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Abstract: A polymorphic mutation in the acetaldehyde dehydrogenase 2 (ALDH2) gene has been epidemiologically 
linked to the high susceptibility to esophageal carcinogenesis for individuals with alcohol use disorders. Mice sub-
jected to alcohol drinking show increased oxidative stress and DNA adduct formation in esophageal epithelia where 
Aldh2 loss augments alcohol-induced genotoxic effects; however, it remains elusive as to how esophageal epithelial 
cells with dysfunctional Aldh2 cope with oxidative stress related to alcohol metabolism. Here, we investigated the 
role of autophagy in murine esophageal epithelial cells (keratinocytes) exposed to ethanol and acetaldehyde. We 
find that ethanol and acetaldehyde trigger oxidative stress via mitochondrial superoxide in esophageal keratino-
cytes. Aldh2-deficient cells appeared to be highly susceptible to ethanol- or acetaldehyde-mediated toxicity. Alcohol 
dehydrogenase-mediated acetaldehyde production was implicated in ethanol-induced cell injury in Aldh2 deficient 
cells as ethanol-induced oxidative stress and cell death was partially inhibited by 4-methylpyrazole. Acetaldehyde 
activated autophagy flux in esophageal keratinocytes where Aldh2 deficiency increased dependence on autophagy 
to cope with ethanol-induced acetaldehyde-mediated oxidative stress. Pharmacological inhibition of autophagy flux 
by chloroquine stabilized p62/SQSTM1, and increased basal and acetaldehyde-mediate oxidative stress in Aldh2 
deficient cells as documented in monolayer culture as well as single-cell derived three-dimensional esophageal 
organoids, recapitulating a physiological esophageal epithelial proliferation-differentiation gradient. Our innovative 
approach indicates, for the first time, that autophagy may provide cytoprotection to esophageal epithelial cells re-
sponding to oxidative stress that is induced by ethanol and its major metabolite acetaldehyde. Defining autophagy-
mediated cytoprotection against alcohol-induced genotoxicity in the context of Aldh2 deficiency, our study provides 
mechanistic insights into the tumor suppressor functions of ALDH2 and autophagy in alcohol-related esophageal 
carcinogenesis.
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Introduction

Alcohol consumption is a major environmental 
risk factor for esophageal squamous cell carci-
noma (ESCC), one of the deadliest forms of all 
human squamous cell carcinomas common 
worldwide [1-3]. Acetaldehyde is a potent car-
cinogen produced as a result of alcohol metab-
olism [4]. Specifically, acetaldehyde is generat-
ed via ethanol oxidation through the action of 

alcohol dehydrogenase (ADH) 1B and/or cyto-
chrome P450 2E1 (CYP2E1) enzymes present 
in the adult stomach and liver, the primary sites 
of first-pass metabolism. ADH1B is also ex- 
pressed in esophageal epithelia; however, the 
role of esophageal ADH1B in acetaldehyde pro-
duction and carcinogenesis remains elusive 
[5-7]. Additionally, mutagenic levels of acetalde-
hyde can be produced by oral microbiota in the 
saliva of individuals who consume alcohol bev-
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erages [8, 9]. Acetaldehyde facilitates forma-
tion of carcinogenic DNA adducts such as 
N2-ethylidene-2’-deoxyguanosine [10-12], ca- 
using acetaldehyde-mediated DNA damage le- 
sions in oral-esophageal mucosa [13]. The mi- 
tochondrial enzyme acetaldehyde dehydroge-
nase 2 (ALDH2) functions to detoxify acetalde-
hyde via an oxidation reaction that produces 
acetate and NADH, the latter of which facili-
tates ATP generation via mitochondrial respira-
tion. Reactive oxygen species (ROS) are gener-
ated as byproducts of respiration [14]. ROS are 
important for cell signaling; however, ROS lev-
els must be tightly regulated to prevent delete-
rious effects, including damage to intracellular 
components and cell death [15]. Thus, in- 
creased intake or reduced detoxification of 
acetaldehyde may promote oxidative stress 
and DNA damage.

Acetaldehyde accumulation due to reduced 
ALDH2 activity has been implicated in alcohol-
related carcinogenesis [1, 16, 17]. At least 8% 
of the entire world population, including ~40% 
of East Asians (Japanese, Chinese and Korean), 
is estimated to carry a functional ALDH2 sing- 
le nucleotide polymorphism (SNP) that delays 
acetaldehyde clearance [18]. This SNP is com-
monly found amongst individuals [18] who sh- 
ow significantly elevated blood, salivary and 
expiratory acetaldehyde levels following alcoh- 
ol consumption [19-21]. Interestingly, acetalde-
hyde may have organ-specific roles in carcino-
genesis since the ALDH2 SNP is more strongly 
associated with ESCC and head and neck can-
cers than other cancers arising in sites of alco-
hol absorption and metabolism such as the 
stomach, intestine and liver [22]. Alcohol drink-
ing induces esophageal ALDH2 expression and 
Aldh2 loss increases oxidative stress in murine 
esophageal epithelia [23]. Nevertheless, long-
term alcohol drinking alone fails to induce neo-
plastic changes in esophageal epithelia in mice 
[24]. Moreover, Aldh2-/- mice subjected to alco-
hol drinking show no histological neoplastic 
change in esophageal mucosa [13], suggesting 
that fail-safe and cytoprotective mechanisms 
may exist to avoid malignant transformation in 
esophageal epithelial cells (keratinocytes) 
exposed to oxidative stress induced by alcohol 
or acetaldehyde.

Autophagy (macroautophagy) is a cellular ho- 
meostatic and adaptive mechanism activated 
in response to physiologic stressors [25]. Au- 
tophagy is mediated by autophagic vesicles 
(AVs) that engulf dysfunctional intracellular 

components such as damaged mitochondria. 
Biogenesis of AVs involves multiple autophagy-
related gene products including microtubule-
associated protein 1 light chain 3 (LC3). In 
response to oxidative stress, LC3 undergoes 
proteolytic cleavage (LC3-I) [26] then lipidation 
(LC3-II), facilitating the protein’s incorporati- 
on into AVs. Subsequent AV-lysosome fusion 
allows degradation of autophagic cargo via 
lysosomal hydrolases. Autophagy may act as a 
tumor suppressor as autophagy-deficient mice 
are tumor prone to increased oxidative stress 
[27, 28]. Autophagy has also been implicated in 
alcohol-related human diseases such as car-
diomyopathies and hepatic steatosis [29, 30]. 
The role of autophagy in esophageal keratino-
cytes exposed to ethanol or acetaldehyde re- 
mains unknown. Herein, we investigate the 
influence of Aldh2 upon autophagy-mediated 
cytoprotection in non-transformed murine es- 
ophageal keratinocytes.

Materials and methods

Primary esophageal cell culture, treatment, 
retrovirus-mediated gene transduction and live 
cell imaging

Primary murine esophageal keratinocytes (pas-
sages 2-5) isolated from Aldh2-/- and control 
Aldh2+/+ mice were grown and subjected to tr- 
eatment with 100% ethanol (Decon Labs, King 
of Prussia, PA) or ≥99.5% acetaldehyde (Sigma-
Aldrich, St. Louis, MO) as described previously 
[23, 31]. To suppress alcohol dehydrogenase 
(ADH), cells were treated with 2 mM 4-methyl-
pyrazole (Sigma-Aldrich). Subconfluent cells 
were subjected to live cell imaging or other 
analyses with or without additional retrovirus-
mediated transduction of pBABE-puro mCher-
ry-EGFP-LC3B [32] (a gift from Jayanta Debnath; 
Addgene, Cambridge, MA; plasmid # 22418)  
as described previously [33]. Cells expressing 
mCherry-EGFP-LC3 were imaged using a Leica 
DM IRB inverted microscope (Leica Microsy- 
stems, Buffalo Grove, IL) and the Find Maxima 
feature in ImageJ (National Institutes of Heal- 
th) to determine mCherry-EGFP-LC3 puncta. At 
least 50 cells were counted for each condition.

Esophageal 3D organoid culture

Using 24-well plates, 5,000 cells were seeded 
per well in 50 µl Matrigel. After solidification, 
500 µl of DMEM/F12 supplemented with 1X 
Glutamax, 1X HEPES, 1X N2: Supplement, 1X 
B27 Supplement, 0.1 mM N-acetyl-L-cysteine 
(Sigma-Aldrich), 50 ng/ml mouse recombinant 
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epidermal growth factor (R&D Systems, Mi- 
nneapolis, MN), 2.0% Noggin/R-Spondin-con- 
ditioned media and 10 µM Y27632 (Tocris 
Biosciences, Bristol, UK) was added and rep- 
lenished every other day. Organoids were gro- 
wn for 7 days in growth media before addition 
of acetaldehyde and/or Chloroquine (Sigma-
Aldrich) for 2 days. Organoids were recovered 
by digesting MatrigelTM (BD Biosciences, San 
Jose, CA) with Dispase I (BD Biosciences, San 
Jose, CA; 1 U/ml) and fixed overnight in 4.0% 
paraformaldehyde. Specimens were embedded 
in 2.0% Bacto-Agar: 2.5% gelatin prior to paraf-
fin embedding.

Aldh2-knockout (Aldh2-/-) mouse tissues

Paraffin embedded esophageal tissues from 
Aldh2-/- and control Aldh2+/+ mice treated with 
or without 10% ethanol in drinking water for 8 
weeks (all male, beginning at the age of 6 
weeks) were described previously [23].

Immunoblot analysis

Western blotting was performed as describ- 
ed previously [34]. In brief, 50 μg of denatured 
protein was fractionated on a NuPAGE Bis- 
Tris 4-12% gel (Life Technologies, Grand Isla- 
nd, NY). Following electrotransfer, Immobilon-P 
membranes (EMD Millipore, Billerica, MA) were 
blocked with Dulbecco’s Phosphate-Buffered 
Saline (DPBS) containing 0.1% Tween-20 and 
5% milk, followed by overnight incubation wi- 
th the following primary antibodies: rabbit-anti 
p53 (1:1000, Vector Laboratories, Burlingame, 
CA), rabbit-anti phospho-H2A.X Serine139 (p- 
H2A.XSer139; 1:1000, Cell Signaling Technology, 
Danvers, MA), rabbit anti-LC3B (1:1000, Cell 
Signaling Technology), mouse-anti-p62 (1: 
1000, Sigma-Aldrich) and mouse anti-actin (1: 
10000, Sigma-Aldrich) at 4°C. Secondary anti-
bodies (Sigma-Aldrich) were used at 1:10000. 
Targeted proteins were visualized using a che-
miluminescence detection system (Amersham 
ECL or ECL Prime; GE Healthcare Life Sciences; 
Buckinghamshire, UK) and exposed to Blue Lite 
Autorad film (ISC-BioExpress, Kaysville, UT).

Flow cytometry

Flow cytometry was performed to determine 
AVs, ROS and apoptosis as described previous-
ly [34] using FACSCalibur or LSR II cytometers 
(BD Biosciences, Franklin Lakes, NJ) and FlowJo 
software (Tree Star, Ashland, OR) for cells sus-

pended in DPBS containing 1% bovine serum 
albumin (Sigma-Aldrich). AVs were determined 
with Cyto-ID® fluorescent dye (Enzo Life Sci- 
ences, Farmingdale, NY) by staining cells at 
1:1000 at 37°C for 30 min in 1:1 mixture of 
DPBS containing 1% bovine serum albumin 
(Sigma-Aldrich) and full keratinocyte SFM medi-
um (Life Technologies). ROS were determined 
with 2’,7’-dichlorodihydrofluorescein diacetate 
(DCF) and MitoSOX™ red mitochondrial su- 
peroxide indicator dyes (Life Technologies) as 
described previously [34, 35]. Apoptosis was 
determined using the Annexin-V-FLUOS kit (Ro- 
che, Basel, Switzerland) according the manu-
facturer’s instructions. Viability of cells was 
determined by DAPI (4’,6-diamidino-2-phenylin-
dole) (Life Technologies) staining.

Histology and immunohistochemistry

Hematoxylin and eosin (H&E) staining and 
immunohistochemistry (IHC) were performed 
and evaluated as described previously [36]. 
Sections were incubated with anti-cleaved LC3 
polyclonal antibody (1:250; Abgent, San Die- 
go, CA), or anti-phospho-Histone p-H2A.XSer139 
(20E3) monoclonal antibody (1:250; Cell Si- 
gnaling Technology, Danvers, MA) overnight at 
4°C. A pathologist (AKS) blind to molecular da- 
ta scored cleaved LC3 and phospho-Histone 
p-H2A.XSer139 stained specimens based on in- 
tensity and distribution. Intensity of cleaved 
LC3 staining was evaluated using the following 
criteria: Score 1, marginal to mild stain affect-
ing the nuclei of basal and parabasal layers; 
Score 2, moderate to intense nuclear staining 
and occasional cytosolic stain in most layers, 
including superficial layers in which nuclear 
staining was either absent or less intense than 
in basal and parabasal layers; Score 3, very 
intense nuclear stain in all layers together with 
obvious cytosolic stain with or without puncta. 
Cleaved LC3 labeling index is reported as per-
cent of stained cells in all epithelial layers. 
Cleaved LC3 score was calculated by multiply-
ing the values of intensity and the label index. 
Intensity of p-H2A.XSer139 was evaluated using 
the following criteria: Score 2, strong positive 
with brown staining completely obscuring nu- 
cleus; Score 1, weak positive with any lesser 
degree of brown staining appreciable in cell 
nucleus; Score 0, absent with no appreciable 
staining in cell nucleus. p-H2A.XSer139 labeling 
index is reported as percent of stained cells in 
the basal layer. p-H2A.XSer139 score was calcu-



ALDH2 and autophagic flux

784	 Am J Cancer Res 2016;6(4):781-796

lated by multiplying the values of intensity and 
the labeling index.

Statistical analyses

Data are presented as mean ± standard error. 
Student’s t test was used to compare two 
groups. P<0.05 was considered significant.

Results

Aldh2 influences cytotoxicity and oxidative 
stress in esophageal epithelial cells exposed 
to ethanol and acetaldehyde

Since esophageal mucosa is directly exposed 
to ethanol upon alcohol consumption, we first 
asked whether esophageal keratinocytes ha- 
ve the capacity to generate acetaldehyde in 
response to ethanol exposure. To this end, pri-

mary esophageal keratinocytes isolated from 
Aldh2+/+ and Aldh2-/- mice [31] were exposed to 
1.5% ethanol and evaluated for cell viability 
and oxidative stress. Within 48 hours, ethanol 
induced massive (>40%) cell death as deter-
mined by DAPI exclusion analysis in Aldh2-/-, but 
not Aldh2+/+ cells (Figure 1A). Moreover, flow 
cytometry for DCF, a general indicator of ROS, 
revealed that Aldh2-/- cells exhibit increased oxi-
dative stress under both basal conditions and 
in response to ethanol exposure when com-
pared to their Aldh2+/+ counterparts (Figure 
1B). These data suggest that ethanol may be 
directly metabolized by esophageal keratino-
cytes to promote acetaldehyde-mediated oxi-
dative stress and cell death in the absence of 
Aldh2. To determine how ethanol is metabo-
lized to cause cytotoxicity and oxidative stress 
in esophageal keratinocytes, we utilized the 
pharmacological ADH inhibitor 4-methylpyr-
azole (4 MP) to prevent ADH-mediated oxida-
tion of ethanol and generation of acetaldehyde. 
4MP did not significantly impact cell viability or 
oxidative stress in Aldh2+/+ cells responding to 
ethanol (Figure 1A, 1B). By contrast, ethanol-
induced ROS and cell death were suppressed 
in Aldh2-/- cells (Figure 1A, 1B), suggesting that 
ADH may play a role in ethanol metabolism by 
esophageal keratinocytes.

We next assessed how esophageal keratino-
cytes respond to acetaldehyde exposure in  
primary culture. While acetaldehyde-mediated 
cytotoxicity was anticipated, caspase 3 cleav-
age was undetectable by immunoblot analysis 
in Aldh2+/+ cells treated with acetaldehyde up to 
a concentration of 0.5 mM for 72 hours (Figure 
2A). While exposure to either 1.0 mM or 2.0 
mM acetaldehyde promoted caspase 3 cleav-
age in Aldh2+/+ cells, the extent of this induction 
was minimal with 1.0 mM acetaldehyde (Figure 
2A). Annexin-V/PI staining further revealed sig-
nificant induction of apoptosis in Aldh2+/+ cells 
72 hours following exposure to 1 mM acetalde-
hyde (Figure 2B). By contrast, Aldh2-/- cells 
exhibited higher apoptosis rates under basal 
conditions and in response to acetaldehyde, as 
exposure to 1 mM acetaldehyde induced apop-
tosis in 50% of Aldh2-/- cells within 72 hours 
(Figure 2B). Acetaldehyde-mediated cytotoxici-
ty in Aldh2-/- cells was indeed associated with 
elevated basal and induced levels of hydrogen 
peroxide and mitochondrial super oxide, as 

Figure 1. ALDH2 level determines ROS generation 
and cytotoxicity in esophageal epithelial cells ex-
posed to ethanol. A. Aldh2+/+ and Aldh2-/- cells were 
cultured in the presence of 1% ethanol with and with-
out 4MP for 48 hours and then stained with DAPI to 
assess cell viability by flow cytometry. *p<0.05 (n=3) 
compared with Aldh2-/- non-treatment, #p<0.05 
(n=3) compared with non Aldh2-/- treated with EtOH. 
B. Aldh2+/+ and Aldh2-/- cells were cultured in the 
presence of 1.5% ethanol with and without 4MP for 
48 hours and then stained with DCF to assess ROS 
by flow cytometry. *p<0.05 (n=3) compared with 
non-treatment, #p<0.05 (n=3) compared with non 
Aldh2+/+ non-treatment. †p<0.05 (n=3) compared 
with Aldh2+/+ treated with EtOH.
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evaluated by DCF and mitoSOX assays, respec-
tively. (Figure 2C-E). Of note, the population 
doubling time of Aldh2-/- cells (50 hours) was 
longer than that of than Aldh2+/+ cells (35 
hours), suggesting that Aldh2 may influence 
cell proliferation as well as apoptosis by mo- 
dulating the level of acetaldehyde generated 
under cell culture conditions [37].

Autophagy is activated as a cytoprotective 
mechanism in response to oxidative stress 
induced by ethanol and acetaldehyde

While excessive ethanol and acetaldehyde may 
trigger apoptotic cell death, cells may cope with 
oxidative stress via autophagy. We hypothe-
sized that autophagy may be activated to mod-

Figure 2. ALDH2 level determines ROS generation and cytotoxicity in esophageal epithelial cells exposed to acetalde-
hyde. A. Immunoblot analysis was performed to assess Caspase-3 with β-Actin as a loading control in Aldh2+/+ cells 
treated with acetaldehyde. B. Aldh2+/+ and Aldh2-/- cells were cultured in the presence of 1 mM of acetaldehyde for 
indicated time periods and then stained with Annexin-V and PI to assess apoptotic cells by flow cytometry. *p<0.05 
(n=3) compared with 0 h. C. Aldh2+/+ and Aldh2-/- cells were cultured in the presence of 1 mM of acetaldehyde for 
indicated time periods and then stained with DCF to assess ROS by flow cytometry. *p<0.05 (n=3) compared with 
non-treatment, #p<0.05 (n=3) compared with WT non-treatment. D. Aldh2+/+ and Aldh2-/- cells were cultured in 
the presence of 1 mM of acetaldehyde for 48 hours and then stained with DCF to assess ROS by flow cytometry. 
*p<0.05 (n=3) compared with non-treatment, #p<0.05 (n=3) compared with WT non-treatment. E. Aldh2+/+ and 
Aldh2-/- cells were cultured in the presence of 1 mM of acetaldehyde for 48 hours and then stained with MitoSOX 
to assess ROS by flow cytometry. *p<0.05 (n=3) compared with non-treatment, #p<0.05 (n=3) compared with WT 
non-treatment.
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ulate ROS in esophageal keratinocytes exposed 
to ethanol and acetaldehyde. Western blotting 
in Aldh2-/- cells treated with 1 mM acetaldehyde 
suggested stress-mediated autophagy activa-
tion as LC3 protein lipidation (LC3-II), was 
induced following p53 stabilization (Figure 3A). 
To further evaluate autophagy, we carried out 
flow cytometry to for the AV-identifying fluores-
cent dye Cyto-ID. In Aldh2+/+ cells, Cyto-ID was 

induced by both 1.5% ethanol (EtOH) and sub-
lethal concentrations of acetaldehyde (≤1 mM) 
in a time-dependent manner (Figure 3B, 3C). 
Moreover, Aldh2-/- cells displayed enhanced 
basal AV content that was robustly induced in 
response to exposure to ethanol or acetalde-
hyde (Figure 3B, 3C). Increased AV content may 
be reflective of enhanced autophagic or a distal 
defect in AV clearance. To evaluate autophagy 

Figure 3. Autophagy is activated as a cytoprotective mechanism from oxidative stress induced by ethanol and  
acetaldehyde. A. Immunoblot analysis was performed to assess LC3 and p53 with β-Actin as a loading control in 
Aldh2-/- treated with acetaldehyde. B. Aldh2+/+ and Aldh2-/- cells were treated with 1 mM acetaldehyde for indicated 
time periods. Cells were subjected to flow cytometry for Cyto-ID to determine relative AV levels. *p<0.05 (n=3) com-
pared with Aldh2+/+ 0 h, #p<0.05 (n=3) compared with Aldh2-/- 0 h. C. Aldh2+/+ and Aldh2-/- cells were treated with 
1% EtOH for indicated time periods. Cells were subjected to flow cytometry for Cyto-ID to determine relative AV levels. 
*p<0.05 (n=3) compared with Aldh2+/+ 0 h #p<0.05 (n=3) compared with Aldh2-/- 0 h. D. Immunoblot analysis was 
performed to assess LC3 and p62 with β-Actin as a loading control in Aldh2+/+ and Aldh2-/- cells treated with 1 mM 
acetaldehyde with and without 1 µg/ml CQ for 48 hours. E. Aldh2+/+ and Aldh2-/- cells were treated with 1 mM ac-
etaldehyde with and without 1 µg/ml CQ treatment for 48 hours. Cells were subjected to flow cytometry for Cyto-ID  
to determine ROS levels. *p<0.05 (n=3) compared with Aldh2+/+ non-treatment, #p<0.05 (n=3) compared with 
Aldh2-/- non-treatment. †p<0.05 (n=3) compared with Aldh2+/+ treated with acetaldehyde alone.
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flux, we further used chloroquine (CQ), a phar-
macological autophagy inhibitor that prevents 
AV-lysosome fusion. Inhibition of AV-lysosome 

fusion is expected to stabilize LC3-II and p62/
SQSTM (p62), an autophagy cargo identifying 
protein that is degraded upon AV-lysosome 

Figure 4. Autophagic flux is diminished upon extended exposure to acetaldehyde in Aldh2-/- cells. A. Live cell imag-
ing determined mCherry-EGFP-LC3B puncta in Aldh2-/- cells treated with Hanks’ Balanced Salt Solution (HBSS) and 
CQ for 8 hours. Representative cell images. B. Live cell imaging determined mCherry-EGFP-LC3B puncta in Aldh2+/+ 

and Aldh2-/- cells treated with acetaldehyde for indicated time periods. Representative cell images. C. Histogram 
of average red (mCherry) puncta/cell and average yellow (co-localization of red and green puncta) puncta/cell in 
Aldh2+/+ and Aldh2-/- cells treated with acetaldehyde for indicated time periods. *p<0.05 compared with Aldh2+/+ 0 
h, #p<0.05 compared with non Aldh2-/- 0 h. n=20-70 for all p-values.
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fusion. As expected, CQ increased expression 
of LC3-II as well as p62 in both Aldh2+/+ and 
Aldh2-/- cells under basal conditions (Figure 
3D). CQ treatment further augmented expres-
sion of LC3-II in both acetaldehyde-treat- 
ed Aldh2+/+ and Aldh2-/- cells (Figure 3D). Mo- 
reover, while p62 expression was decreased in 
Aldh2-/- cells following acetaldehyde exposure, 
this effect was blocked via co-treatment with 
CQ (Figure 3D). These data indicate that au- 
tophagic flux is activated by acetaldehyde es- 
pecially in Aldh2-/- cells. In Aldh2+/+ cells, CQ- 
mediated suppression of autophagy flux also 
increased both basal and acetaldehyde-in- 
duced ROS as determined by DCF assays 
(Figure 3E), suggesting that autophagy may be 
activated to limit oxidative stress. Interestingly 
Aldh2-/- cells exhibited a basal ROS level that 
was significantly higher than Aldh2+/+ cells and 
that was further augmented upon co-treatment 
with CQ; however, acetaldehyde-mediated ROS 
production was only modestly influenced by CQ 
in Aldh2-/- cells (Figure 3E). These findings sug-
gest that while autophagy flux may be present 
to decrease oxidative stress in Aldh2-/- cells 
under basal conditions, autophagy flux may 
rather be decreased or stalled in the presence 
of excessive ROS as found 72 hours following 
acetaldehyde treatment.

Autophagy flux in esophageal keratinocytes 
declines in response to extended acetaldehyde 
exposure

To gain further insight into the dynamic nature 
of autophagic flux in esophageal keratinocytes, 
we next visualized autophagy flux in Aldh2+/+ 
and Aldh2-/- cells stably transduced with a re- 
trovirus expressing a fusion protein compris- 
ing acid-stable mCherry and acid-sensitive 
enhanced green fluorescent (EGFP) proteins 
fused to LC3 (mCherry-EGFP-LC3B) [32]. This 
reporter detects AVs as fluorescent proteins-
labeled LC3-positive puncta expressing either 
mCherry alone (red puncta) or both mCherry 
and EGFP concurrently (yellow puncta). The for-
mer represents AVs fused to lysosomes (autoly-
sosomes) where EGFP is degraded in the aci- 
dic lysosomal environment, thereby indicating 
autophagic flux. The latter represents AVs that 
have yet undergo lysosome-mediated cargo 
degradation. When Aldh2-/- cells were placed in 
Hanks’ Balanced Salt Solution (HBSS) for nutri-
ent deprivation, a large number of red puncta 
emerged within 8 hours, indicating activation  
of autophagic flux (Figure 4A). By contrast, CQ 

treatment resulted in accumulation of yellow 
puncta (Figure 4A), suggesting stalled basal 
autophagic flux due to inhibition of AV-lysosome 
fusion. With these conditions serving as con-
trols, only a small number of LC3 red puncta 
were observed in Aldh2+/+ cells under basal 
conditions while Aldh2-/- cells displayed a sig-
nificant increase in red puncta at baseline 
(Figure 4B, 4C), suggesting that basal autopha-
gy level was higher in Aldh2-/- cells than in their 
Aldh2+/+ counterparts. Following exposure to 1 
mM acetaldehyde, the number of red puncta in 
both Aldh2+/+ and Aldh2-/- cells were significant-
ly increased within 4 hours (Figure 4B, 4C). 
Thus, autophagy flux is robustly activated in 
esophageal keratinocytes upon acute acetal-
dehyde exposure. Of note, acetaldehyde-medi-
ated induction of red puncta was more pro-
nounced in Aldh2-/- cells, suggesting that 
Aldh2-/- cells may have a greater dependence of 
autophagy to cope with acetaldehyde toxicity 
than Aldh2+/+ cells (Figure 4B, 4C). Moreover, 
the number of yellow puncta became especially 
apparent in Aldh2-/- cells at 48 hours after acet-
aldehyde stimulation with 53.3% of LC3 puncta 
identified as AVs (yellow puncta) (Figure 4B, 
4C). On the contrary, only 16.9% of LC3 puncta 
were AVs in Aldh2+/+ cells at 48 hours following 
acetaldehyde exposure (Figure 4B, 4C), sug-
gesting that in comparison to cells with intact 
ALDH2 expression, Aldh2-/- cells are more prone 
to autophagy stalling upon prolonged acetalde-
hyde exposure which may increase oxidative 
stress and apoptotic cell death at later time 
points.

Esophageal organoids reveal autophagy-
mediated regulation of acetaldehyde-induced 
oxidative stress

We next employed a three dimensional organ-
oid culture system to evaluate the influence  
of acetaldehyde treatment upon esophageal 
keratinocytes in a more physiologically relevant 
context. Acetaldehyde treatment significantly 
increased the expression of histone p-H2A.
XSer139, an indicator of DNA damage that also 
serves as surrogate marker for oxidative stress, 
in esophageal organoids derived from both 
Aldh2+/+ and Aldh2-/- keratinocytes (Figure 5A, 
5B). DNA damage level in Aldh2-/- organoids 
treated by acetaldehyde was significantly high-
er in Aldh2+/+ organoids treated by acetalde-
hyde. CQ treatment in addition to acetaldehyde 
treatment further increased DNA damage in 
Aldh2-/- organoids but not in Aldh2+/+ organoids 
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(Figure 5A, 5B), suggesting that Aldh2-/- organ-
oids depend on autophagy to decrease oxida-
tive stress.

Alcohol drinking increases AV content in mu-
rine esophageal epithelia

Alcohol drinking induces DNA adduct forma-
tion, oxidative stress and Aldh2 upregulation in 
murine esophageal epithelia [23]. To determine 
the influence of alcohol drinking upon autopha-
gy in esophageal epithelia in vivo, we evaluated 
expression of cleaved LC3 in Aldh2+/+ mice pro-

vided ad libitum drinking water with or without 
alcohol (10% EtOH) for 8 weeks. A significant 
elevation of cleaved LC3 expression was found 
via IHC in esophageal epithelia of both Aldh2+/+ 

and Aldh2-/- mice exposed to alcohol as com-
pared to animals given access to drinking water 
alone (Figure 6A, 6B). Despite a trend suggest-
ing that Aldh2-/- mice may exhibit increased AV 
content in response to alcohol drinking as com-
pared to their Aldh2+/+ counterparts, no signifi-
cant difference was detected between geno-
types with regard to LC3 expression (Figure 6A, 
6B). These results indicate that alcohol drink-

Figure 5. Esophageal organoids reveal autophagy-mediated regulation of oxidative stress induced by acetaldehyde 
Murine esophageal 3D organoids were grown ex vivo and treated from days 7-9 with 1 mM acetaldehyde and 1 μg/
ml CQ as indicated and subjected IHC p-H2A.XSer139 (DNA damage). A. Representative images. Scale bars, 25 μm. B. 
p-H2A.XSer139 score in Aldh2+/+ and Aldh2-/- organoids treated with 1 mM acetaldehyde with and without CQ for 48 
hours. *p<0.05 compared with Aldh2+/+ non-treatment, #p<0.05 compared with Aldh2-/- non-treatment, †p<0.05 
compared with Aldh2-/- treated with AA alone. n=10 for all p-values.
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ing enhances AV content in murine esophageal 
epithelia.

In aggregate, these findings suggest that au- 
tophagy may provide cytoprotection to esop- 
hageal epithelial cells from oxidative stress 
induced by ethanol and its major metabolite 
acetaldehyde that is enhanced by ALDH2 
dysfunction.

Discussion

In this study, we have for the first time demon-
strated that esophageal keratinocytes undergo 
autophagy in response to ethanol or acetalde-

hyde exposure. Our flow cytometric and func-
tional assays for ROS, AV content and autopha-
gic flux coupled with esophageal 3D organoids 
revealed that Aldh2-/- cells display greater oxi-
dative stress, more AV content as well as high- 
er basal and inducible autophagic flux than 
Aldh2+/+ cells. Autophagy has been implicated 
in a variety of alcohol-related human patholo-
gies. Autophagy contributes to loss of skeletal 
muscle mass (aka sarcopenia) in patients with 
alcoholic liver cirrhosis and hepatitis [38]. Wh- 
ile autophagy is protective against ethanol-
induced liver toxicity [39], alcohol-induced ste-
atosis and liver injury are associated with de- 

Figure 6. Alcohol drinking increases cleaved LC3 expression in murine esophageal epithelia Esophageal epithelia 
of Aldh2+/+ and Aldh2-/- mice provided with drinking water supplemented with or without 10% ethanol for 8 weeks 
were stained for cleaved LC3 by IHC. A. Representative images. Scale bar, 50 μm. B. Histogram representing aver-
age cleaved LC3 IHC score for indicated genotype and treatment group (n=5, each groups). *p<0.05 vs. Aldh2+/+ 
and water.
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creased autophagic flux, which causes accu-
mulation of cytoplasmic inclusions known as 
the Mallory-Denk bodies consisting of cytokera-
tins K8 and K18 as well as p62 [40]. Autophagy 
is also stalled in alcohol-induced cardiomyopa-
thy to reduce cardiac muscle contractility [41]. 
Thus, alcohol-induced cellular dysfunction may 
occur when the level of oxidative stress and 
other abnormal substances exceeds cellular 
autophagic capability to remove them.

Autophagic flux was indeed decreased in acet-
aldehyde-treated Aldh2-/- cells as a function of 
time (Figure 4), providing an explanation for the 
higher vulnerability to alcohol-induced toxicity 
and oxidative stress in the presence of Aldh2 
dysfunction. Autophagy defects cause accumu-
lation of abnormal mitochondria and elevat- 
ed ROS, culminating in DNA damage [27, 42]. 
Acetaldehyde causes mitochondrial degenera-
tion as well as DNA damage and mutations via 
DNA adduct formation [12, 43]. Nevertheless, 
mice subjected to alcohol drinking alone dis-
play DNA damage, but not ESCC lesions with or 
without Aldh2 dysfunction [44, 45]. While this 
may represent a species difference between 
human and mice with regard to disease sus-
ceptibility, autophagy may have a tumor sup-
pressor role to maintain genetic stability and 
cellular homeostasis [46, 47]. Thus, generation 
of genetically engineered mice with concurrent 
loss of autophagy (e.g. Atg7) and Aldh2 func-
tions may be necessary to model alcohol-in- 
duced esophageal carcinogenesis in mice. Ad- 
ditionally, DNA damage normally triggers cell 
death or DNA repair functions; however, genetic 
alterations, such as mutations of the p53 tumor 
suppressor gene, promote cell survival, result-
ing in a further increase in abnormal cells with 
DNA lesions. p53 mutations are frequently 
found in ESCC precursor lesions. Acetaldehyde-
mediated DNA damage activates the Fanconi 
anemia (FA) DNA repair pathway [48]. Patients 
with Fanconi anemia have an increased risk to 
develop young-onset ESCC and other squa-
mous cell carcinomas [49-51]. Thus, these 
pathways may need to be impaired for survival 
and malignant transformation of esophageal 
cells with dysfunctional autophagy or Aldh2-
mediated alcohol detoxification.

Decreased autophagy flux in Aldh2-/- cells was 
also associated with stabilization of p62 (Figure 
4), a tumor promoting multifunctional scaffold 
protein. During autophagy, p62 directs autoph-
agic cargo toward AVs where p62 is degraded 

along with autophagic substrates. Indeed, p62 
accumulates in autophagy defective Atg7-/- 
mouse cells [52-54]. p62 also suppresses 
autophagy via physical interaction with the 
mammalian target of rapamycin complex 1 
(mTORC1) [55], an inhibitor of autophagy. p62 
interacts with tumor necrosis factor receptor 
family members to activate nuclear factor-κB 
signaling and expression of proinflammatory 
genes [56-60]. p62 stabilizes Nrf2 [42, 61, 62], 
another transcription factor mediating cellular 
antioxidant response [63]. While Nrf2 is re- 
quired for squamous-cell differentiation in the 
esophagus [64], prolonged and enhanced Nrf2 
activation impairs epithelial barrier function, 
promoting keratinocyte hyperproliferation and 
inflammation [65]. Thus, diminished autophagy 
flux in Aldh2-deficient cells under chronic expo-
sure to ethanol or acetaldehyde may cooperate 
with p62 to alter esophageal cellular functions 
and tissue microenvironment which may then 
facilitate esophageal cell survival and malig-
nant transformation.

The use of single cell-derived 3D esophageal 
organoids in this study represents a novel 
approach to elucidate esophageal epithelial 
function in a tissue-like context. By comparing 
Aldh2-/- to Aldh2+/+ organoids coupled with phar-
macological inhibition of autophagy flux by 
chloroquine, autophagy-mediated inhibition of 
oxidative stress was found to be augmented in 
Aldh2-/- cells, recapitulating a similar finding in 
Aldh2-deficient murine esophagi [23]. However, 
we did not observe a statistically significant dif-
ference in cleaved LC3 expression between 
Aldh2+/+ and Aldh2-/- cells, organoids as well as 
murine esophageal tissues. Western blotting 
by an independent anti-LC3 antibody detecting 
the lipidated from of LC3 (LC3-II) also showed 
little difference in the LC3 expression levels 
between Aldh2-/- and Aldh2+/+ cells although ei- 
ther chloroquine or acetaldehyde, or a combi-
nation of the two, stabilized LC3-II, indicating 
the presence of basal and acetaldehyde-in- 
duced flux. Thus, LC3 did not appear to be as 
sensitive of an indicator of autophagic flux as 
the mCherry-EGFP-LC3B reporter. Thus, future 
studies may require development of functional 
assays using organoids as well as murine mod-
els, for example, mice carrying EGFP-LC3B re- 
porter although EGFP-LC3B does not necess- 
arily distinguish stalled autophagy, given the 
acid-sensitivity of EGFP. Alternatively, Cyto-ID 
fluorescent dye may be used to determine tis-
sue autophagy flux along with chloroquine.
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This study highlights ethanol metabolism in 
esophageal keratinocytes as suggested by 
aggravated oxidative stress and cytotoxicity in 
ethanol-exposed Aldh2-/- cells. Moreover, 4 MP 
alleviated partially ethanol-induced toxicity in 
Aldh2-/- cells, suggesting that acetaldehyde 
may be produced via multiple ethanol meta- 
bolizing pathways utilizing distinct enzymes 
including ADH1B and CYP2E1, the latter impli-
cated in alcohol-related esophageal carcino-
genesis [66]. Since ethanol impairs esophageal 
epithelial transport and barrier functions [67], 
acetaldehyde may be directly produced in oral-
esophageal epithelia in long-term consumers 
of alcohol beverages, increasing the risk for car- 
cinogenesis. Interestingly, Aldh2+/+ cells dis-
played limited lethality, oxidative stress and 
autophagy. Such cells may efficiently diminish 
acetaldehyde via Aldh2. It is also possible that 
acetaldehyde-mediated toxicity is alleviated by 
other cytoprotective mechanisms such as mito-
chondrial antioxidant pathways. Given their 
higher basal ROS level, Aldh2-/- cells may have 
more dysfunctional mitochondria. Besides 
acetaldehyde, Aldh2 detoxifies endogenous 
toxic aldehyde 4-hydroxy-2-nonenal (4-HNE) 
[68, 69].

A series of studies led by Ren and others show 
protective myocardial protective roles of Aldh2 
under a variety of conditions, including alcohol-
ic cardiac contractile dysfunction [70], myocar-
dial ischemia/reperfusion injury [68], diabetes-
induced cardiac dysfunction [71] and doxo- 
rubicin cardiotoxicity [69], where 4-HNE has 
been implicated. As cigarette smoke extract 
induces 4-HNE [72], it is plausible that Aldh2 
may have broader cytoprotective roles against 
tobacco smoke constituents containing nearly 
80 chemical carcinogens including acetalde-
hyde [4]. Activators of ALDH2 such as Alda-1 
[73, 74] may not only confer cardioprotection, 
but reduce cancer risk.

In summary, our innovative approaches provid-
ed novel insights into the cytoprotective roles 
of Aldh2 and autophagy against acetaldehyde 
and oxidative stress, respectively, induced by 
ethanol or acetaldehyde, key human esopha-
geal carcinogens.
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