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Abstract: Since its discovery in 1992, the small, 10.4 kDa calcium-binding protein S100P has gained the atten-
tion of researchers from different scientific fields due to its potential roles in both healthy and neoplastic tissues. 
Although not ubiquitously expressed, in tissues where it is present, S100P is associated with distinct changes in 
cellular behaviour. In this review we have summarized the evolutionary history of S100P, its expression and involve-
ment in implantation and human embryonic development, as well as important functions in normal tissue and 
cancer. Finally, we have demonstrated its pivotal role as a potential diagnostic and therapeutic target, which opens 
promising avenues for further fruitful research on S100P.
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Introduction

S100P is a member of the large family of S100 
calcium-binding proteins that mediate Ca2+ 
dependent signal transduction pathways [1, 2]. 
It was originally isolated from the placenta, 
(which is reflected in its name “P”) by Becker et 
al. in 1992 [3, 4]. S100P is also relatively novel 
in evolutionary terms, as it is present only in  
the genomes of vertebrate species. The expres-
sion of this protein has been observed during 
the rhythmic hormonal fluctuations within the 
uterine wall, where it may have close associa-
tion with embryonic implantation, as well as the 
developing embryo, and plays a functional role 
in a number of adult human tissues. However, a 
majority of the published reports describe roles 
of S100P in diverse human cancers, where it is 
increasingly recognized as a potential diagnos-
tic and therapeutic target.

Here we present a comprehensive review of  
the multitude of S100P functions, which are 
implicated in almost all aspects of cellular 
behavior.

Ancestral origin

The S100 family (called so due to their solubility 
in 100% ammonium sulphate at neutral pH) of 

calcium-binding proteins comprises a large 
number of proteins with a high degree of struc-
tural similarity. Most have shown cell and tissue 
specific expression, however, some functional 
redundancy is also possible. Since their discov-
ery in 1965 these proteins have been implicat-
ed in a whole host of cellular functions, both 
intracellularly and as secreted molecules [5, 6].

S100s are considered relatively ‘young’ in evo-
lutionary terms, as they are present only in ver-
tebrate species [7]. Over 20 S100 proteins 
have been identified, but the number might still 
increase with the rapid accumulation of novel 
genomic sequences of additional vertebrate 
species. In the human genome, 16 S100 genes 
(S100A1-A16) cluster in the human epidermal 
differentiation complex on chromosome 1q21 
[8], while S100B, S100G, S100Z and S100P 
are present on separate chromosomes [9]. In 
humans, S100P gene maps on the 4th chromo-
some (4p16), with its homologs being found in 
the respective chromosomal locations in chim-
panzee, dog, Norwegian rat, and opossum. 
Interestingly, despite being present in a wide 
number of mammals, including all primates 
with available genomic sequences, S100P is 
not expressed ubiquitously and the gene is 
missing in a number of species, including major-
ity of rodents [9]. This can be due to either 
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methodological issues such as incomplete 
genome sequencing e.g. in the cow and the 

fish, or due to the loss of the corresponding 
genome sequences during speciation.

Figure 1. S100P expression during embryonic implantation. During the implantation of the human embryo, S100P 
expression is closely correlated with the rhythmic hormonal changes in the endometrium, particularly with the lev-
els of progesterone (P4). When a developing blastocyst is implanted, S100P is expressed in both the trophoblastic 
layer of the embryo, as well as in the endometrium of the uterine wall. When implantation is not achieved, S100P 
expression in the endometrium returns to a basal level. The graph below the image shows a correlation between 
progesterone and S100P, and is represented in red and blue, respectively.
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S100P in implantation and human embryonic 
development

A receptive endometrium and viable blastocyst 
are the two necessary conditions for success-
ful implantation, continuation of progressive 
cell divisions and further development of a liv-
ing embryo [10, 11]. Interestingly, the rhythmic 
changes in receptivity of the uterine endome-
trium correlate with the rise of S100P levels  
in humans due to hormonal variation, especial-
ly with marked increase in progesterone (P4). 
During the implantation window, which lasts 
approximately four days, S100P expression 
surges to levels that are approximately 100 
times higher than in other phases of the men-
strual cycle [12-14]. This suggests that S100P 
is potentially a unique biomarker of a recept- 
ive endometrium. In addition, it was shown,  
at least in vitro, that expression of S100P also 
increases significantly in stromal cells after 
their co-culture with trophoblast cells [15, 16], 
which implies that S100P may also be involved 
in interactions at the maternal-fetal interface 
(Figure 1). Clearly, further exciting work to fully 
elucidate how S100P may encourage or even 
permit implantation is still awaited for.

In addition to this fundamental role, we have 
recently discovered that S100P is also ex- 
pressed in several tissues during embryonic 
development (Figure 2). This expression was 
first observed in embryos in Carnegie stage 17 
(CS17) onwards, initially in the urogenital sinus 
(Figures 2A and 2B), and persisted within the 
structure beyond CS23, as expression was ob- 
served in post conception week 10 (PCW10). 
The expression of S100P then extends continu-
ously across the epithelium both in the devel-
oping urethra and bladder (with stronger immu-
noreactivity observed in the bladder) (Figures 
2D and 2F), reaching into the lumen of the 
renal pelvis and to the developing glomerulus 
(Figures 2G, 2H and 2L). The embryos in CS19 
also showed S100P expression within the allan-
tois (Figure 2C), and in CS21 in the hepatic  
vein (data not shown). In addition to urogenital 
system, the S100P is also expressed within  
the developing gastrointestinal tract from CS17 
onwards, where it was observed in the stomach 
and the pylorus (Figure 2J and 2). This is also 
seen in the later stages, observed in PCW17 
and PCW19 (data not shown), again in the epi-
thelium of the stomach, and in the spleen. 
Further expression in embryonic development 
was also observed in the epithelium of the gall 

bladder from CS21 (Figure 2J and 2K), as well 
as in adrenal glands in CS21 onwards and 
spleen in PCW14.

S100P expression in adult tissues

Among the healthy tissues, the highest S100P 
transcript levels have been observed in the 
esophagus, particularly in the early stages  
of differentiation of esophageal epithelium. 
Moderate mRNA expression has been further 
seen in the stomach, duodenum and large 
intestine, as well as in the prostate, trachea, 
bone marrow and in the leukocytes [17]. At  
the protein level, the highest S100P levels  
were seen in the placenta and stomach [18]. 
Additionally, S100P was shown to increase for 
a brief period within the prostate during the 
teenage years, after which its levels decline in 
adults [19].

S100P in cancer

S100P expression has been found frequent- 
ly, and at high levels, in a variety of different 
tumor types [18]. Moreover, a wealth of ex- 
perimental data from both transcriptomic and 
proteomic analyses, as well as from the func-
tional assays utilizing S100P-overexpressing or 
silenced tumor cells both in vitro and in vivo 
have directly implicated S100P in cancer cell 
biology. Table 1 provides a comprehensive 
summary of major reports documenting S100P 
expression and role in various cancer types.

The expression of S100P is influenced by sev-
eral hormones and regulated by a number of 
transcription factors, and experimental obser-
vation has confirmed S100P up-regulation in 
the presence of androgens [20], SMAD, STAT/
CREB and SP/KLF [21, 22], as well as proges-
terone [23, 24] and retinoic acid [25]. BMP4 
has also been identified as a regulator of S100P 
expression in in vitro studies where a positive 
correlation was observed between the two pro-
teins [26]. Additionally, glucocorticoids have 
been observed to regulate a number of tran-
scripts, including S100P [27].

Interestingly, in metastatic and androgen 
refractory prostate cancer cells, a correlation 
between IL-6 and S100P expression has also 
been observed, and it has been postulated that 
IL-6 stimulates S100P expression [28]. Several 
of these S100P regulators are schematically 
illustrated in the left hand side of Figure 3, 
shaded in green.
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Figure 2. S100P expression in the human embryo. S100P is expressed in the right and left horns of the urogenital 
sinus (RUGS and LUGS), as well as in the bladder portion of the urogenital sinus (indicated by arrow) in CS17 (A, B), 
as well as in the allantois (C). In CS21 (D), S100P in the urethral portion of the urogenital sinus (E) shows stronger 
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immunoreactivity than in the bladder portion (F). In the kidney, expression of S100P is seen in the renal pelvis (G, 
H) as well as in the glomerulus (I) in PCW10. Further expression is seen in the gastrointestinal tract (J-L), including 
the gallbladder (indicated with arrow) (K) as well as the stomach and pylorus (I) in CS23.

Table 1. S100P in cancer
Basal cell carcinoma 
of the salivary gland

S100P is used for differentiating basal cell neoplasms from adenoid cystic carcinomas [93].

Breast Cancer S100P is one of the markers of cancer initiation, is expressed in ductal hyperplasia, in lesions with high-
risk of progression, in situ and invasive ductal carcinomas, and is associated with poor prognosis. Its 
expression correlates with ERBB2/Her2/neu, ER (estradiol) and P4 expression [94-102].

Cholagiocarcinoma S100P expression is a strong indicator of the early stages of cholangiocarcinoma with increased expres-
sion correlating with progression from low to high grade biliary intraepithelial neoplasia (BilIN) [103], 
and is a sensitive biomarker for detecting cholangicarcinoma [70].

Cervical cancer S100P is upregulated in all stages of cervical adenocarcinoma [104-107].
Colon cancer S100P is highly expressed in non-dysplastic tissue from ulcerative colitis patients with high-grade 

dysplasia [108], and may be used to distinguish flat adenoma from normal mucosa [109, 110]. The 
overexpression of S100P in colorectal cancer cells promotes metastasis [111], and acts as a potential 
prognostic biomarker [112].

Esophageal cancer S100P is downregulated in esophageal squamous cell carcinoma [113, 114].
Endometrial Cancer S100P expression is higher in endometrial cancer than in normal endometrium and increases with 

tumor grade [38].
Gastric cancer Immunohistochemical analysis of tissue microarray shows S100P expression in >75% of gastric can-

cers; its downregulation in gastric cancer cell lines leads to apoptosis and inhibition of colony-formation. 
In contrast, low expression of S100P is linked to poor patients’ outcome [115, 116].

Hepatocellular 
carcinoma

S100P is a novel prognostic factor in HCC that can predict survival in patients with advanced tumor 
stage or early recurrences [117, 118].

Lung cancer S100P is one of five genes found consistently deregulated in meta-analysis of 12 cDNA array studies. Its 
expression is observed in early stages of non-small cell lung cancer (NSCLC) and lung adenocarcinoma, 
and with S100A2 and trypsinogens is predictive of metastatic progression and poor survival in NSCLC 
[119-122].

Melanoma S100P, RAGE and ezrin are significantly higher in melanomas than in benign nevus pigmentosus, and 
metastatic melanoma in comparison to the primary tumor [123].

Oral cancer S100P is one of the salivary biomarkers in oral squamous carcinoma that can detect cancer recurrence 
in patients in remission [74, 124].

Ovarian cancer High expression of S100P is correlated with shorter overall survival after chemotherapy [125, 126]; con-
versely, this is also noted in clear cell adenocarcinoma of the ovary which express low levels of S100P 
[127].

Prostate cancer S100P is expressed in only 18.5% of prostate cancers, and its expression is significantly lower  in 
cancer than in normal prostate and benign prostate hyperplasia [11]. However, it is one of the highest 
expressed genes in the androgen – independent CWR22 prostate cancer xenografts [128, 129]. Ad-
ditionally, it correlates with metastatic progression of hormone refractory prostate cancer cells [130].

Pancreatic adeno-
carcinoma

S100P is expressed in the precursor lesions of pancreatic ductal adenocarcinoma (PDAC), as well as 
throughout all stages of PDAC development and progression, and is involved in growth and invasion of 
cancer cells [50, 131-134].

Mucinous cystic 
neoplasms

S100P is expressed in pancreatic mucinous cystic neoplasms (MCN) [59, 135].

Intraductal papillary 
mucinous tumors

Intraductal papillary mucinous tumors (IPMTs) in the pancreas are also expressing S100P [136, 137].

Urothelial cancer S100P is a diagnostic biomarker of urothelial cancer [138, 139], and acts as a potential marker for 
distinguishing urothelial from squamous differentiation [140].

Structure and function of S100P

Structurally, S100P belongs to a family of small 
dimeric members of the large EF-hand super-
family of calcium-binding proteins, although it 
has been shown to bind other divalent metal 
ions, like Mg2+, Cu2+ and Zn2+ [1, 2]. It is a 95 

amino acid residue protein, comprising two 
EF-hands, first one with the low affinity for cal-
cium binding and the second, canonical one, 
which binds calcium with high affinity. S100P 
monomers readily interact with one another 
with high affinity, and homodimer formation is 
deemed obligatory for S100P functions [29]. 
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Figure 3. S100P interactions. A summary of known S100P pathways within and outside of the cell is illustrated, starting with transcriptional regulators of S100P 
expression (green shading). The protein is capable of forming heterodimers (in brown) as well as homodimers (in orange), with most known interactions occurring 
with the latter. The intercellular interactions are divided into those associated with tumorigenesis (in yellow), regulation of migration, invasion and metastasis (red 
shading) and translocation into the nucleus (in grey). The extracellular interaction with RAGE is shown in blue. 
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Binding of calcium to the EF-binding sites  
opens the C-terminus of the S100P protein  
and enables the interactions with other pro-
teins [1, 3]. However, heterodimers of S100P 
with other S100s, e.g. S100A1 have also been 
observed [30]. The differing interfaces bet- 
ween S100P homodimers and S100P/S100A1 
heterodimers could, through changing the con-
formation of the adjacent C-terminal region, 
potentially modulate the interaction of S100P 
with its target proteins, with important func-
tional repercussions. However, this needs to  
be further established [30].

S100P interacts, directly or indirectly, with a 
number of different proteins. Through these 
interactions, S100P integrates and regulates 
various signaling pathways with a number of 
important functional outputs that are schemat-
ically summarized in Figure 3.

S100P (and several other S100s) has previous-
ly been demonstrated to bind to tetratricopep-
tide repeat region (TPR) domains of proteins in 
a Ca2+-dependent manner. Recently, S100A2 
and S100P were shown to interact with a TPR 
containing U-box E3 ubiquitin ligase CHIP (‘C 
terminus of Hsc70- interacting protein’), result-
ing in inhibition of CHIP-mediated ubiquitina-
tion and proteasome degradation of Hsp70, 
Hsp90, HSF1, Smad1 and mutated p53 [31]. 
The importance of heat shock proteins not  
only in stress response but also in oncogenesis 
[32-34], Smad1 in TGF-β signaling, and multi-
faceted roles of p53, all testify to S100P as  
a powerful modifier of carcinogenesis involved 
in tumor cell proliferation, differentiation, apop-
tosis, invasion and metastasis.

The E3 ubiquitin ligase also regulates β-catenin 
degradation [35, 36]. β-catenin is a constituent 
part of a protein complex with E-cadherin and 
α-catenin that form the adherens junctions 
[37], which are necessary for the creation and 
maintenance of epithelial cell barriers and  
cell-cell adhesion; adherent junctions form a 
dynamic link to the actin cytoskeleton [37].

Increased S100P affects β-catenin in an addi-
tional way, through stimulation of its cytoplas-
mic to nuclear translocation (at least in endo-
metrial cancer cells) where β-catenin interacts 
with T-cell factor/lymphoid enhancing factor 
(TCF/LEF), resulting in increase in the expres-
sion of Cyclin D1 and c-myc. Both of these 

genes are critically involved in cellular proli- 
feration and differentiation [38, 39]. Similarly, 
S100P downregulation leads to a concomitant 
downregulation of Cyclin D1 and CDK2, result-
ing in suppressed cellular growth and increased 
apoptosis in hepatocellular carcinoma [40].

Finally, a ubiquitinylation complex comprising 
Siah-1, CacyBP/SIP and Skp1 proteins (CacyBP 
is a calcyclin i.e. S100A6-binding protein which 
binds several S100 proteins, including S100P), 
is involved in β-catenin degradation [41], sug-
gesting that several S100s, including S100P 
connects calcium homeostasis with protein 
ubiquitinylation and degradation [42].

S100P is also an important interacting partner 
of IQGAP1 [43], an ubiquitously expressed mul-
tidomain scaffolding protein involved in trans-
ducing signaling pathways downstream of vari-
ous cell surface receptors, such as receptor 
tyrosine kinases, G protein-coupled receptors 
and several integrins, with wide repercussions 
on regulation of actin cytoskeleton, microtu-
bule dynamics, and cell-cell contacts. This is 
particularly important in cancer, where IQGAP1 
is thought to contribute to the transformed cell 
phenotype by regulating signaling pathways 
involved in cell proliferation and transforma-
tion, weakening of cell : cell adhesion contacts, 
stimulation of cell motility and invasion [44]. 
Heil et al. have shown that after EGF stimula-
tion of HeLa cells, which increases intracellular 
Ca2+, S100P binds to IQGAP1 and interferes 
with its tyrosine phosphorylation. This impairs 
the B-Raf binding to IQGAP1, and through 
reducing the MEK1/2 intermediate, modulates 
MAPK signaling cascade. The interaction bet- 
ween S100P and IQGAP1 was shown to occur 
through the IQ domain of IQGAP1 and the first 
EF hand loop of S100P, rather than C-terminus, 
thus representing a new structural principle of 
interaction of S100P with the target protein 
[43, 45].

Ca2+-bound S100P is known to bind to and acti-
vate dormant ezrin, a multidomain regulatory 
protein that links cytoskeleton to plasma mem-
brane allowing its interaction with F-actin, 
which facilitated transendothelial migration  
of lung squamous carcinoma cells [46, 47]. 
Similarly, through interaction with cytoskeletal 
protein nonmuscle myosin II (NMIIA), increased 
levels of S100P reduced the number of FAS 
(focal adhesion sites), reducing thus adhesion 
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and increasing cell migration [48]. In addition, 
in lung cancer cells, S100P affects migration 
and invasion through interaction with integrin 
Alpha 7 (α7), which is mediated by FAK/AKT-
ZEB signaling [49]. In pancreatic cancer cells, 
S100P was also recently shown to interact with 
another binding partner, S100PBP, a protein 
with no homology to any characterized protein, 
and which, through regulation of cathepsin Z 
and integrin αvb5 modulates cell adhesion [50, 
51]. Furthermore, S100P overexpression was 
also shown to correlate with increased expres-
sion of another S100 family member, S100A6, 
as well as the aspartic protease cathepsin D, 
both of which are involved in migration and 
invasion of pancreatic adenocarcinoma cells 
[52].

Finally, S100P can act in an autocrine manner 
via Receptor for Activated Glycation End Pro- 
ducts (RAGE) to stimulate cell proliferation and 
survival via the NF-kB pathway [53, 54]. S100P 
(along with several other S100 proteins [55]) 
acts as initial activator of the pathway via 
NF-κB/Rel complexes that translocate to the 
nucleus and induce the expression of a large 
number of diverse target genes [56]. The 
S100P-RAGE interaction has recently been 
employed as a novel therapeutic strategy and 
will be further discussed in the Therapeutic 
section of this review.

S100P and diagnostics

Due to its expression in neoplastic lesions  
and absence in most healthy tissues, S100P 
has been evaluated as a potential biomarker 
for detection of several cancers, most com-
monly using immunohistochemistry approach-
es. Several studies have highlighted S100P as 
a marker of pancreatic adenocarcinoma (PDAC) 
as its expression increases as precursor lesions 
PanINs (pancreatic intraepithelial neoplasias) 
progress [50, 57]; moreover, S100P has been 
identified as a possible marker of intraductal 
papillary mucinous neoplasms (IPMNs) [58] as 
well as mucinous cystic neoplasms [59], addi-
tional potential precursor lesions for PDAC.  
As a member of a panel, e.g. with mesothelin 
and/or KOC, S100P showed potential in correct 
differentiation of true PDACs from borderline 
cases in cytological assessment of EUS ob- 
tained biopsies or surgical resections [60-62]. 
S100P, mesothelin and IMP3 have also been 
found as useful biomarkers in gallbladder ade-
nocarcinoma [63], as well as in extrahepatic 
bile duct carcinoma [64, 65].

In cholangiocarcinomas, S100P was proposed 
to be an effective diagnostic marker in combi-
nation with maspin, pVHL and insulin-like 
growth factor II mRNA-binding protein 3 in bile 
duct biopsies [66], in distinguishing adenocar-
cinoma from benign biliary epithelium on endo-
scopic bile duct biopsy specimens, as well  
as for distinguishing between cholangiolar- 
type intrahepatic from bile duct intrahepatic 
cholangiocarcinomas. Furthermore, bile levels 
of S100P were significantly higher in cholangio-
carcinoma patients compared to those with 
cholelithiasis [26, 67-70].

Interestingly, S100P has also been identified  
as potential non-invasive biomarker of oral 
squamous carcinoma in saliva [71-74]. Finally, 
S100P has been observed in patients with 
early stage breast cancer, and its expression 
has been associated with poor prognosis and 
survival [75]; particularly important is its poten-
tial value as a diagnostic marker of triple nega-
tive breast cancer [76].

S100P as a therapeutic target

Because of its established functional roles in 
cancer, S100P has been considered a valuable 
therapeutic target. Several attempts have been 
made to inhibit either S100P, its targets, or its 
interactions, of which one has gained much 
attention recently - the interaction between 
S100P and RAGE [77, 78]. In vitro attempts  
to inhibit this interaction was first achieved  
with cromolyn, and more successfully with its 
5-methyl analogue [79, 80], both of which bind 
to the C-domain of S100P, interfering thus with 
its binding to RAGE [81].

However, a recurring issue with cromolyn is 
lack of specificity for S100P as it binds to other 
S100 proteins, as well as its low biodistribution 
and bioavailability.

Alternative methods of inhibiting S100P, now 
intracellularly, have been conducted using anti-
sense mRNA retroviral transfection in colon 
[82], gastric [36], breast [83], and glioblastoma 
[84] cancer cell lines, and have resulted in a 
decrease of cellular motility and metastatic 
potential. Finally, anti-S100P antibodies have 
been tested both in vitro and in vivo and have 
shown promising results as both single agents 
and in combination with chemotherapeutic 
drugs, such as gemcitabine in pancreatic can-
cer [85].



The life and works of S100P - from conception to cancer

570 Am J Cancer Res 2016;6(2):562-576

S100P expression was found to be associated 
with cancer resistance to several chemothera-
peutic agents, and its silencing sensitized the 
cancer cells in vitro to doxorubicin [86], cispla-
tin [87] and oxaliplatin [88]. Furthermore, 
S100P has also been associated with drug 
resistance in gastric [89] and pancreatic can-
cers [90]. Therefore, blocking S100P function 
might also be expected to improve responses 
to other therapeutic treatments. However, this 
needs to be carefully assessed, as some con-
flicting reports exist, for example, in ovarian 
and gastric cancer cells, where, at least in vitro, 
overexpression of S100P led to sensitization of 
cancer cells to carboplatin and paclitaxel [91], 
and oxaliplatin, respectively [92].

Despite this, S100P appears to represent a 
potentially very effective anti-cancer target, at 
least for in some cancer types, and further 
development of anti-S100P specific therapies 
will likely prove to be a fruitful and productive 
field of investigation.

Conclusion

In this review, we have summarized the current 
knowledge on S100P with the addition of our 
own recent observations of S100P expression 
in human embryonic development.

Despite its relatively short evolutionary history, 
functions of S100P in vertebrates are vital, 
from involvement in the earliest steps of embry-
onic implantation and subsequent embryonic 
development to exerting the important roles in 
both healthy adult and cancer tissues. It is, 
however, for the latter, that S100P has gained 
most of its existing attention, as it can be 
potentially utilized as both a diagnostic/prog-
nostic marker and a promising therapeutic tar-
get. Since its roles have far-reaching cross-dis-
ciplinary implications, spanning from reproduc-
tive physiology and embryonic development to 
inflammation and oncology, studying S100P 
will thus continue to be an important and fruit-
ful research topic.
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