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Review Article 
Promising clinical application of ctDNA in  
evaluating immunotherapy efficacy
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Abstract: An increasing number of promising immunotherapies and related clinical trials have led to several major 
breakthroughs in multiple cancers, but a reliable and precise biomarker for evaluating efficacy and prognosis has 
not yet been established. As a typical representation of a liquid biopsy, circulating cell-free DNA (ctDNA) possesses 
the functions and advantages of tissue biopsy but its distinct advantages of convenience, real-time nature, non-
invasiveness and homogeneity make it superior to tissue biopsy. Indeed, compared with routine imaging and tumor 
markers, ctDNA offers an earlier indication and provides more precise information. ctDNA is reportedly able to 
identify immunotherapy responders, evaluate efficacy and survival time, screen immune checkpoint inhibitor resis-
tance and pseudo-progress and predict tumor recurrence and metastasis. Thus, ctDNA can act as an “Eagle Eye” 
by comprehensively monitoring both macro- and micro-changes in the immunotherapy process. Although ctDNA 
has become a research topic of interest, its limitations cannot be ignored, and improvements in its sensitivity and 
standardization are urgently needed. This review reveals the advantages and limitations of ctDNA as a precise bio-
marker and supports the feasibility of using ctDNA detection for common monitoring during immunotherapy.
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Overview of ctDNA

The emergence and gradual maturity of liquid 
biopsy has resulted in rapid changes to clinical 
diagnostic criteria and treatment measures for 
many tumors. The main components of a liquid 
biopsy include circulating tumor cells (CTCs), 
circulating cell-free DNA (cfDNA) and circulating 
tumor DNA (ctDNA). CTC is a type of tumor cell 
that spontaneously or passively detaches from 
the primary malignant tumor or site of metasta-
sis and is released into the peripheral blood 
circulation [1, 2]. ctDNA refers to free fragment-
ed DNA that is released by apoptotic or necrotic 
tumor cells into the circulatory system [3-5], 
and these fragments of the tumor genome pro-
vide insight into multiple genomic features at 
the molecular level, such as deletion and inser-
tion mutations. The detection of ctDNA requires 
only peripheral blood samples and has the 
additional advantages of being able to be used 
in real time, non-invasiveness, high reproduc-
ibility and homogeneity [6]. In the future, liquid 
biopsy is likely to play an important and irre-
placeable role in clinical practice [7, 8].

The mainstream ctDNA detection methods 
involve amplification refractory mutation sys-
tems (ARMSs) [9], droplet digital PCR (ddPCR) 
[10, 11], and next-generation sequencing (NGS) 
[12, 13]. ARMSs have a moderate cost, are sim-
ple to operate, and can sequentially detect mul-
tiple mutations in a single gene, but its sensitiv-
ity is inferior to that of ddPCR. Although ddPCR 
is highly sensitive, it is expensive and involves a 
complex procedure, and many samples and 
multiple tests are needed to reveal multiple 
mutations. NGS, which is currently the most 
commonly used method, has high sensitivity 
and is capable of simultaneously detecting mul-
tiple loci of multiple genes. There are also alter-
native methods for ctDNA detection, such as 
tagged-amplicon deep sequencing [14] and 
cancer personalized profiling by deep sequenc-
ing [15, 16].

Application of ctDNA in clinical immunother-
apy

Immunotherapy is different from traditional 
chemotherapy and targeted therapy because it 
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not only targets tumor cells or immune cells but 
also regulates the immune microenvironment 
[17-19]. Immunotherapy, which can be repre-
sented by the immune checkpoint blockade 
(ICB), is a milestone in the progress of the ongo-
ing struggle against cancer. Immunotherapy 
has the advantages of having excellent efficacy 
with few side effects and has thus attracted 
the attention of researchers. Moreover, an 
increasing number of new immunotherapies 
and related clinical trials have led to multiple 
major breakthroughs in metastatic melanoma, 
kidney cancer, bladder cancer, non-small cell 
lung cancer, small cell lung cancer, gastric can-
cer, prostate cancer, breast cancer, liver cancer 
and others [20-32]. With the rapid develop-
ment of the immunology field and its overlap 
with oncology and molecular biology, the per-
spectives on immune escape, immune toler-
ance and, in particular, immunotherapy are 
constantly being updated.

In the age of precise treatment, a profound 
understanding of tumorigenesis at the molecu-
lar and genetic levels helps guide antitumor 
treatments effectively. ctDNA can reveal geno- 

mic changes in the primary tumor and meta-
static lesions as well as during dynamic tumor 
progression in real time. Researchers have 
attempted to apply ctDNA to guide chemother-
apy, targeted therapy and radiotherapy [33-35], 
but its clinical value in immunotherapy remains 
unclear. According to the published literature, 
studies regarding ctDNA-guided immunothera-
py mostly focused on melanoma [36], and other 
tumors have only sporadically been addressed. 
Figure 1 shows a summary of the mechanisms 
and clinical applications of ctDNA, and the 
major ctDNA-related characteristics reported in 
previous studies are provided in Table 1. The 
applications of ctDNA are discussed in later 
sections.

Identification of patients responsive to immu-
notherapy

ctDNA conveys the genetic mutation informa-
tion of tumors and can indicate changes in the 
tumor burden in real time, which would aid the 
identification of sensitive patients who will 
respond to immunotherapy and guide the treat-
ment decisions of physicians. Previous studies 

Figure 1. Clinical applications of ctDNA.
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have found that patients with low or undetect-
ed levels of ctDNA at the beginning of and dur-
ing therapy might show a better response to 
immunotherapy [37, 38]. The study conducted 
by Gray ES [39] demonstrated that the response 
potential of patients with low baseline ctDNA 
levels (< 10 copies/ml) after treatment with ipi-
limumab, nivolumab or pembrolizumab was 
five-fold higher than that of patients with high 
baseline ctDNA levels (95% CI 1.8-13.8, P = 
0.009). After 8 weeks of these above-men-
tioned treatments, a decrease in the ctDNA 
concentration was positively correlated with 
the efficacy of the treatment. A study by Xi L 
[40] showed a strong correlation between the 
peak of the BRAF ctDNA level and the likelihood 
of an objective response, and a rapid decline in 
ctDNA indicated that these patients might 
achieve a complete response (CR) after treat-
ment. Among 13 patients who showed this ten-
dency, nine achieved a CR, and four exhibited a 
partial response (PR). Ashida A [41] studied the 
relationship between ctDNA and anti-PD-1 
immunotherapy in five melanoma patients and 
found that the level of ctDNA decreased within 
2-4 weeks in the three responsive patients but 
remained at a high level in the two unrespon-
sive patients. Moreover, Goldberg SB examined 
182 serial plasma samples from 49 metastatic 
non-small-cell lung cancer (NSCLC) patients 
receiving anti-PD-1 and/or anti-PD-L1 and fo- 

und that the patients whose ctDNA levels 
decreased by more than 50% exhibited longer-
term benefits compared with those whose 
ctDNA decreased by less than 50% (205.5 v 69 
days, P < 0.001) [42].

Evaluation of efficacy and survival

Overall survival (OS) and progression-free sur-
vival (PFS) are indicators used to evaluate the 
efficacy of a treatment in patients with tumors, 
and studies have shown that low baseline 
ctDNA levels might be associated with pro-
longed OS and PFS. Cabel L detected the 
changes in ctDNA levels in 15 patients with 
non-small cell lung cancer, uveal melanoma, 
and microsatellite-instable colorectal cancer 
who received anti PD-1 therapy. Those with 
undetectable levels of ctDNA in week 0 exhib-
ited prolonged OS compared with those with 
detectable levels of ctDNA, and the former 
patients had a 6.8-fikd higher risk of death 
than the former group (95% CI 1.1-41, P = 0.03) 
[38]. Goldberg SB’s study showed that patients 
with undetectable ctDNA at any point post-
treatment exhibited superior OS compared with 
patients with detectable ctDNA (HR 0.11, 95% 
CI 0.02-0.88, P = 0.037) [42]. Gray ES also 
detected the levels of ctDNA in metastatic mel-
anoma patients receiving anti-PD-1 and anti-
CTLA-4 and found that the baseline ctDNA lev-

Table 1. Common characteristics of the studies

References Number Types Detection 
methods

Immune check-
point inhibitors

ICB 
points Mutation gene(s)

[41] Melanoma ddPCR Nivolumab PD-1 BRAF/NRAS
[39] Melanoma ddPCR Nivolumab

Pembrolizumab
PD-1
PD-L1

BRAF V600E/K/R

[44] MM ddPCR
NGS

BMS-936559
Ipilimumab

PD-L1
CTLA-4

BRAF/NRAS/TERT/ALK

[37] MM ddPCR Nivolumab 
Pembrolizumab

Ipilimumab

PD-1
CTLA-4

BRAF V600E/K

[38] NSCLC/
UM/

MSI+CRC

ddPCR
Bi-RAP
NGS

Nivolumab 
Pembrolizumab

PD-1 KRAS/BRAF/GNA11/EGFR/
PTPN11/NF1/KEAP11/
TP53/HRAS/GNAQ/ERBB3

[40] MM castPCR Not reported PD-1
PD-L1

BRAF V600E

[43] SCAC ddPCR Nivolumab PD-1 Not reported
[6] Metastatic adenocarcinoma ddPCR Nivolumab PD-1 KRAS
Note: ICB, Immune checkpoint blockade. NGS, Next-generation sequencing. ddPCR, Droplet digital PCR. MM, Metastatic mela-
noma. NSCLC, Non-small cell lung cancer. UM, Uveal melanoma. MSI, Microsatellite instability. CRC, Colorectal cancer. Bi-PAP, 
Bidirectionalpyrophosphorolysis-activated polymerization PCR. castPCR, Competitive allele-specific 114 TaqMan PCR. SCAC, 
Squamous cell carcinoma of the anal canal. 
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els of patients with PFS > 6 months were lower 
than those of patients with PFS < 6 months 
(baseline ctDNA, 5 versus 87.2 copies/ml, P = 
0.049). Thus, a lower baseline ctDNA level (< 
10 copies/ml) is associated with longer PFS 
(HR = 3.7, 95% CI 1.2-12.5, P = 0.034) [39]. 
Nonetheless, only clinical examinations with a 
small number of samples have been published 
on this topic to date, and studies with larger 
samples are needed. The predictive value of 
ctDNA regarding the survival time of patients 
receiving extended immunotherapy has also 
been reported. Cabel L found that the PFS of 
patients with detectable ctDNA in week 8 was 
shorter than that of patients with undetectable 
ctDNA, and the recurrence risk of the former 
group was 10.2-fold higher than that of the lat-
ter group of patients (95% CI 2.5-4.0, median 
PFS, 2 v 11 months, P = 0.001) [38]. Lee JH 
investigated 86 melanoma patients who had 
received pembrolizumab or nivolumab mono-
therapy or ipilimumab combination therapy  
and found that the baseline ctDNA-/follow-up 
ctDNA- group and baseline ctDNA+/follow-up 
ctDNA- group had significantly longer PFS than 
the baseline ctDNA+/follow-up ctDNA+ group. 
Compared with the third group, the recurrence 

risk was decreased by 92% in the baseline 
ctDNA-/follow-up ctDNA- group and by 85% in 
the baseline ctDNA+/follow-up ctDNA- group 
(95% CI 0.03-0.20, P < 0.001; 95% CI 0.03-
0.18, P < 0.001, respectively). The first two 
groups also exhibited significantly prolonged 
OS compared with the baseline ctDNA+/follow-
up ctDNA+ group, with 89% and 88% reduc-
tions in the risk of death, respectively (95% CI 
0.03-0.17, P < 0.001; 95% CI 0.05-0.43, P < 
0.001) [37].

Screening for resistance and pseudo-progress

Tumor cells will inevitably escape ICB after a 
period of treatment, and immunotherapy resis-
tance and disease progression will occur [41]. 
However, in the early stage of immunotherapy, 
the inflammatory reaction induced by ICB usu-
ally results in the appearance of larger tumor 
lesions or new lesions before the tumor actually 
shrinks, and this phenomenon is called pseu-
do-progression [43, 44]. However, imaging tech- 
nology is insufficient for distinguishing pseudo-
progression from drug resistance. The Respon- 
se Evaluation Criteria in Solid Tumors (RECIST) 
evaluates changes as progressive disease (PD) 

Figure 2. The comparison of pseudo-progression and true progression in Macrostate and microstate.
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but the assessment methods for new lesions 
and the evidence for judging disease progres-
sion have been updated in new immune-relat-
ed RECIST (irRECIST). Regardless, the judg-
ment process is not exact. Pseudo-progression 
causes clinicians to mistakenly presume that 
immunotherapy resistance has occurred [6]. 
While imaging is inadequate for judging pseu-
do-progression, ctDNA can provide a reflection 
of the tumor burden in real time. Specifically, 
the tumor mutation burden reflects somatic 
mutations and the production of new antigens 
at the RNA and protein levels. Higher ctDNA lev-
els indicate better ICB efficacy, and continu-
ously high levels predict true progress [45]. 
Guibert N observed pseudo-progression in two 
cases. One patient showed high levels of KRAS-
mutated ctDNA at baseline at the beginning of 
anti-PD-1 treatment; on the 30th day, the ctDNA 
level showed a significant decreased to an un- 
detectable level, and the ctDNA levels remained 
low on the 60th and 120th days. However, a CT 
scan on the 60th day showed that the mass had 
significantly increased in size (28 mm), and 
RECIST and irRECIST identified it as PD. How- 
ever, on the 120th day, the mass was markedly 
smaller than its initial size, and this observation 
confirmed that the enlargement observed on 
the 60th day was associated with pseudo-pro-
gression. However, in the other patients, paral-
lel changes in imaging and ctDNA indicated the 
true outcome of the immunotherapy applied 
[6]. Ashida A’s study [41] also provided evi-
dence supporting the notion that ctDNA moni-
toring can be used to distinguish real progres-
sion from pseudo-progression: for patients with 
pseudo-progression, the ctDNA levels decrease 
rapidly and persistently, whereas patients with 
real progression exhibit significant increases in 
their ctDNA levels. Therefore, ctDNA monitoring 
at different time points aids the identification  
of true resistance from pseudo-progression 
(Figure 2).

Prediction of tumor recurrence and metastasis

Resistance to immunotherapy inevitably leads 
to tumor progression. CTCs, which might be 
present in blood, form a tumor embolus after a 
series of migration, adhesion and aggregation 
steps [46, 47] and eventually cause tumor re- 
currence and metastasis [48]. Because ctDNA 
is derived from necrotic or apoptotic CTCs, an 
increase in concentrations might predict the 
risk of recurrence and metastasis to a certain 

extent [43]. In Ashida A’s study, a decline in the 
ctDNA level in patients with the BRAF V600E 
mutation who received nivolumab indicated 
stable disease, whereas an increase in the 
ctDNA level indicated PD after 210 days, and 
imaging data obtained on the 240th day con-
firmed this result [41]. Thus, ctDNA might serve 
as a warning indicator before the actual occur-
rence of metastasis and, in the future, might 
help clinicians eliminate budding metastases.

Comparison between ctDNA and known as-
sessment methods

The evaluation methods that have been devel-
oped for immunotherapy include tissue biopsy, 
imaging, PD-1, PD-L1, CTC and LDH, and each 
of these methods has its own advantages and 
disadvantages.

Comparison with tissue biopsy

The detection of gene changes by tissue biopsy 
is the most precise method for guiding treat-
ment. However, the routine application of this 
method in the clinic is limited by small tumor 
tissues, and repeat puncturing is not suitable 
for patients [49]. Moreover, a biopsy is risky 
when the lesion is adjacent to the heart or large 
vessels [50], and the characteristics of the 
entire tumor might not be fully revealed due to 
heterogeneity. Conversely, ctDNA contains in- 
formation of the entire genome and overcomes 
the aforementioned limitations. At present, tis-
sue biopsy is the main method, and ctDNA 
detection is supplementary. However, with the 
maturity and perfection of ctDNA detection 
technology, this approach might become one of 
the dominant diagnostic methods.

Comparison with imaging

Although CT or MRI scans are traditional and 
widely accepted imaging methods for evaluat-
ing the efficacy of immunotherapy, imaging 
cannot distinguish a tumor from inflammation 
in the lesion [48, 51]. Additionally, imaging has 
difficulties in distinguishing true progression 
from pseudo-progression in real time, which 
causes interruption of effective treatment. 
However, ctDNA overcomes these limitations. 
Goldberg SB found that a change in the ctDNA 
level occurred 42.5 days earlier than imaging 
changes (P = 0.004), which suggests that 
ctDNA might be a better assessment method. 
In addition to its simple operation and minimal-
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ly invasive nature, ctDNA might more accurately 
reflect real changes in a tumor during the entire 
course of treatment [6, 38, 39, 41].

Comparison with PD-1, PD-L1

In the tumor immune microenvironment, the 
interaction between PD-1 and PD-L1 induces 
apoptosis and exhaustion of tumor-specific T 
cells and inhibits the proliferation and differen-
tiation of T cells [52, 53]. Therefore, blocking 
the PD-1/PD-L1 signaling pathway reactivates 
the immune system to kill tumor cells. A meta-
analysis by Passiglia F, which included seven 
studies and 914 patients with NSCLC who 
received PD-1/PD-L1 inhibitors, showed that 
PD-L1-positive patients (cut-off > 1%) had high-
er response rates to immunotherapy than 
PD-L1-negative patients (OR = 2.44, 95% CI 
1.61-3.68, P < 0.0001). PD-L1 has been used 
as a biomarker to predict the effectiveness of 
ICBs [54, 55]. However, there is no uniform 
international standard for PD-L1 detection, and 
in immunohistochemistry, differences among 
antibodies, detection methods and cut-off val-
ues might lead to inconsistent results [56, 57]. 
In a phase II clinical trial with atezolizumab, 
Herbst observed that repeated PD-L1 detec-
tion results were not consistent due to tumor 
heterogeneity, even though the specimens 
were obtained from areas adjacent to the 
tumor. Therefore, PD-L1 as a single-effect pre-
dictor is insufficient [58]. Moreover, the detec-
tion of PD-L1 requires tissue puncture, which 
results in obvious trauma to the patients. 
Conversely, ctDNA is detected in a simple, con-
venient and noninvasive manner. It can be 
acquired repeatedly and continuously and is 
capable of dynamically monitoring the tumor 
burden, which cannot be achieved with PD-L1 
detection. Moreover, ctDNA naturally over-
comes the heterogeneity of primary and meta-
static lesions, which can hardly be realized with 
PD-L1, even when multiple biopsy specimens 
are analyzed.

Comparison with CTC

CTC only provides tumor information at the cel-
lular level, which is insufficient in the age of  
precise treatment. Freidin MB detected KRAS 
mutations by ctDNA and CTC and found that 
the sensitivity of ctDNA and CTC was 0.96 and 
0.52 and their specificity was 0.95 and 0.88, 
respectively, which demonstrated that CTC was 

significantly inferior to ctDNA with regard to 
diagnostic accuracy [59]. Dawson’s study also 
verified that ctDNA exhibits a higher correlation 
with the tumor burden and shows higher sensi-
tivity for reflecting tumor burden changes com-
pared with CTC [60].

Comparison with LDH

In melanoma patients, LDH is positively corre-
lated with a high tumor burden and a low sur-
vival rate [61]. Because the detection of LDH is 
economical and convenient, it is widely used as 
an alternative indicator for predicting the pro-
gression of melanoma [62]. However, because 
LDH increases during infection, liver dysfunc-
tion, or cardiomyopathy, its specificity is poor 
[63]. Conversely, ctDNA is not affected by these 
factors. Gray ES [39] found a remarkable  
correlation between ctDNA and LDH in ad- 
vanced metastatic melanoma patients who 
received ICBs (r = 0.76, P < 0.0001). Further- 
more, Ashida A’s study showed that ctDNA is 
more sensitive than LDH in providing feedback 
on tumor progression in patients with advanced 
melanoma treated with nivolumab [41]. Lee 
JH’s research found that only 37% of advanced 
melanoma patients had a higher LDH, and the 
highest LDH level was only 2.5-fold higher than 
the normal level, which limits the usefulness of 
this molecule as a biomarker for predicting effi-
cacy [37]. Therefore, ctDNA is a more accurate 
biomarker than LDH.

Summary

The determination of effective tumor biomark-
ers will help achieve a breakthrough in individu-
alized immunotherapy. The detection of ctDNA, 
as a typical component of liquid biopsy, can be 
performed in real time and is non-invasive, 
repeatable and capable of overcoming the chal-
lenge of tumor heterogeneity. This approach 
will gradually become a part of routine clinical 
diagnosis. Although ctDNA is a novel method 
for monitoring immunotherapy efficacy, its limi-
tations cannot be ignored. An urgent problem 
to overcome is improving its sensitivity, and 
quantification and standardization are other 
issues that need to be resolved. Thus far, 
immune clinical trials on ctDNA have only 
involved small samples, and the results are not 
highly persuasive. Prospective immunologic 
clinical trials involving patients with various 
cancers at different clinical stages and with 
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multiple gene mutations are encouraged. We 
hope that in the near future, ctDNA testing will 
become a main method for the assessment of 
immunotherapy efficacy.
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