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Abstract: Mutagens like oxidants cause lesions in the DNA of ovarian and fallopian tube epithelial cells, resulting 
in neoplastic transformation. Reduced exposure of surface epithelia to oxidative stress may prevent the onset or 
reduce the growth of ovarian cancer. Lycopene is well-known for its excellent antioxidant properties. In this study, the 
potential of lycopene in the prevention and treatment of ovarian cancer was investigated using an intraperitoneal 
animal model. Lycopene prevention significantly reduced the metastatic load of ovarian cancer-bearing mice, 
whereas treatment of already established ovarian tumors with lycopene significantly diminished the tumor burden. 
Lycopene treatment synergistically enhanced anti-tumorigenic effects of paclitaxel and carboplatin. Immunostaining 
of tumor and metastatic tissues for Ki67 revealed that lycopene reduced the number of proliferating cancer 
cells. Lycopene decreased the expression of the ovarian cancer biomarker, CA125. The anti-metastatic and anti-
proliferative effects were accompanied by down-regulated expression of ITGA5, ITGB1, MMP9, FAK, ILK and EMT 
markers, decreased protein expression of integrin α5 and reduced activation of MAPK. These findings indicate that 
lycopene interferes with mechanisms involved in the development and progression of ovarian cancer and that its 
preventive and therapeutic use, combined with chemotherapeutics, reduces the tumor and metastatic burden of 
ovarian cancer in vivo.
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Introduction

Ovarian cancer is the fifth leading cause of can-
cer death in women, with an estimate of 22,280 
newly diagnosed cases and 14,240 deaths in 
the United States in 2016 [1], and it is the gyne-
cological malignancy associated with the worst 
survival rates [2]. About 75% of affected women 
are diagnosed at a late stage of the disease, 
when the cancer has metastasized into the 
peritoneal cavity, which is one of the reasons 
for the high mortality rates associated with this 
cancer [2]. The main risk factors for developing 
ovarian cancer are a positive family history, age 
and infertility [3]. During the peri-ovulatory peri-

od, mutagens, such as oxidants and inflamma-
tory markers, are generated and in contact with 
ovarian and fallopian tube epithelial cells. As a 
result, these cells can undergo DNA damage 
[4]. Oxidative stress develops from an imba- 
lance between the generation and detoxifica-
tion of reactive oxygen species [5]. Reduction of  
oxidative stress may therefore be considered 
as a possible preventive mechanism for ovarian 
cancer [6].

A wide range of antioxidants, present in a vari-
ety of fruits and vegetables, have been shown 
to minimize DNA damage by inactivating free 
radicals and are investigated for their potential 
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as preventive agents for different types of can-
cer [7]. Carotenoids, selenium, green tea and 
alpha-tocopherol are well-known antioxidants 
for their potential cancer-preventive properties 
[8, 9]. The most powerful carotenoid with anti-
oxidant capacity is lycopene [10]. Lycopene is 
naturally occurring in red carotenoid pigments 
found in tomatoes and processed tomato pro- 
ducts and has received increasing attention 
within the scientific community, as well as in 
the public perception, regarding its potential to 
decrease the risk of developing prostate, breast 
and ovarian cancers [10, 11]. However, the 
existing data that suggest a positive correlation 
between the dietary or supplemental intake of 
lycopene and a lower risk of ovarian cancer are 
rather inconsistent [12].

The aims of this study were to investigate lyco-
pene’s (i) preventive and therapeutic effects in 
ovarian cancer development and progression, 
(ii) ability to enhance the efficacy of clinically 
used chemotherapeutics and (iii) interacting 
molecular factors in a bioengineered disease 
model of ovarian cancer.

Materials and methods

Reagents

Lycopene and the placebo were provided by 
BASF (Ludwigshafen, Germany) as a water-dis- 
persible beadlet formulation, containing 10% 
lycopene in a matrix of carbohydrates and no 
lycopene for the placebo respectively. Polyethy- 
lene glycol-based hydrogels (RGD-functiona- 
lized, proteolytic degradable; QGel, Switzerland) 
served as cancer cell delivery vehicles for ani-
mal experiments. Cell culture and qRT-PCR 
reagents were purchased from Life Technolo- 
gies (VIC, Australia). Paclitaxel and carboplatin 
were from Sigma-Aldrich (NSW, Australia). 
Immunoblotting reagents included pre-made 
NuPAGE gradient SDS-PAGE gels (4-12%; Life 
Technologies), phosphatase inhibitor (Life 
Technologies), complete protease inhibitor 
(Roche Diagnostics, NSW, Australia), Pierce™ 
Coomassie (Bradford) protein assay (Life Tech- 
nologies), BioTrace NT nitrocellulose mem-
branes (Pall Corporation, NSW, Australia), 
enhanced chemiluminescence (ECL) reagents 
(GE Healthcare, NSW, Australia), X-ray films 
(Fujifilm, NSW, Australia) and the following  
antibodies: anti-integrin α5 (Merck Millipore, 
VIC, Australia), anti-integrin β1 (Merck Milli- 

pore), anti-phospho-p44/42 MAPK (ERK1/2, 
Thr202/Tyr204, #E10; Cell Signaling Tech- 
nology, USA), anti-p44/42 MAPK (ERK1/2;  
Cell Signaling Technology), anti-β-tubulin (Cell 
Signaling Technology) and HRP-linked anti-
mouse/rabbit IgG (Cell Signaling Technology). 
Other items included: D-luciferin (Caliper Life 
Sciences, USA), CA125 and MMP9 ELISAs  
(R&D Systems, USA). Immunohistochemistry 
reagents were purchased from Dako (VIC, 
Australia), and the following human-specific 
antibodies were used: NuMA (Abcam, VIC, 
Australia), Ki67 (#MIB-1; Dako) and anti-integ-
rin α5β1 (#JBS5; Merck Millipore).

Cell culture

Ovarian cancer OV-MZ-6 cells were established 
from malignant ascites drained from a patient 
suffering from advanced serous cystadeno-car-
cinoma and were maintained as reported [13]. 
For animal experiments, OV-MZ-6 cells were 
transfected with a lentiviral luciferase expres-
sion system as described [14]. Luciferase-
transfected OV-MZ-6 cells were then encapsu-
lated within hydrogels (1.6 × 104 cells/20 µl 
hydrogel) and cultured for 4 days prior to 
implantation into animals.

Preparation of lycopene dispersions

For cell experiments, lycopene was dispersed 
in sterile PBS resulting in a stock concentration 
of 1 mM. Treatment dispersions were prepared 
fresh for each experiment from the stock con-
centration in culture medium to obtain final 
concentrations of 2.0 and 5.0 µM lycopene. For 
control treatments, a stock concentration of 
the placebo was prepared and diluted in cul-
ture medium accordingly. For animal experi-
ments, lycopene and the placebo were diluted 
in ultrapure DNase/RNase-free water to a final 
concentration of 0.75 mg/ml.

Western blot analysis

OV-MZ-6 cells were cultured in 6-well plates (1 
× 105 cells/well) for 72 hrs prior to treatment 
with 2.0 and 5.0 μM lycopene or placebo in cul-
ture medium supplemented with 1% FBS for 10 
min, 1, 12 and 24 hrs. For protein extraction, 
cells were washed and lysed in radioimmuno-
precipitation assay buffer (150 mM NaCl, 1.0% 
IGEPAL® CA-630, 0.5% sodium deoxycholate, 
0.1% SDS, 50 mM Tris, ph 8.0), containing 10% 
phosphatase and complete protease inhibitors. 
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Lysates were centrifuged for 15 min at 14,000 
g, the supernatants collected, and protein con-
centrations determined using a Pierce™ 
Coomassie (Bradford) protein assay. SDS-
PAGE-resolved total protein samples (20 µg) 
were transferred onto nitrocellulose mem-
branes and probed with anti-integrin α5, anti-
integrin β1, anti-phospho-p44/42 MAPK and 
anti-p44/42 MAPK (1:1,000). After washing, 
membranes were incubated with HRP-linked 
anti-mouse/rabbit IgG (1:5,000). Total protein 
levels were validated for equal loading using 
anti-β-tubulin (1:4,000). Reactive proteins were 
visualized via ECL, signals transferred onto 

X-ray films and developed with an Agfa CP-1000 
film processor (Superior Radiographics, USA).

Intraperitoneal animal model

Animal experiments were performed in compli-
ance with the Australian Code of Practice for 
the Care and Use of Animals for Scientific 
Purposes and approved by the University 
Animal Ethics Committee. Surgery using 6-week 
old female NOD/SCID mice was performed as 
described [14]. Equal distribution of cells 
encapsulated within hydrogels prior to implan-
tation was confirmed via bioluminescence 
imaging (BLI; 3.15 × 106 ± 6.39 × 105 p/s/cm2/

Figure 1. Experimental outline and treatment regimen. A. Prevention started 2 weeks prior to implantation of cell-
seeded hydrogels into NOD/SCID mice by daily lycopene and placebo administration via oral gavage over 10 weeks. 
Treatment started 4 weeks post implantation using placebo, lycopene and carboplatin (platin) only or in combina-
tion with paclitaxel (taxol) or as a triple treatment regimen over 4 weeks. Taxol and platin were given twice per week 
in an alternating manner via intraperitoneal injections every fortnight. B. Implantation of cell-seeded hydrogels into 
the peritoneal cavity was performed via abdominal incision parallel to the longitudinal body axis. Hydrogels were 
placed adjacent to the ovarian fat pad on each side (top panel, arrows). During necropsy, omental metastases were 
evident upon placebo and lycopene prevention and treatment (lower panel, arrows). C. Immunohistochemistry using 
a human-specific antibody against NuMA confirmed that tumors and omental metastases were of human origin. 
Scale bars, 50 µm.
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sr; n = 10 hydrogels) using a live animal imaging 
machine (IVIS® Spectrum 200, Perkin Elmer, 
VIC, Australia; Living Image® software v.4.3.1). 
To determine preventative effects of lycopene 
on tumor growth and metastasis, prevention 
started 2 weeks prior to implantation of cell-
seeded hydrogels into animals (n = 5). To exa- 
mine therapeutic effects of lycopene on tumor 
growth and metastasis, treatment started  
4 weeks after surgery (n = 5; Figure 1A). 
Hydrogels were implanted adjacent to both  
ovaries, and abdominal muscles and the skin 
were sutured separately (Figure 1B, upper 
panel). Animals in the prevention (lycopene  
and placebo) and treatment groups (lycopene, 
placebo, paclitaxel (taxol), lycopene + taxol, 
carboplatin (platin), lycopene + platin, taxol + 
platin and lycopene + taxol + platin) were  
monitored via regular weight measurements 
and BLI. Lycopene and placebo (15 mg/kg 
each) were administered daily via oral gavage. 
Taxol (10 mg/kg) and platin (15 mg/kg) were 
administered twice per week in an alternating 
manner via intraperitoneal injections every  
fortnight. Eight weeks post surgery, animals 
were sacrificed, and tumor and metastatic  
tissues were removed, weighed and processed 
for qRT-PCR and immunohistochemical analy-
sis. To distinguish between tumor load and 
metastatic load, animals were imaged by ex 
vivo BLI prior to and post removal of the pri- 

using an ABI Prism® 7500 sequence detection 
system (Applied Biosystems, VIC, Australia) as 
reported [14]. Gene-specific primers are listed 
in Table 1. The cycle threshold (Ct) value for 
each gene was determined and normalized to 
18S expression levels and compared to the 
control (ΔΔCt). Relative gene expression 
between groups was calculated using the  
2^(-ΔΔCt) method.

ELISA

To quantify the concentrations of human CA125 
and MMP9 in mouse serum and ascites, 
human-specific CA125 and MMP9 ELISAs were 
conducted following manufacturer’s instruct- 
ions. Samples were diluted 2-fold for CA125 
and 40-fold for MMP9 detection.

Immunohistochemistry

Immunohistochemical analysis was performed 
on serial paraformaldehyde-fixed paraffin-
embedded sections (5 µm). Sections were 
deparaffinized in xylene and rehydrated in dilu-
tions of ethanol and water. Antigen retrieval 
was performed in a high pH buffer (pH 9) or 
citrate buffer (pH 6) at 95°C for up to 10 min. 
Then, sections were treated with 3% H2O2 and 
blocked with 2% BSA/PBS. Antibodies were 
applied in 2% BSA/PBS (NuMA 1:100; Ki67 

Table 1. Sequences of gene-specific primers used for qRT-PCR, per-
formed with an annealing temperature of 60°C, and their respective 
product size

Gene Forward primer (5’-3’) Reverse primer (5’-3’) Size 
(bp)

ITGA5 CATTTCCGAGTCTGGGCCAA TGGAGGCTTGAGCTGAGCTT 324
ITGB1 AGGTGGTTTCGATGCCATCAT AAGTGAAACCCGGCATCTGTG 105
MMP9 TCGTGGTTCCAACTCGGTTT GCGGCCCTCGAAGATGA 71
FAK GCGCTGGCTGGAAAAAGAGGAA TCGGTGGGTGCTGGCTGGTAGG 475
ILK CCAATGTCCTGGTCGCATGTA CGTGTCACCAGTTCCCACAGA 132
TWIST GGAGTCCGCAGTCTTACGAG TCTGGAGGACCTGGTAGAGG 201
ZEB2 TTCCTGGGCTACGACCATAC TGTGCTCCATCAAGCAATTC 160
SNAI1 CCTCCCTGTCAGATGAGGAC CCAGGCTGAGGTATTCCTTG 234
SNAI2 GGGGAGAAGCCTTTTTCTTG TCCTCATGTTTGTGCAGGAG 158
FOXC2 GCCTAAGGACCTGGTGAAGC TTGACGAAGCACTCGTTGAG 198
FN1 CAGTGGGAGACCTCGAGAAG TCCCTCGGAACATCAGAAAC 168
TGFB1 CGTGGAGGGGAAATTGAGGG CCGGTAGTGAACCCGTTGATG 98
TGFB2 ACAGCACCAGGGACTTGCTCCA TGGGCGGGATGGCATTTTCGG 147
TGFBR1 TGTTGGTACCCAAGGAAAGC CACTCTGTGGTTTGGAGCAA 160
SMAD4 AGGATCAGTAGGTGGAATAGC TGCATAAGCGACGAAGG 83
18S GATCCATTGGAGGGCAAGTCT CCAAGATCCAACTACGAGCTTTTT 103

mary tumors. Serum and 
ascites were collected and 
pooled for each group.

Quantitative RT-PCR

Tissues were dispersed 
with a tissue homogenizer, 
and RNA extracted using 
Trizol® reagent following 
manufacturer’s instruct- 
ions. RNA quality was 
determined with a Nano- 
drop® ND-1000 spectro-
photometer (Life Techno- 
logies), and samples with 
A260nm/230nm = 2.05-2.15 
were synthesized into 
cDNA using a Super- 
script™ III first-strand syn-
thesis supermix following 
manufacturer’s instruct- 
ions. Quantitative RT-PCR 
was performed with  
SYBR® green chemistry 
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1:75; integrin α5β1 1:200; phospho-p44/42 
MAPK 1:100; p44/42 MAPK 1:100; vimentin 
1:2,000). After washing, sections were incu- 
bated with EnVision + Dual Link System-HRP, 
followed by 3,3’-diaminobenzidine and Mayer’s 
hematoxylin. Sections were imaged with an 
automatic slide scanner (Leica, NSW, Australia), 
with a 40× magnification, and archived on  
a digital image hub. Staining was quantified 
using ImageJ (mean ± SEM; n = 5; NIH, USA).

Statistical analysis

GraphPad Prism® software (v.6) was used for 
statistical analyses. Data were presented as 
mean values ± standard errors of three biologi-
cal replicate experiments. Differences between 
treatment regimen and the control were ana-
lyzed using One-way ANOVA and Student’s 
t-test (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; 
****P ≤ 0.0001).

Results

A humanized intraperitoneal animal model 
based on a bioengineering platform

Our group has developed a bioengineered 3D 
cancer model that is based on hydrogels as 
human cancer cell delivery vehicle when placed 
intraperitoneally into a murine host [14]. In this 
study, our humanized animal model was used 
to test the preventive and therapeutic effects 
of lycopene in ovarian cancer (Figure 1A, 1B). 
To confirm that the tumor and metastatic loads 
observed in NOD/SCID mice were of human 
origin, immunohistochemical analysis of tumor 
and metastatic tissues was performed using a 
human-specific antibody against the nuclear 
mitotic apparatus protein 1 (NuMA) [15]. In 
both prevention and treatment regimen, 
neoplastic tissues stained positive for NuMA  
as evident by brown nuclei (Figure 1C). 
Metastases colonizing the omentum were  
also stained positive for NuMA (Figure 1C).

Lycopene prevention reduced intraperitoneal 
metastatic load, cancer-related factors and 
CA125

To examine the preventive effects of lycopene 
on tumor growth and metastasis, animals 
received lycopene and placebo 2 weeks prior  
to implantation of cell-seeded hydrogels. Upon 
lycopene prevention, the tumor load resulted  
in an average radiance of 2.34 × 107 ± 4.51 × 

106 p/s/cm2/sr, while administration of the pla-
cebo resulted in an average radiance of 3.37 × 
107 ± 9.10 × 106 p/s/cm2/sr upon BLI analysis 
(Figure 2A). This indicates a trend towards a 
preventive benefit of lycopene, although the 
difference to the placebo was not significant (P 
= 0.36). Strikingly, the metastatic load deter-
mined by BLI analysis after removal of the pri-
mary tumors was significantly lower upon lyco-
pene prevention (4.01 × 106 ± 9.90 × 105 p/s/
cm2/sr; P = 0.03) compared to the placebo 
(1.60 × 107 ± 5.26 × 106 p/s/cm2/sr; Figure 
2B). This was a decrease of an order of a  
magnitude, unlikely arising from different  
primary tumor load. Immunohistochemical 
staining of human-specific Ki67, a cell pro- 
liferation marker [16], in tumor tissue revealed 
more proliferating cells upon placebo preven-
tion compared to lycopene as indicated by  
the fraction of brown nuclei and quantitative 
image analysis (Figure 2C). This effect was  
also visible in metastatic tissue, which exhibit-
ed a stronger staining of Ki67 upon placebo 
prevention compared to lycopene prevention.

To identify lycopene-responsive factors, the 
expression of ovarian cancer-related genes 
was analyzed in tumor and metastatic tissues 
[17-19]. The gene expression of integrin α5 
(ITGA5), integrin β1 (ITGB1), integrin-linked 
kinase (ILK) and focal adhesion kinase (FAK) 
were significantly decreased in tumor tissue 
upon lycopene prevention compared to the  
placebo (Figure 2D, left panel). Matrix me- 
talloproteinase 9 (MMP9) expression was also 
decreased in tumor tissue. Similar results  
were observed in metastatic tissue, with a  
further down-regulation of ITGA5 and MMP9 
(Figure 2D, right panel).

To further delineate the preventative impact of 
lycopene on the production of the integrin α5β1 
heterodimer and MMP9, two key players in 
ovarian cancer cell invasion and metastasis 
[20, 21], immunohistochemical analysis of 
tumor and metastatic tissues using a human-
specific antibody against integrin α5β1 and 
ELISA were performed. Staining of integrin 
α5β1 in tumor tissue was weaker upon lyco-
pene prevention compared to the placebo 
(Figure 2E), while metastatic tissue revealed a 
more intense staining upon lycopene preven-
tion, which was confirmed by quantitative 
image analysis. Levels of human-derived MMP9 
in serum and ascites collected from the ani-
mals were reduced upon lycopene prevention 
compared to the placebo (Figure 2F, left panel). 
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Figure 2. Effects of lycopene prevention. A. Tumor load was lower upon lycopene prevention compared to the pla-
cebo (average radiance, mean ± SEM; n = 5). B. Metastatic load was significantly reduced upon lycopene prevention 
compared to the placebo (average radiance, mean ± SEM; n = 5; P = 0.03). C. Immunohistochemical staining of 
Ki67 was more intense in tumor than metastatic tissues, with less positively stained cells upon lycopene prevention 
(mean ± SEM; n = 5; P ≤ 0.001). Scale bars, 50 µm. D. Expression of ITGA5, ITGB1, ILK and FAK was significantly 
down-regulated in tumor and metastatic tissues upon lycopene prevention. Expression of MMP9 was significantly 
reduced in metastatic tissue. Values are normalized to placebo controls. E. Immunohistochemical staining of integ-
rin α5β1 was weaker in tumor tissue and more intense in metastatic tissue upon lycopene prevention (mean ± SEM; 
n = 5; P ≤ 0.01). Scale bars, 50 µm. F. Levels of MMP9 in serum and ascites were reduced upon lycopene prevention 
(left panel). Levels of CA125 in serum and ascites were significantly lower upon lycopene prevention compared to 
the placebo (right panel).
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A similar result was obtained for the clinically 
used ovarian cancer biomarker, CA125 [22]. 
Lycopene prevention led to significantly 
reduced levels of human-specific CA125 in 
serum and ascites compared to the placebo 
(Figure 2F, right panel).

Lastly, it was sought to determine whether lyco-
pene is also capable to hinder intraperitoneal 
tumor progression. Thus, the expression of 
well-known epithelial to mesenchymal transi-
tion (EMT)-related genes in metastatic tissue 
was analyzed [23]. Strikingly, the expression of 
all examined EMT markers was significantly 
down-regulated in animals receiving lycopene 
prevention compared to the placebo (Table 2). 
Overall, preventive administration of lycopene 
interfered with tumor metastasis, metastasis-
mediating factors and CA125.

Lycopene synergistically enhanced anti-
tumorigenic effects of chemotherapeutics

To examine the potential effect of lycopene as a 
cancer treatment individually and synergisti-
cally to clinically used chemotherapeutics, 
animals received daily lycopene or placebo 4 
weeks post implantation of cell-seeded hydro-
gels in combination with taxol or platin or both. 
Lycopene treatment of tumor-bearing mice sig-
nificantly reduced the tumor load (1.88 × 107 ± 
3.13 × 106 p/s/cm2/sr; P = 0.03) compared to 
the placebo (3.52 × 107 ± 6.21 × 106 p/s/cm2/
sr) upon BLI analysis (Figure 3A). The lycopene 
+ taxol combination treatment (2.25 × 106 ± 
8.00 × 105 p/s/cm2/sr; P < 0.0001) was as 
effective in reducing the tumor load as the taxol 

+ platin combination (1.87 × 106 ± 1.01 × 106 
p/s/cm2/sr; P = 0.0002) compared to the pla-
cebo (Figure 3A). The lycopene + taxol combi-
nation treatment (1.42 × 106 ± 8.90 × 105 p/s/
cm2/sr; P = 0.005) was also as effective as the 
taxol + platin combination in reducing the  
metastatic load (4.05 × 105 ± 8.90 × 104 p/s/
cm2/sr; P = 0.0008) compared to the placebo 
(9.82 × 106 ± 1.12 × 107 p/s/cm2/sr; Figure 
3B, left panel). There were no macroscopically 
or histologically detectable omental metasta-
ses and ascites in animals treated with lyco-
pene + taxol, taxol + platin and lycopene + taxol 
+ platin. Taxol treatment reduced tumor and 
metastatic loads (tumor load: 5.55 × 106 ± 
8.80 × 106 p/s/cm2/sr; metastatic load: 2.36 × 
106 ± 2.35 × 106 p/s/cm2/sr; data not shown), 
while lycopene + platin combination treatment 
(tumor load: 2.88 × 107 ± 2.99 × 107 p/s/ 
cm2/sr; metastatic load: 1.30 × 107 ± 1.15 × 
107 p/s/cm2/sr; data not shown) did not show 
any differences compared to platin treatment 
(tumor load: 2.86 × 107 ± 2.25 × 107 p/s/ 
cm2/sr; metastatic load: 1.62 × 107 ± 1.24 × 
107 p/s/cm2/sr), indicating that this tumor 
model might be less sensitive to platin. 
Moreover, lycopene administered as a single 
agent treatment was more effective in redu- 
cing metastatic growth (6.52 × 106 ± 7.47 × 
106 p/s/cm2/sr; P = 0.001) than platin only 
(1.62 × 107 ± 1.24 × 107 p/s/cm2/sr; Figure 3B, 
right panel). Immunohistochemical analysis  
of Ki67 showed the strongest staining in tumor 
tissue upon placebo  and platin treatment and 
a less intense staining upon lycopene treat-
ment, indicating a reduced cell proliferation 
upon lycopene treatment. The different combi-
nation regimen, lycopene + taxol, taxol + platin 
and lycopene + taxol + platin, showed a similar 
Ki67 staining intensity, with all three treat-
ments showing a lower staining intensity than 
lycopene only as indicated by quantitative 
image analysis (Figure 3C). These results  
demonstrate the anti-tumorigenic effects of 
lycopene. In combination treatment with taxol, 
lycopene was as effective as platin and had 
synergistic effects in reducing the tumor and 
metastatic burden. Lycopene might be useful 
to reduce the development of intraperitoneal 
metastases that are less sensitive to platin.

Next, the impact of lycopene treatment on the 
expression of ovarian cancer-related genes 
was analyzed. Lycopene treatment significantly 

Table 2. Gene expression of key EMT markers 
was significantly down-regulated in meta- 
static tissue upon lycopene prevention (val-
ues are normalized to placebo controls)
Gene Placebo Lycopene P-value
TWIST 1 ± 0.03 0.17 ± 0.04 0.0075
ZEB2 1 ± 0.07 0.19 ± 0.01 < 0.0001
Snail (SNAI1) 1 ± 0.04 0.31 ± 0.02 < 0.0001
Slug (SNAI2) 1 ± 0.13 0.18 ± 0.03 0.013
FOXC2 1 ± 0.04 0.65 ± 0.03 < 0.0001
FN1 1 ± 0.04 0.39 ± 0.02 < 0.0001
TGFB1 1 ± 0.06 0.19 ± 0.01 < 0.0001
TGFB2 1 ± 0.03 0.36 ± 0.03 < 0.0001
TGFBR1 1 ± 0.04 0.43 ± 0.01 < 0.0001
SMAD4 1 ± 0.06 0.24 ± 0.01 < 0.0001
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when combined with clinically used chemo- 
therapeutics.

Lycopene treatment altered the expression of 
integrin α5 and activation of MAPK

To elucidate the signaling mechanisms of 
lycopene-mediated effects, OV-MZ-6 cells were 
incubated with a physiological (2 μM) and 
supra-physiological (5 μM) dose of lycopene  
for up to 24 hrs [24]. Both lycopene 
concentrations reduced the protein expression 
of integrin α5 in OV-MZ-6 cells at all time  
points tested, but not integrin β1 (Figure 4A). 
However, since the data originate from two  
biological replicates, outcomes were not con-
sidered significant, although the relative  
integrin α5 expression ratio was considerably 
reduced upon lycopene treatment (Figure 4B). 
Treatment of OV-MZ-6 cells with 2 and 5 μM 
lycopene substantially reduced the phosphory- 
lation of ERK1/2 after 24 hrs compared to the 
placebo (lycopene:placebo 0.23 ± 0.13 and 
0.24 ± 0.12 respectively). Integrin β1 and total 
ERK1/2 levels did not change.

To validate the inhibitory effect of lycopene 
treatment on the phosphorylation of ERK1/2, 
immunohistochemical analysis of tumor and 
metastatic tissues was performed using the 
same antibodies and a human-specific anti- 
body against vimentin as control staining [15]. 
Tumor tissues from animals treated with 
lycopene and the placebo showed no evidence 
of phosphorylation of ERK1/2 (Figure 4C). 
Strikingly, a strong phosphorylation of ERK1/2 
was observed in the metastatic tissue from 
placebo-treated animals compared to the 
negative staining upon lycopene treatment 
(Figure 4C). The reduced phosphorylation of 
ERK1/2 is in agreement with the reduced  
intraperitoneal metastasis and proliferation 

reduced ITGA5 (P = 0.02) but increased MMP9 
(P = 0.001) levels compared to the placebo 
(Figure 3D). Comparing lycopene with platin 
treatment, levels of ITGA5 (P < 0.0001), ITGB1 
(P = 0.0006), MMP9 (P < 0.0001), ILK (P < 
0.0001) and FAK (P < 0.0001) were significant-
ly down-regulated upon lycopene treatment, 
further indicating that this tumor model might 
be less sensitive to platin. The expression of all 
tested genes was significantly reduced in the 
triple lycopene + taxol + platin combination 
treatment compared to taxol + platin, which 
was confirmed by quantitative image analysis 
(Figure 3D).

To determine the therapeutic impact of lyco-
pene on the production of the integrin α5β1 
heterodimer and MMP9, immunohistochemical 
analysis and ELISA were conducted. As seen for 
the lycopene prevention regimen, staining of 
integrin α5β1 in tumor tissue was weaker upon 
lycopene treatment compared to the placebo. 
Comparing the combination treatments, the 
triple lycopene + taxol + platin combination 
treatment had the most profound effect in 
reducing integrin α5β1 in tumor tissues com-
pared to lycopene + taxol and taxol + platin 
(Figure 3E).

To validate the effects seen upon lycopene 
treatment, levels of human-derived MMP9 and 
CA125 were determined in serum and ascites. 
Lycopene treatment significantly reduced the 
level of MMP9 in serum but not in ascites com-
pared to the placebo (Figure 3F, left panel). The 
CA125 level was significantly reduced in asci-
tes upon lycopene treatment but not in serum 
compared to the placebo (Figure 3F, right 
panel). Overall, therapeutic administration of 
lycopene reduced tumor growth and cancer-
mediating factors, with a further reduction 

Figure 3. Effects of lycopene treatment ± chemotherapeutics. A. Tumor load was significantly reduced upon lycopene 
(P = 0.03), lycopene + taxol (P < 0.0001) and taxol + platin (P = 0.0002) regimen compared to the placebo (average 
radiance, mean ± SEM; n = 5). B. Metastatic load was significantly reduced upon lycopene + taxol (P = 0.005) and tax-
ol + platin (P = 0.0008) regimen compared to the placebo (average radiance, mean ± SEM; n = 5). Lycopene reduced 
the metastatic load significantly more than platin (P = 0.001). C. Immunohistochemical staining of Ki67 in tumor tis-
sue was most intense upon placebo and platin treatment, with all combination regimen having less positively stained 
cells than lycopene only (mean ± SEM; n = 5; P ≤ 0.01). Scale bars, 50 µm. D. Lycopene significantly reduced ITGA5 (P 
= 0.02) and increased MMP9 (P = 0.001) expression. Expression of ITGA5 (P < 0.0001), ITGB1 (P = 0.0006), MMP9 
(P < 0.0001), ILK (P < 0.0001) and FAK (P < 0.0001) were significantly induced upon platin compared to lycopene. 
Expression of ITGA5 (P < 0.0001), ITGB1 (P < 0.0001), MMP9 (P < 0.0001), FAK (P = 0.0002) and ILK (P = 0.0002) 
were significantly reduced upon lycopene + taxol + platin compared to taxol + platin. E. Immunohistochemical staining 
of integrin α5β1 in tumor tissue was weaker upon lycopene compared to the placebo, but more intense upon lycopene 
+ taxol and taxol + platin compared to lycopene + taxol + platin (mean ± SEM; n = 5; P ≤ 0.01). Scale bars, 50 µm. F. 
Lycopene treatment significantly reduced MMP9 in serum and CA125 in ascites.
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Figure 4. Effects of lycopene on signaling. A, B. Treatment of OV-MZ-6 cells with 2 and 5 μM lycopene reduced the 
expression of integrin α5. Phosphorylation of ERK1/2 was reduced at all time points with both concentrations, with 
a substantially reduction after 24 hrs of treatment (indicated in red). Integrin β1 and total ERK1/2 levels did not 
change. Values are normalized to no treatment and placebo controls. C. Immunohistochemical staining of pEKR1/2 
in tumor tissue was negative and positive in metastatic tissue from placebo-treated animals. Total ERK1/2 and 
vimentin staining intensity were strong in both treatment regimen and tissue types. Scale bars, 100 µm.
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seen in lycopene-treated animals. Total  
ERK1/2 and vimentin staining intensity was 
strong and unchanged in both treatment 
regimes and tissue types (Figure 4C). Overall, 
lycopene treatment decreased the protein 
expression of integrin α5 and inhibited  
ERK1/2 signaling, thus implying a role in 
integrin α5/MAPK signaling.

Discussion

Increasing evidence suggest that a tomato-
based diet or the supplemental intake of 
lycopene has a number of health benefits and 
protective effects against heart disease and 
cancer [25]. Epidemiological studies indicate 
that natural products or nutritional supple- 
ments may suppress the growth and meta- 
stasis of different tumor entities [26]. 
Antioxidants are a major group of naturally-
derived protective compounds that minimize 
cell damage generated by free radicals [27, 28]. 
The antioxidant properties of lycopene have 
been reported for the prevention and treat- 
ment of different tumor entities, especially in 
prostate cancer [10]. In ovarian cancer, the role 
of antioxidants is less studied.

Serous ovarian cancer, the most aggressive 
and prevalent type of ovarian cancer, originates 
from ovarian epithelial inclusion cysts and the 
fallopian tube epithelium [29]. This disease can 
be caused by malignant transformation of 
surface epithelial cells during ovulation [30, 
31]. Ovulation induced in animals caused 
enhanced macrophage infiltration into the 
fallopian tube epithelium and DNA damage in 
surface epithelial cells [29]. The reduction of 
oxidative stress at surface epithelia might be 
an approach to prevent or treat serous ovarian 
cancer. To date, lycopene’s potential preventive 
and therapeutic effects in ovarian cancer have 
not been studied [26]. To our knowledge, this is 
the first study demonstrating the impact of 
lycopene on ovarian cancer in vivo.

The preventive effect of lycopene on tumor 
growth and the therapeutic effect, as a single 
agent and in combination with clinically used 
chemotherapeutics, against established tu- 
mors were analyzed using a humanized 
approach. Clinically relevant disease models 
that recapitulate human tumor growth and 
metastasis are essential tools for advancing 
cancer research [32, 33]. Our group has shown 

that the humanized intraperitoneal animal 
model, used for this study, closely mimics 
human ovarian tumor growth and metastatic 
spread as seen in patients [14]. Lycopene 
prevention administered orally to NOD/SCID 
mice resulted in smaller tumors and signifi- 
cantly reduced intraperitoneal metastases 
compared to the placebo. Lycopene prevention 
decreased cell proliferation in primary tumors 
and metastases as demonstrated by weak 
Ki67 staining of both tissues. Tumor pro- 
gression is promoted by integrin β1 [34, 35], 
and increased integrin expression in tumors 
positively correlates with cancer cell invasion 
[36]. In this study, gene expression of ITGA5 
and ITGB1 was reduced upon lycopene 
prevention in both tumor and metastatic 
tissues. Correspondingly, a lower production  
of the integrin α5β1 heterodimer was observed 
in tumor tissue upon lycopene prevention 
compared to the placebo. A similar finding was 
reported by Bureyko et al [37], showing that 
lycopene-treated prostate cancer cells had a 
decreased expression of integrin α2β1.

Integrin signaling is mediated by interactions 
with the cytosolic ILK [38] and the cytoplasmic 
FAK [39]. ILK interacts with integrin β1 and β3 
subunits, mediating interactions between cells 
and the extracellular matrix (ECM) to regulate 
signaling pathways involved in cancer cell 
growth, survival and invasion [17, 40]. ILK 
expression is up-regulated in ovarian cancer 
and positively correlates with tumor pro- 
gression [17, 41]. ILK-deficient ovarian cancer 
cells have reduced tumorigenic potential in  
vivo [17]. FAK signaling is activated by integrin 
β1, β3 and β5 subunits, promoting cancer cell 
survival and invasion [19, 42]. FAK over- 
expression in ovarian cancer is associated  
with resistance to chemotherapeutics [39, 43]. 
In this study, gene expression of ILK and  
FAK were significantly reduced in tumors and 
metastases upon lycopene prevention.

EMT is a critical process that drives cancer 
development and progression [23]. In this 
study, we demonstrated that intraperitoneal 
metastatic tumors isolated from animals 
receiving lycopene prevention had significantly 
lower mRNA levels of all key EMT markers. 
These EMT genes are implicated in meta- 
stases, cancer cell invasion and disease pro- 
gression [44]. These findings suggest that the 
preventative lycopene regimen reduced the 
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metastatic load of ovarian cancer in NOD/SCID 
mice by down-regulation of integrin α5β1,  
integrin-interacting factors and EMT genes to 
suppress the aggressive stage of this disease 
and distant metastases.

Besides EMT, MMPs are strongly associated 
with cancer cell invasion and metastasis by 
degrading ECM proteins and the basement 
membrane [45, 46]. MMP9 is up-regulated in 
ovarian cancer and leads to metastasis and 
poor prognosis [20], while down-regulation of 
MMP9 inhibits metastatic spread [47]. Tang et 
al [48] reported a reduction of MMP9 levels in 
serum of colon cancer-bearing mice after 
receiving a combination of lycopene and fish 
oil. In this study, the preventive administration 
of lycopene reduced the gene expression of 
MMP9 in metastatic tissue and protein level in 
serum and ascites derived from ovarian cancer-
bearing mice, without reaching significance.  
In addition, lycopene prevention significantly 
decreased the level of CA125 in serum and 
ascites. These findings further suggest that  
the preventive intake of lycopene decreased 
ovarian tumor burden and diminished 
metastatic spread.

We also investigated lycopene’s potential as 
ovarian cancer treatment as a single agent and 
in combination with the clinically used chemo- 
therapeutics taxol and platin to validate 
possible synergistic effects of lycopene with 
these cytotoxic drugs. Lycopene treatment was 
superior to the placebo in reducing the tumor 
burden. Interestingly, the lycopene + taxol 
combination treatment was as effective as the 
taxol + platin combination in reducing both the 
tumor and metastatic loads. Comparing 
lycopene and platin in a single agent regimen, 
lycopene reduced the metastatic load in 
ovarian cancer-bearing mice even further than 
platin. Thus, lycopene might be useful to reduce 
the development of intraperitoneal metastases 
that are less sensitive to platin.

Enhanced anti-tumor effects of cytotoxic  
drugs, such as docetaxel, in combination with 
lycopene have also been described by Tang et 
al [49] to treat prostate cancer-bearing mice. 
Similar to this study, integrin α5β1 was reduced 
at both gene and protein levels upon lycopene 
treatment. Compared to platin treatment, 
lycopene reduced the expression of ITGA5, 

ITGB1, MMP9, FAK and ILK. The addition of 
lycopene to the taxol + platin combination 
treatment had the most profound effect on all 
genes investigated. High levels of integrin β1 in 
ovarian cancer correlate with advanced stage 
and poor survival [50]. In this study, the triple 
lycopene + taxol + platin combination treatment 
reduced the production of the integrin α5β1 
heterodimer even further than the taxol +  
platin and lycopene + taxol combinations. 
These findings indicate that lycopene synergis- 
tically enhanced anti-tumorigenic effects of 
chemotherapeutics and potentially minimises 
side effects of chemotherapy.

The expression of Ki67 in tumor tissues was 
lowered upon lycopene treatment compared to 
the placebo. The impact of lycopene on cancer 
cell proliferation has been reported by others 
[51-54]. Lycopene treatment with physiological 
and supra-physiological concentrations redu- 
ced the protein expression of integrin α5 and 
inhibited MAPK signaling. The integrin α5/
MAPK pathway regulates different cell funct- 
ions, including cell proliferation and survival 
[55, 56]. Not only lycopene, but also other  
naturally-derived compounds, such as dietary 
fats or cruciferous vegetables, which are part 
of the human diet, can influence MAPK sig- 
naling in different cancer entities, such as 
colon and rectal cancer [56]. El-Senduny et al 
[55] showed that cucurbitacin B in combi- 
nation with cisplatin depleted the phosphory- 
lation of ERK1/2, which sensitized ovarian  
cancer cells to cisplatin [55]. Our study was 
performed with ovarian cancer OV-MZ-6 cells, 
representative of serous ovarian cancer (type 
II). However, this humanized intraperitoneal  
animal model is a tool to further expand 
research into type I ovarian cancers.

Conclusions

Lycopene, administered orally to NOD/SCID 
mice in a preventive manner significantly 
reduced the intraperitoneal metastatic load 
and given as therapeutic significantly reduced 
the tumor load of ovarian cancer-bearing mice. 
Strikingly, lycopene synergistically enhanced 
the response of ovarian cancer cells to the 
clinically used chemotherapeutics paclitaxel 
and carboplatin. These anti-tumorigenic effects 
were mediated by a down-regulation of ITGA5, 
ITGB1, MMP9, FAK, ILK and EMT markers, all 
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factors involved in disease progression. Both 
preventive and therapeutic lycopene regimen 
decreased the expression of CA125, the 
clinically used ovarian tumor biomarker. 
Lycopene treatment of ovarian cancer OV- 
MZ-6 cells reduced the protein expression of 
integrin α5 and activation of MAPK signaling. 
To date, most studies on lycopene have been 
undertaken in prostate and breast cancer 
models [10]. This study demonstrates, for the 
first time, that lycopene exerts its antioxidative 
effects in a bioengineered disease model of 
ovarian cancer. These findings give reason to 
further expand lycopene research into the 
prevention and therapy of ovarian cancer.
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