining an open chromatin state with elevated H3K9 acetylation and H3K79 
methylation and minimal H3K9 methylation at MLL fusion protein target gene promoters. MLL-AF9 forms a protein 
complex with DOT1L, recognises elevated H3K9 acetylation via its YEATS domain, and recruits the EAP complex 
containing RNA Pol II and other transcription factors at MLL fusion protein target gene promoters, leading to tran-
scriptional activation.
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pression of MLL-AF10 and CALM–AF10 medi-
ated transformation by down-regulating leukae-
mogenic genes such as HOXA and Meis1 [97]. 

H3K79 methylation by DOT1L is also crucial for 
the expression of critical MLL-AF4 target onco-
genes such as HOXA in human MLL-AF4 leukae-
mia cells [85]. Experiments with conditional 
DOT1L knockout mice have found that H3K- 
79me2 drives MLL-AF9 fusion gene-mediated 
leukaemogenesis, and DOT1L is required for 
up-regulation of HOXA and Meis1 gene expres-
sion and consequent initiation and mainte-
nance of MLL-AF9-induced leukaemogenesis 
[86]. However, HOXA9/Meis1 and E2A-HLF MLL 
cell lines do not require DOT1L for oncogenic 
transformation [72], illustrating a crucial role 
for DOT1L in driving leukaemogenesis with spe-
cific MLL translocation oncogenes. 

The mechanisms underlying DOT1L interaction 
with MLL-fusion proteins are still unclear, but 
studies have focused on identifying DOT1L pro-
tein binding sites. A 10 amino acid region of 
human DOT1L (865-874) has been identified as 
the AF9/ENL binding site, with four conserved 
hydrophobic residues within the binding site 
being shown to be essential for interactions 
with the C-terminal binding domain of AF9/ENL 
[98]. DOT1L binding to MLL-AF9 has been 
shown at three sites by nuclear magnetic reso-
nance. Structure-guided point mutations of 
these binding sites lead to a graded reduction 
in DOT1L recruitment to MLL-AF9, with differen-
tial loss of H3K79me2 and H3K79me3 at MLL-
AF9 target genes [99]. 

The YEATS domain of AF9 recognises H3K9 
acetylation, providing a link between elevated 
H3K9 acetylation and DOT1L recruitment to 
target gene promoters [100]. Furthermore 
DOT1L inhibits chromatin localization of a 
repressive complex composed of the histone 
H3 deacetylase SIRT1 and the H3K9 methyl-
transferase SUV39H1, thus maintaining an 
open chromatin state with elevated H3K9 acet-
ylation and H3K79 methylation and minimal 
H3K9 methylation at MLL fusion target gene 
promoters (Figure 2) [101]. 

DOT1L in other cancers 

The complex regulatory role of DOT1L in MLL-
driven leukaemia and physiologically normal 
eukaryotic organisms has led to interest in its 
possible function in various other cancer types. 
RNAi-mediated depletion of DOT1L in A549 and 
NCI-H1299 lung cancer cells resulted in c- 

hromosomal mis-segregation, cell-cycle arrest  
at the G1 phase and senescence [102]. 
Overexpression of DOT1L reversed these RNAi-
mediated phenotype changes in lung cancer 
cells.

DOT1L increased the tumorigenic potential of 
colorectal cancer cells by inducing NANOG, 
SOX2 and Pou5F1 gene expression [103]. High 
DOT1L gene expression and consequently 
increased H3K79me2 levels are predictors of 
poor patient survival [103], indicating DOT1L 
having a tumorigenic role in colorectal cancer.

DOT1L has also been recently linked to breast 
cancer with a study of a genomic database of 
over 1000 patient samples showing that higher 
levels of DOT1L expression correlated with 
breast cancer compared to normal breast tis-
sues [104]. High DOT1L levels in breast cancer 
tissues correlated with approximately 20 pro-
proliferative genes from the PAM50 gene set 
[104]. DOT1L interaction with c-Myc-p300, has 
been suggested to be critical for promoting 
EMT/CSC leading to an aggressive phenotype 
in breast cancer [105].

Chromatin immunoprecipitation assays have 
linked H3K4 and H3K79 methylation and H3 
acetylation to the ability of the c-Myc transcrip-
tion factor to recognise and bind to target gene 
promoters [106]. H3K4me2, H3K4me3 and 
H3K79me2 are generally associated with tran-
scription machinery and these methylation 
marks precede and are independent of c-Myc 
binding at target gene promoters [107]. In con-
trast, H3K79 methylation has been shown to 
be non-essential for the maintenance or activa-
tion of Wnt pathway target gene expression in 
human colon adenocarcinoma cell lines, with 
H3K79 methylation showing no elevation in 
comparison to normal colon tissue [108].

Thus H3K79 methylation is a critical histone 
modification in a range of cancer types. The 
dynamic interplays among different chromatin 
post-transcription modifications control gene 
expression, and provide novel opportunities for 
targeted combination therapies in multiple can-
cer types.

DOT1L inhibitors 

Molecular targeting of specific histone methyl-
transferase is emerging as a new direction for 
cancer therapy. Of the known histone methyl-
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transferase enzymes, DOT1L is a promising  
target due to it being the only known H3K79 
histone methyltransferase, its unique non-SET 
catalytic domain and its role in promoting and 
maintaining MLL leukaemogenesis [48, 49]. 

The first DOT1L specific small molecular inhibi-
tor was EPZ004777, designed by Epizyme using 
a traditional ligand-based approach based  
on the DOT1L substrate SAM and the product 
SAH [51]. EPZ004777 displayed specificity 
against DOT1L with little reactivity against a 
panel of eight other histone methyltransferas-
es. Modifications to EPZ00477 lead to the syn-
thesis of EPZ5676 [52] and SGC0946 (Figure 
1B) [109]. 

SGC0946 features an additional bromine atom 
at position 7 targeting a hydrophobic cleft pres-
ent in DOT1L to improve the DOT1L inhibitor’s 
binding affinity [109]. Another novel DOT1L 
inhibitor, SYC-522, was synthesized based on 
the structure of SAH with additional urea group, 
and showed specificity for DOT1L when tested 
against three representative histone methy-
transferases: PRMT1, PRMT4 and SUV39H1 
[110]. These four DOT1L specific small molecu-
lar inhibitors are designed to occupy the SAM 
binding pocket, inducing DOT1L conformational 
changes and leading to the opening of a hydro-
phobic pocket outside of the SAM binding 
domain [52].  

Anticancer efficacy of DOT1L inhibitors 

The anticancer efficacy of allosteric DOT1L 
inhibitors has been tested in vitro and in vivo. 
The first reported DOT1L inhibitor, EPZ004777, 
demonstrated an IC50 of 400 ± 100 pM to inhib-
it DOT1L enzymatic activity in a biochemical 
radionucleotide assay [51]. Treatment with 
EPZ004777 caused apoptosis in MLL-rearrang- 
ed leukaemia cells in vitro and blocked leukae-
mia progression in mice by suppressing the 
expression of HOXA cluster genes and Meis1 
[51]. MLL-AF6 transformed mouse bone mar-
row cells also demonstrated a dose-dependent 
reduction in H3K79me2 and a reduction in cell 
number when treated with 10 µM EPZ004777 
for 10 days [87]. DOT1L inhibition reduced the 
number of MLL-AF6 transformed cells at the 
S-phase, and increased apoptotic cell death 
[87]. In vivo administration of EPZ004777 by 
subcutaneously implanted osmotic pumps over 
14 days resulted in a dose-dependent increase 
in the survival of mice xenografted with MV4-11 

leukemia cells [51]. Pre-treatment of mice with 
EPZ004777 also decreased the in vivo spleen-
colony-forming ability of MLL-AF10/CALM-AF10 
transformed bone marrow cells [51]. 

EPZ5676 demonstrated a superior enzyme 
inhibition Ki value of ≤ 0.08 Nm compared to 
EPZ004777. EPZ5676 had an IC50 of 3 nM and 
5 nM in MV4-11 and HL60 leukaemia cells, 
respectively [52]. It demonstrated synergistic 
anticancer effects when used in combination 
with cytarabine and daunorubicin to treat 
MOLM-13 and MV4-11 MLL-rearrangement leu-
kaemia cells lines [111]. Continuous intrave-
nous treatment of rats xenografted with MV4-
11 cells with EPZ5676 for 21 days, leaded to 
dose-dependent leukemia regression with a 70 
mg/kg dose leading to complete regression 
[52].

SGC0946 showed an IC50 of 8.8 ± 1.6 nM in 
reducing H3K79 methylation in cells, repre-
senting a significant improvement over EPZ- 
004777, which exhibited an IC50 of 84 ± 20 nM 
[109]. Treatment of MLL-rearranged MV4-11 
and THP1 leukemia cells with the DOT1L inhibi-
tor SYC-522 led to cell cycle arrest and cell dif-
ferentiation, and treatment of primary MLL-
rearranged AML cells resulted in up to 50% 
decrease in colony formation and promotion of 
monocytic differentiation [110]. SYC-522 was 
also tested in combination with existing chemo-
therapeutics: mitoxantrone, etoposide or cyta-
rabine. Pretreatment with SYC-522 sensitized 
primary MLL-rearranged leukaemia cells to 
treatment with all three chemotherapy agents 
[112]. In addition, combination therapy with the 
SIRT1 activator SRT1720 and the DOT1L inhibi-
tor EPZ004777 demonstrated enhanced anti-
proliferative activity against MLL-rearranged 
leukemia cells by supressing HOXA7 and Meis1 
in vivo [101]. DOT1L inhibitors have also dem-
onstrated anticancer effects against solid 
tumor cells. SYC-522 and EPZ004777 induced 
differentiation and inhibited proliferation, self-
renewal and metastatic potential in a range of 
DOT1L overexpressing breast cancer cells 
[104]. 

Currently all reported DOT1L inhibitors have the 
common substructure of adenosine, making 
them competitive to the DOT1L enzyme sub-
strate SAM and resulting in overall poor phar-
macokinetic properties [51, 53]. This indicates 
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that improvements in the metabolic stability of 
DOT1L inhibitors are required before their use 
for human patient treatment. 

Conclusions

Epigenetic modifications in cells play a major 
role in regulating the expression of genes 
important for development, haematopoiesis 
and cancer. Histone H3K79 methylation medi-
ated solely by DOT1L is involved in somatic 
reprogramming, cell cycle progression, DNA 
damage response and tumorigenesis. Aberrant 
H3K79 methylation is associated with various 
types of aggressive MLL fusion gene-driven 
leukaemia. P-TEFb, ENL, AF4, AF6 AF9 and 
AF10 proteins have all been shown to be 
involved in the recruitment of DOT1L to MLL tar-
get gene promoters. H3K79me2 has been 
shown to be critical to MLL target gene expres-
sion via maintenance of open chromatin states 
around MLL target genes, with loss of 
H3K79me2 leading to loss of tumorigenicity in 
MLL-driven leukaemia. In addition, DOT1L dis-
regulation has been linked to poor patient prog-
nosis in lung, colorectal and breast cancers. 
These observations raise the possibility of 
DOT1L playing a major role in other forms of 
cancer and will be a subject for future inquiry.

The unique structural features of DOT1L have 
made it an emerging drug target with multiple 
allosteric small molecular inhibitors, based on 
the SAH structure showing selective inhibitory 
effects and low IC50 concentrations in vitro. 
Further chemical modifications to the first small 
molecular DOT1L inhibitor, EPZ004777, have 
led to the generation of EPZ5676 with improve-
ments in metabolic stability and anticancer effi-
cacy. These small molecular DOT1L inhibitors 
have shown synergy when used in combination 
with existing chemotherapeutics. Importantly, 
EPZ5676 is currently in Phase 1 clinical trials in 
leukemia patients (NCT02141828).

A limiting factor in DOT1L inhibitor discovery 
has been the complex biochemical assays  
necessary to determine loss of H3K79 methyl-
ation. Two new assays involving nanoparticle 
proximity and fluorescence polarisation res- 
pectively have been created for future DOT1L 
inhibitor screening and lead optimisation [113].

An alternative strategy for targeting DOT1L in 
MLL would be to target the DOT1L binding sites 
of the MLL-fusion proteins [98]. Targeting these 
MLL-AF9 and AF9/ENL binding sites in DOT1L 
could potentially result in fewer adverse effects 

than the conventional approach of targeting 
DOT1L enzymatic activity. Inhibitors targeting 
these binding sites could also have improved 
pharmacokinetic properties compared to exist-
ing DOT1L inhibitors based on SAH. Thus future 
DOT1L inhibitors have the potential to deliver 
better patient outcomes in treating MLL leuke-
mia and potentially other forms of cancers 
where H3K79 methylation dis-regulation is 
present.
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