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Abstract: Evidence is accumulating that long non-coding RNAs (lncRNAs) exert crucial roles in the incidence and 
progression of tumors. HOXD cluster antisense RNA 1 (HOXD-AS1), a cancer-related lncRNA, has been frequently 
reported to be involved in tumorigenesis and dysregulated in multiple types of human cancers; however, little is 
known about its role in ovarian cancer (OC). This study aimed to explore the role of HOXD-AS1 in OC and elucidate 
the potential mechanism involved. In the current study, HOXD-AS1 was observed to be upregulated in both OC 
tissues and cell lines. Besides, elevated expression of HOXD-AS1 was found to be associated with poor prognosis 
of OC patients. Furthermore, functional studies demonstrated that HOXD-AS1 promoted OC cell proliferation and 
colony formation, and enhanced the migration and invasion capabilities of OC cells. Mechanistically, HOXD-AS1 was 
detected to positively regulate the expression of frizzled family receptor 4 (FZD4) by competitively binding to miR-
608. Taken together, HOXD4-AS1 exerts tumor-promoting functions through miR-608/FZD4 axis in OC. Our findings 
indicate that HOXD-AS1 may be used as a promising therapeutic target and a novel prognostic biomarker for OC.  
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Introduction

Ovarian cancer (OC) is the most fatal gyneco-
logical malignancy and the fourth leading cause 
of cancer-related deaths among women [1, 2]. 
It was estimated that 22,280 new cases of  
OC were diagnosed and 14,240 patients died 
from OC in the United States in 2016 [3]. The 
high mortality is partially attributed to the fact 
that the early-stage OC is mostly asymptomatic 
[4-6]. Although conventional therapeutic strate-
gies have been developed, the long-term prog-
nosis of OC patients is still poor. Therefore, no- 
vel and effective therapeutic approaches are in 
urgent demand.

Long non-coding RNAs (lncRNAs) are a large 
type of mRNA-like non-coding transcripts lon-
ger than 200 nucleotides, which do not serve 
as templates for protein synthesis [7, 8]. Besi- 
des, LncRNAs are expressed in tissue-specific 
and time-specific manners. Recently, lncRNAs 
have gained increasing attention and been re- 
ported to be implicated in a wide range of hu- 
man cancers [9-11]. Accumulating evidence 

has revealed that lncRNAs may exert their  
roles in tumorigenesis by competitively binding 
to cancer-related microRNAs (miRNAs) [12-14]. 
Antisense long non-coding RNAs (aslncRNAs) 
are a class of lncRNAs that are oriented in the 
antisense direction relative to protein-coding 
mRNA transcripts [15, 16]. 

It is acknowledged that HOXD is a member of 
homeobox (HOX) gene family, which plays cru-
cial roles in the development of embryos and 
organs [17, 18]. HOXD cluster antisense RNA  
1 (HOXD-AS1), a novel lncRNA, is transcribed 
from the HOXD gene cluster located on human 
chromosome 2q31.2 in an antisense manner. 
Increasing evidence has revealed that ectopic 
expression of HOXD-AS1 is involved in the oc- 
currence and progression of diverse types of 
human tumors, including hepatocellular carci-
noma, bladder cancer, prostate cancer, neuro-
blastoma and gastric cancer [19-23]; however, 
its role in OC remains to be elucidated. 

The present study aimed to explore the role of 
HOXD-AS1 in OC and clarify the potential molec-
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ular mechanisms involved. In the current stu- 
dy, we found HOXD-AS1 was notably upregulat-
ed in OC tissues and cell lines. Moreover, func-
tional studies showed that HOXD-AS1 promot-
ed OC cell proliferation, migration and invasion. 
Additionally, mechanistic studies demonstrat-
ed that HOXD-AS1 exerts tumor-promoting ro- 
les through miR-608/FZD4 axis in OC. 

Materials and methods

Patients and tissue samples

OC tissues and the corresponding adjacent 
non-cancerous tissues were obtained from 16 
patients in the First Affiliated Hospital of Jin- 
zhou Medical University (Jinzhou, China) from 
February 2014 to December 2016. Correspond- 
ing adjacent normal tissues were obtained at a 
distance of 5 cm from OC tissues. All clinical 
specimens were immediately frozen in liquid 
nitrogen and stored at -80°C for further experi-
ments. This study was carried out in accordan- 
ce with the guidelines by the Ethics and Scien- 
tific Committee of Jinzhou Medical University. 
Written informed consent was obtained from all 
patients enrolled in the current study. 

Cell culture

Three human OC cell lines (Caov-3, SK-OV-3 
and OVCAR-3) and a normal human ovary cell 
line (IOSE80) were obtained from Shanghai Cell 
Bank, Chinese Academy of Sciences (Shang- 
hai, China). These cells were cultured in DMEM 
medium (Gibco, Grand Island, New York, USA) 
supplemented with 10% fetal bovine serum 
(FBS, Sigma-Aldrich, St. Louis, MO, USA). All the 
cells were maintained at 37°C in a humidified 
incubator with 5% CO2.

RNA extraction and quantitative real-time poly-
merase chain reaction (qRT-PCR)

Total RNA and microRNAs were extracted from 
tissues and cells using TRIzol reagent (Qiagen, 
Hilden, Germany) according to the manufactur-
er’s protocol. Following quantification by Nano- 
drop 2000 (Thermo Fisher Scientific, Waltham, 
USA), the extracted total RNA was reverse-tran-
scribed using Reverse Transcription Kit (Taka- 
ra, Dalian, China). RT-PCR was performed on an 
Applied Biosystems 7500 Fast Real-Time PCR 
systems (Applied Biosystems). The specific pri- 
mer sequences synthesized by Shanghai San- 
gon Biological Engineering Technology and Ser- 

vice were as followed: HOXD-AS1, forward 5’- 
GGCTCTTCCCTAATGTGTGG-3’ and reverse 5’- 
CAGGTCCAGCATGAAACAGA-3’; FZD4, forward 
5’-GGTGGCTCCCCTCTTTACTT-3’, reverse 5’-AT- 
CACACACGTTGCAGAAC-3’; GAPDH, forward 5’- 
ACAACTTTGGTATCGTGGAAGG-3’, reverse 5’-G- 
CCATCACGCCACAGTTTC-3’. The PCR conditions 
were as follows: denaturation at 95°C for 10 
min, followed by 40 cycles of 95°C for 5 sec 
and 60°C for 40 sec. GAPDH was used as an 
endogenous control to normalize HOXD-AS1 
and FZD4 expression levels. The relative ex- 
pression level was calculated using the 2-ΔΔCt 
method. The experiments were performed in 
triplicate.

Cell transfection

Cell transfection was performed using Lipofec- 
tamine 2000 (Invitrogen, Waltham, USA) ac- 
cording to manufacturer’s instructions. Cells 
(5×105 cells/well in six-well plates, 70%~80% 
confluency) were transfected with HOXD-AS1 
mimics or si-HOXD-AS1. HOXD-AS1 mimics and 
small interfering RNA to knockdown HOXD-AS1 
were synthesized by Shanghai GenePharma 
Co., Ltd. (Shanghai, China). Small interfering 
RNA sequences were listed as followed: si-
HOXD-AS1 sense, 5’-GAAAGAAGGACCAAAGT- 
AA-3’; si-HOXD-AS1 antisense, 5’-GCACAAAG- 
GAACAAGGAAA-3’. Cells were harvested 48 h 
post-transfection for further experiments. 

Cell viability assay

Cell proliferation was assessed using MTT Cell 
Proliferation and Cytotoxicity Assay Kit (Sigma-
Aldrich, St. Louis, USA) according to the manu-
facturer’s instructions. In brief, cells were seed-
ed in each well of a 96-well plate at a density of 
1×104 cells/well. Following incubation at 37°C 
for different periods of time (0, 24, 48 and 72 
h), the culture medium was removed and MTT 
(20 μl; 5 mg/mL) was added to each well. After 
incubation at 37°C for another 4 hours, MTT 
solution was removed and replaced with di- 
methyl sulfoxide (DMSO; 150 μl, 4%; Sigma-
Aldrich). Absorbance was measured at 560 nm 
by a microplate reader (Bio-Tek Instruments, 
Germany).

Colony formation assay

Colony formation assays were performed to 
evaluate the clonogenic ability of OC cells. 
Briefly, 400 cells from each treatment were 
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allowed to grow for two weeks on 6-well culture 
plates to form colonies. Crystal violet (2%) was 
used to stain colonies and the number of colo-
nies was subsequently counted under an invert 
microscope (Olympus, Japan). The experiments 
were performed in triplicate.

Wound healing assay

Cells were seeded in 6-well culture plates to 
grow into a monolayer (basically 100% conflu-
ence). The cell monolayer was scraped using 
pipette and washed twice with medium to form 
a wound. The cells were further cultured in the 
medium for 24 h and closure of scratch was 
observed using a inverted microscope (Olym- 
pus). Cells were observed at 0 and 24 h after 
scraping under an inverted microscope and 
corresponding photographs were taken. The 
cell-free area at 24 h after wounding and origi-
nal denuded area were measured using the 
Image J software (National Institutes of Health, 
Bethesda, MD, USA). 

Transwell invasion assay

Transwell invasion assay was performed to 
assess cell invasion. The upper surface of the  
a filter (pore size, 8.0 μm; Biosciences, Heidel- 
berg, Germany) was coated with basement 
membrane Matrigel (BD Bioscience), at a con-
centration of 2 mg/ml and incubated at 4°C for 
3 h. 2×104 cells were seeded into upper cham-
ber with 200 μl serum-free medium. The lower 
chamber was supplemented with 750 μl medi-
um containing 10% FBS. Following incubation 
for 24 h at 37°C, cells were fixed with 4% poly-
oxymethylene and stained with 0.5% crystal 
violet (Sigma-Aldrich). Then stained cells were 
observed and counted under a microscope. 
Five visual fields were selected and the aver- 
age number was taken. 

Luciferase reporter assay

Wild-type HOXD-AS1, mutant HOXD-AS1 were 
inserted into pmirGLO reporter vectors (Prome- 
ga, Madison, WI, USA), respectively. OVCAR-3 
cells were co-transfected with miR-608 mimics 
and wild-type HOXD-AS1 or mutant HOXD-AS1 
by Lipofectamine 2000 (Invitrogen). Relative 
luciferase activity was measured on a dual-lu- 
ciferase reporter assay system (Promega) at 48 
h post-transfection. Data were expressed as 
the ratio of Renilla luciferase activity to firefly 
luciferase activity. Luciferase reporter assays 

to validate the direct binding of miR-608 to 
FZD4 3’UTR were performed as described 
above.

RNA-binding protein immunoprecipitation (RIP)

RIP assays were performed using EZ-Magna 
RIPTM RNA-Binding Protein Immunoprecipitation 
Kit (Millipore, Billerica, MA, USA) according to 
manufacturer’s protocol. Briefly, RIP buffer con-
taining magnetic beads conjugated with human 
anti-Ago2 antibody (Millipore) or negative con-
trol IgG (Millipore) was added to cell lysate and 
incubated for overnight at 4°C. Proteinase K 
was used to digest the protein and then the co-
precipitated RNAs were isolated. The purified 
RNAs were subject to RT-PCR analysis.

Western blot analysis

Protein lysates were extracted from cells using 
500 μl radio immunoprecipitation assay (RIPA) 
buffer with 1 mM phenylmethane sulfonyl fluo-
ride. Samples were subsequently sonicated for 
2 min and centrifuged. The supernatants were 
collected and used for protein analysis. Lysates 
were separated on 8% polyacrylamide gels and 
transferred onto PVDF membrane. The mem-
branes were blocked with phosphate-buffered 
saline (PBS) containing 0.1% Tween-20 (PBST) 
and 5% nonfat milk (w/v) for 1 h at room tem-
perature. After they were washed with PBST, 
the membranes were probed with antibodies 
overnight at 4°C. Anti-FZD4 (ab83042) and 
anti-GAPDH (ab8245) were obtained from Ab- 
cam (Cambridge, MA, USA) and used at the fol-
lowing dilutions: anti-FZD4 (1:1000) and anti-
GAPDH (1:3000). The membranes were washed 
again with PBST, then horseradish peroxidase 
(HRP) labeled IgG at 1:5000 dilution was added 
at room temperature for 1 h, and the blots were 
developed using ECL Western blotting reagents.

Statistical analysis

Data were expressed as mean ± standard devi-
ation (SD). Statistical analysis was performed 
using SPSS 16.0 software (SPSS, Chicago, IL, 
USA). Kaplan-Meier survival and log-rank test 
were used for survival analysis and comparison 
of differences in overall survival. Correlation 
between HOXD-AS1 expression and miR-608 
or FZD4 expression in OC tissues was deter-
mined using Pearson’s correlation analysis. 
Two-tailed student’s t-test was applied to com-
pare the differences between two groups and 
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one-way analysis of variance (ANOVA) followed 
by Dunnett’s multiple comparison was employ- 
ed to compare the differences among three 
independent groups. P<0.05 was considered 
statistically significant.

Results 

HOXD-AS1 is significantly upregulated in OC 
tissues and cell lines

Even though HOXD-AS1 has been frequently 
reported to be involved in the oncogenesis  
and progression of diverse types of human can-
cers, its role in OC remains unclear. Initially, we 
performed qRT-PCR analysis to examine the 
expression of HOXD-AS1 in 16 pairs of OC tis-
sues and matched adjacent noncancerous tis-
sues. As evident from qRT-PCR analysis, OC tis-
sues exhibited higher expression levels of 
HOXD-AS1 than paracancerous tissues (Figure 
1A). To investigate the association between in- 
creased HOXD-AS1 expression and the progno-
sis of OC patients, we analyzed the information 
of 369 patients downloaded from TCGA online 
database. Patients with high HOXD-AS1 expres-
sion were discovered to experience lower over-
all survival rate compared with those with low 
HOXD-AS1 expression (Figure 1B). Consistently, 
HOXD-AS1 was significantly upregulated in OC 
cell lines (Caov-3, SK-OV-3 and OVCAR-3) com-
pared with normal ovary cell line IOSE80 (Figure 
1C). OVCAR-3 cells (highest endogenous HOXD-
AS1 expression) were selected for subsequent 

experiments. The findings indicate that elevat-
ed expression of HOXD-AS1 may be associated 
with poor prognosis of OC patients. Taken toge- 
ther, HOXD-AS1 is markedly up regulated in OC 
tissues and cell lines.

HOXD-AS1 promotes OC cell proliferation and 
colony formation

To explore the potential role of HOXD-AS1 in 
OC, OVCAR-3 cells were transfected with HO- 
XD-AS1 mimics or siRNA-HOXD-AS1. The trans-
fection efficiency was identified using qRT-PCR 
(Figure 2A). As presented in Figure 2B, OVCAR-
3 cell proliferation was dramatically accelerat-
ed by HOXD-AS1 mimics compared with nega-
tive control group, whereas HOXD-AS1 knock-
down markedly suppressed OVCAR-3 cell prolif-
eration. As evident from colony formation as- 
say, HOXD-AS1 overexpression markedly enhan- 
ced clonogenic ability of OVCAR-3 cells; in addi-
tion, clonogenic capability of OVCAR-3 cells was 
notably repressed by HOXD-AS1 downregula-
tion (Figure 2C). These results indicate that HO- 
XD-AS1 promotes OC cell proliferation and col-
ony formation.

HOXD-AS1 accelerates OC cell migration and 
invasion

To determine whether HOXD-AS1 influences 
the mobility of OC cells, we evaluated the mi- 
gration and invasion capabilities of OVCAR-3 
cells after transfection with HOXD-AS1 mimics 
or si-HOXD-AS1. As obvious from would healing 

Figure 1. HOXD-AS1 is significantly upregulated in OC tissues and cell lines. A. Relative expression levels of HOXD-
AS1 in 16 pairs of OC tissues and adjacent noncancerous tissues were identified using qRT-PCR. B. Information on 
369 cases with OC was downloaded from TCGA database. Patients were divided into high HOXD-AS1 expression 
group and low HOXD-AS1 expression group on the basis of the median of HOXD-AS1 expression levels in OC tissues. 
Kaplan-Meier survival analysis and log-rank test were applied to evaluate the correlation between HOXD-AS1 ex-
pression levels and overall survival rate. C. Relative expression levels of HOXD-AS1 in normal ovary cell line IOSE80 
and three OC cell lines (Caov-3, SK-OV-3 and OVCAR-3). **P<0.01. HOXD-AS1, HOXD homeobox gene cluster anti-
sense RNA 1; OC, ovarian cancer. TCGA, the cancer genome atlas.
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assays, HOXD-AS1 overexpression markedly en- 
hanced the migration ability of OVCAR-3 cells 

compared with negative control group, whereas 
migration capability of OVCAR-3 cells was dra-

Figure 2. HOXD-AS1 promotes OC cell proliferation and colony formation. A. HOXD-AS1 expression levels were iden-
tified using qRT-PCR after transfection with HOXD-AS1 mimics or si-HOXD-AS1. B. Cell proliferation was identified 
using MTT assay after transfection with HOXD-AS1 mimics or si-HOXD-AS1. C. Clonogenic ability was assessed by 
colony formation assays after transfection with HOXD-AS1 mimics or si-HOXD-AS1. **P<0.01. HOXD-AS1, HOXD 
homeobox gene cluster antisense RNA 1; OC, ovarian cancer; siRNA, small interfering RNA; NC, negative control.
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matically inhibited by HOXOD-AS1 knockdown 
(Figure 3A). Transwell invasion assays demon-
strated that OVCAR-3 cell invasion was remark-
ably promoted by HOXD-AS1 mimics compared 
with negative control group, besides, HOXD-
AS1 downregulation significantly repressed OV- 
CAR-3 cell migration (Figure 3B). Our findings 

indicate that HOXD-AS1 accelerates OC cell 
migration and invasion. 

HOXD-AS1 interacts with miR-608 in OC cells

Mounting studies have showed that lnc RNAs 
may be involved in the pathogenesis and devel-

Figure 3. HOXD-AS1 promotes OC cell migration and invasion. A. Cell migration was assessed using would healing 
assays. B. Cell invasion was evaluated by transwell invasion assays. **P<0.01. HOXD-AS1, HOXD homeobox gene 
cluster antisense RNA 1; OC, ovarian cancer; siRNA, small interfering RNA; NC, negative control.
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opment of various human tumors via competi-
tive binding to miRNAs. To elucidate the under-
lying mechanisms by which HOXD-AS1 pro-
motes OC cell proliferation, migration and inva-
sion. We applied miRanda algorithm to predict 
the potential targets of HOXD-AS1. miR-608, 
frequently reported to be involved in multiple 
types of human cancers, was selected as a 
candidate target of HOXD-AS1 (Figure 4A). Fur- 
thermore, we constructed luciferase reporters 
containing the predicted miR-608 binding site 
(wt-HOXD-AS1) and its corresponding mutant 
site (mut-HOXD-AS1). As presented in Figure 
4B, co-transfection of miR-608 and wt-HOXD-
AS1 markedly decreased the luciferase activity, 
while co-transfection with miR-608 and mut-
HOXD-AS1 did not change the luciferase activi-
ty. To confirm the interaction between HOXD-

OC proliferation, migration and invasion, the po- 
tential targets of miR-608 were predicted using 
miRanda online software. Among the predicted 
targets, FZD4 arose our interest for its impor-
tance in carcinogenesis and progression of a 
wide range of human tumors, and was selected 
as a candidate target of miR-608 (Figure 5B). 
Luciferase reporter assays were performed to 
validate the direct binding of miR-608 to FZD4 
3’UTR. As illustrated in Figure 5C, co-transfec-
tion of miR-608 and wild-type FZD4 3’UTR sig-
nificantly repressed the activity of luciferase in 
comparison with negative control group, where-
as co-transfection of miR-608 and mutant FZ- 
D4 3’UTR failed to suppress luciferase activity. 
RT-PCR analysis and Western blotting analysis 
revealed that FZD4 was dramatically downregu-
lated by miR-608 mimics (Figure 5D and 5E). 

Figure 4. HOXD-AS1 interacts with miR-608 in OC cells. A. A putative binding 
site of miR-608 in HOXD-AS1 was predicted by miRanda algorithm. B. Lucif-
erase activity was detected after co-transfection with miR-608 and wt-HOXD-
AS1 or mut-HOXD-AS1. C. Anti-Ago2 RIP was performed to enrich miRNAs 
interacted with HOXD-AS1 in OVCAR-3 cells after transfection with mimics-NC 
or HOXD-AS1 mimics, followed by qRT-PCR to detect miR-608 levels in the 
immunoprecipitates. **P<0.01. HOXD-AS1, HOXD homeobox gene cluster 
antisense RNA 1; OC, ovarian cancer; wt, wild-type; mut, mutant; Ago2, argo-
naute 2, RIP, RNA immunoprecipitation. 

AS1 and miR-608, anti-Ago2 
RIP assays were performed to 
pull down endogenous miR-
NAs interacted with HOXD-
AS1 in OVCAR-3 cells. MiR-
608 was observed to be sig-
nificantly enriched by HOXD-
AS1 mimics treatment com-
pared with negative control 
group (Figure 4C). These re- 
sults suggest that HOXD-AS1 
interacts with miR-608 in OC 
cells. 

HOXD-AS1 upregulates FZD4 
expression by competitively 
binding to miR-608 in OC 
cells 

Recent studies have demon-
strated that lncRNAs may ser- 
ve as competing endogenous 
RNAs (ceRNAs) through com-
petitively binding to shared 
miRNAs. As presented in Fig- 
ure 5A, HOXD-AS1 mimics sig-
nificantly downregulated miR-
608 expression in OVCAR-3 
cells compared with negative 
control group, whereas knock-
down of HOXD-AS1 upregu- 
lated miR-608 expression in 
OVCAR-3 cells. To further elu-
cidate the molecular mecha-
nism by which HOXD-AS1 ex- 
erts its promotive effects on 
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These data indicate that miR-608 directly binds 
to 3’UTR of FZD4 to suppress its expression.

To investigate whether HOXD-AS1 modulates 
the expression of FZD4, we transfected OVCAR-
3 cells with HOXD-AS1 mimics or si-HOXD-AS1. 
As obvious from qRT-PCR analysis, FZD4 was 
markedly upregulated by HOXD-AS1 mimics 
compared with negative control group, whereas 
FZD4 was notably downregulated by knock-
down of HOXD-AS1 (Figure 5F). Additionally, 
Pearson’s correlation analysis showed that 
HOXD-AS1 expression was inversely correlated 
with miR-608 expression in OC tissues. On the 
contrary, HOXD-AS1 expression was positively 
correlated with FZD4 mRNA expression in OC 
tissues (Figure 5G and 5H). Our findings sug-
gest that HOXD-AS1 positively modulates the 
expression of FZD4 by sponging miR-608. 

miR-608 mediates the effects of HOXD-AS1 on 
OC cell proliferation, migration and invasion

To investigate whether the promotive effects of 
HOXD-AS1 on OC cell proliferation, migration 
and invasion are mediated by miR-608, we res-
cued the expression of miR-608 in OVCAR-3 
cells. Restoring the expression of miR-608 was 
noticed to partially reverse the promotive ef- 
fects of HOXD-AS1 on OC cell proliferation, col-
ony formation, migration and invasion (Figure 
6A-D). Furthermore, qRT-PCR and Western blot- 
ting analyses demonstrated that rescuing the 
expression of miR-608 dramatically down-regu-
lated the expression of FZD4 in OVCAR-3 cells 
(Figure 6E and 6F). Our data indicate that the 
promotive effects of HOXD-AS1 on OC cell pro-
liferation, migration and invasion are mediated 
by miR-608.

Discussion

OC, a lethal malignancy of the female reproduc-
tive system, has brought high health risks and 
tremendous economic pressures to the woman 

around the world [3, 5]. Even though conven-
tional therapeutic strategies, such as surgery, 
radiotherapy and chemical therapy, have slight-
ly improved the overall survival of OC patients, 
the long-term prognosis remains poor. Mounting 
evidence has demonstrated that lncRNAs are 
dysregulated in a wide range of human cancers 
and involved in the oncogenesis and progres-
sion [11-14]. Previous studies have revealed 
that aberrant expression of HOXD-AS1 is impli-
cated in multiple types of human tumors. Wang 
et al discovered that HOXD-AS1 was significant-
ly upregulated and in hepatocellular carcinoma 
tissues and plays a pro-metastasis role in liver 
cancer metastasis by regulating SOX4 [19]. Li 
et al demonstrated that HOXD-AS1 acted as an 
oncogene in the progression of bladder cancer 
[20]. HOXD-AS1 was found to function as an 
oncogene to facilitate non-small cell lung can-
cer progression by sequestering miR-147 [24]. 
Besides, HOXD-AS1 has been reported to be 
involved in the occurrence and development of 
gastric cancer, prostate cancer and neuroblas-
toma [21-23]. However, little is known about 
the role of HOXD-AS1 in OC. Thus, a better 
understanding of the biological functions of 
HOXD-AS1 may be useful for developing prom-
ising therapeutic strategies and identifying 
novel prognostic biomarkers. 

In the current study, we initially examined the 
expression of HOXD-AS1 in 16 pairs of OC tis-
sues and matched adjacent normal tissues and 
found that HOXD-AS1 was markedly upregulat-
ed in OC tissues. Furthermore, we downloaded 
the information of 369 OC patients from TCGA 
online database in order to investigate the as- 
sociation between HOXD-AS1 expression and 
the prognosis of OC patients. Kaplan-Meier sur-
vival analysis revealed that patients with high 
HOXD-AS1 expression experienced lower over-
all survival rate. Consistently, HOXD-AS1 was 
notably upregulated in OC cell lines. To better 
understand the role of HOXD-AS1 in OC, func-

Figure 5. HOXD-AS1 upregulates FZD4 expression by competitively binding to miR-608 in OC cells. A. MiR-608 
expression was detected by qRT-PCR after transfection with mimics-NC or HOXD-AS1 mimics. B. A putative binding 
site of miR-608 in FZD4 was predicted by miRanda online software. C. Luciferase activity was measured after co-
transfection with miR-608 and wt-FZD4 3’UTR fragment or mut-FZD4 3’UTR fragment. D. FZD4 mRNA expression 
was measured by qRT-PCR after transfection with miR-608 mimics. E. FZD4 protein expression was identified using 
western blots. F. FZD4 mRNA expression was assessed by qRT-PCR after transfection with HOXD-AS1 mimics or si-
HOXD-AS1. G. Correlation between HOXD-AS1 expression and miR-608 expression in OC tissues was determined 
by Pearson’s correlation analysis. H. Correlation between HOXD-AS1 expression and FZD4 mRNA expression in OC 
tissues was determined by Pearson’s correlation analysis. **P<0.01. HOXD-AS1, HOXD homeobox gene cluster 
antisense RNA 1; OC, ovarian cancer; FZD4, frizzled family receptor 4; wt, wild-type; mut, mutant.
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Figure 6. miR-608 mediates the effects of HOXD-AS1 on OC cell proliferation, migration and invasion. A. Cell prolif-
eration was assessed by MTT assays after rescuing the expression of miR-608. B. Clonogenic ability was identified 
by colony formation assays after rescuing the expression of miR-608. C. Cell migration was measured by wound 
healing assays. D. Cell invasion was evaluated by transwell invasion assay after rescuing the expression of miR-608. 
E. FZD4 mRNA expression was examined using qRT-PCR after rescuing the expression of miR-608. F. FZD4 protein 
expression was analyzed by western blots after rescuing the expression of miR-608. **P<001 vs NC mimics+Con 
group, ##P<0.01 vs HOXD-AS1 mimics+miR-608. HOXD-AS1, HOXD homeobox gene cluster antisense RNA 1; OC, 
ovarian cancer; NC, negative control.
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tional studies were conducted. Our data dem-
onstrated that HOXD-AS1 overexpression facili-
tated OC cell proliferation, enhanced the clono-
genic ability of OC cells, and accelerated OC 
cell migration and invasion. Our findings reveal 
that HOXD-AS1 may function as an oncogene in 
OC.

Evidence is accumulating that lncRNAs are 
involved in carcinogenesis and progression  
as competing endogenous RNAs (ceRNAs) by 
sponging miRNAs [25, 26]. Previous studies 
have demonstrated that miR-608 served as an 
tumor suppressor in various types of human 
tumors, including colon cancer, colorectal can-
cer, glioma and bladder cancer [27-30]. FZD4, 
a member of frizzled (FZD) receptor family, has 
been reported to function as the membrane 
receptor for Wnt signaling glycoproteins and 
implicated in the progression of human tu- 
mors [31-34]. To explore the underlying mo- 
lecular mechanisms by which HOXD-AS1 exerts 
an oncogenic role in OC, bioinformatics analy-
sis and luciferase reporter assays revealed  
that HOXD-AS1 could competitively bind to 
miR-608 in OVCAR-3 cells. In addition, FZD4 
was identified as a direct of miR-608 in OVCAR-
3 cells. Moreover, HOXD-AS1 was observed to 
upregulate the expression of FZD4 by compe- 
titively sponging miR-608 in OVCAR-3 cells. It 
was noted that HOXD-AS1 expression was neg-
atively correlated to miR-608 expression, but 
positively correlated to FZD4 mRNA expression 
in OC tissues. 

To further elucidate the mechanisms underly-
ing OC oncogenesis and progression, we res-
cued the miR-608 in the OVCAR-3 cells. Res- 
cuing the expression of miR-608 was found to 
partially inverse the promotive effects of HOXD-
AS1 on OC cell proliferation, colony formation, 
migration and invasion. Besides, rescuing the 
expression was noticed to down-regulate the 
expression of FZD4. These results demonstrat-
ed that indicate that the promotive effects of 
HOXD-AS1 on OC cell proliferation, colony for-
mation, cell migration and invasion were medi-
ated partially by miR-608/FZD4 axis. 

In conclusion, HOXD-AS is significantly upregu-
lated in OC tissues and cell lines, and exerts 
oncogenic roles in OC partially through miR-
608/FZD4 axis. Our study provides new insig- 
hts into the potential molecular mechanisms 
underlying OC carcinogenesis and progression. 

Thus, HOXD-AS1 may be used as a promising 
therapeutic target and a novel prognostic bio-
marker for OC. 
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