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Abstract: Exosomes are small membrane vesicles of endocytic origin secreted by most cell types. They play impor-
tant roles in intercellular communications and many physiological processes. DCs-derived exosomes can prime 
naïve T cells and activate NK cells to shrink the tumor. Tumor-derived exosomes carry a variety of tumor antigens 
that trigger the robust tumor antigen-specific immune response. Tumor-derived exosomes also contain metastasis 
or invasive-related molecules, which maybe potential targets for cancer immunotherapy. Effector T cells-derived 
exosomes possess cytotoxic activity of their original cells, thus cause tumor cells lysis. In this review, we summa-
rized the recent advances on the biogenesis and composition of exosomes, the functions of anti-tumor immune 
response, and the promising applications on cancer immunotherapy of exosomes from different origins. Exosomes 
schlep efficient targets homing to tumor sites and tend to be a promising new tool of immunotherapy to fight cancer 
in a cell-free system.
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Introduction

Exosomes were fist described in the 1980s  
by Johnstone et al. They noted that vesicles 
shed from cultured monolayer cells retained 
enzymatic activity reminiscent of the parent 
cells [1]. Such small vesicles were formed  
by inward budding inside intracellular endo-
somes, leading to the formation of multivesicu-
lar bodies (MVBs), which could fuse with the 
plasma membrane (PM) and release exosom- 
es out of the cell [2, 3]. Exosomes were lipid 
bilayer vesicles with 30-150 nm in diameter [4] 
and 1.13 g/ml-1.19 g/ml in buoyant density 
[5]. The proteins, TSG101, ALIX, CD63, and 
HSP70, are exosomal markers and commonly 
used to identify the presence of vesicles as 
true exosomes [6, 7].

Except the common marker proteins, exosomes 
also contain the specific molecules that reflect 
their cellular origins. Exosomes derived from 
professional antigen-presenting cells (APCs), 
such as B cells and dendritic cells (DCs), 
enriched in MHC/peptide complex and costim-

ulatory molecules, therefore play an important 
role in anti-tumor response in immune stimula-
tion and regulation [8-10]. Tumor-derived exo-
somes (Texs) carried antigens are important as 
a source of specific stimulus for the immu- 
ne response against cancer [11]. In addition, 
the targeting specificity of cytotoxic T lympho-
cytes (CTLs) and chimeric antigen receptor 
engineered T (CAR-T) cells had preserved in 
CTLs and CAR-T cell-derived exosomes respec-
tively [12].

Functions of exosomes in the biological process 
depend on the interaction between exosomes 
and the target cells [13]. Exosomes could 
directly fuse with the PM after binding to the 
target cells. By labeling exosomes with the lipo-
philic dye R18, scientists obtained direct evi-
dence for fusion of exosomes with target cell 
membranes, in which self-quenching is relieved 
upon dilution as a consequence of fusion, 
resulting in an increase in the fluorescence of 
target cells [14]. In another way, several studies 
have demonstrated that exosomes also can 
internalized through special endocytic path-
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ways, which depend on the actin cytoskeleton, 
phosphatidylinositol 3-kinase activity, and dy- 
namin-2 function [15-17]. Therefore, exosomes 
can deliver their contents to target cells, and 
prime its biological functions.

Despite therapeutic advances in recent de- 
cades, lacks of specificity and effectiveness 
remain the main drawbacks of clinical cancer 
treatment. Exosomes have a potential effect in 
anti-tumor immune response and may take  
a place in cancer therapeutic intervention. 
However, more information about exosomes 
should be uncovered before clinical application 
[18], which is so attractive that an increasing 
number of studies about it are underway. To 
gain further information on this aspect to con-
duct and promote application of exosomes, we 
summarize the biogenesis, composition, func-
tions, and clinical trials in cancer immunothera-
py of exosomes.

Biogenesis and composition

Several molecules and complexes are involved 
in the formation of MVBs, which could fuse with 
the PM and release exosomes [19], including 
the Endosomal Sorting Complex Required for 
Transport (ESCRT) machinery [20], lipids (such 
as ceramide) [21] and the tetraspanins [22, 23] 

(Figure 1). Components of ESCRT machinery 
are necessary for MVB [20]. ESCRT machinery 
consists of a set of cytosolic protein complex-
es, known as ESCRT-0, ESCRT-I, ESCRT-II, and 
ESCRT-III, and several associated proteins, 
which conserved from yeast to mammals [24, 
25]. ESCRT-0 complex, consisting of the hepa-
tocyte growth factor-regulated tyrosine kinase 
substrate (HRS), recognizes ubiquitylated cargo 
during the initial step of endosomal sorting. 
ESCRT-I and -II are involved in inducing mem-
brane deformation into buds with sequestered 
cargo. ESCRT-III induces vesicle scission [26, 
27], and the accessory proteins, especially the 
VPS4 ATPase, involves dissociation and recy-
cling of the ESCRT machinery.

ESCRT-independent mechanisms also contrib-
ute to MVBs formations. Trajkovic et al. report-
ed in 2008 that ceramide was involved in MVBs 
formation [21]. Then several labs started to 
confirm the function of exosomes secretion in 
vivo through neutral sphingomyelinase inhibi-
tion [28, 29]. In addition, four transmembrane 
domains of the tetraspanin family involve in 
cargoes clustering for MVBs formation. Van 
Niel et al. firstly found that CD63 was respon-
sible for sorting melanosomal proteins into 
MVBs cargo in human melanoma cells, inde-
pendent of ceramide and ESCRT [30]. TSPAN8 
expression [31] and CD81 [32] were also sug-
gested could alter both the containing of 
exosomes.

After biogenesis, MVBs may mobilize and fuse 
with the cell membrane to release their intralu-
minal vesicles as exosomes, if they did not tar-
get to lysosomal degradation [33, 34]. RAB 
family proteins, such as Rab11, Rab35, and 
Rab27 serve a function in MVB docking to the 
PM [35-37], which is required for eventual 
fusion of the two membranes, to allow the 
secretion of the exosomes. After docking of the 
two different intracellular compartments, solu-
ble NSF-attachment protein receptor (SNARE) 
complexes play an important role in fusion of 
the lipid bilayers [38]. The SNARE proteins 
SNAP-23, VAMP-7 and VAMP-8 are involved in 
Ca2+-regulated fusion of secretory lysosomes 
with the PM in different cell types [39-41].

In accordance with the biogenesis and secre-
tion process of exosomes, the composition  
of exosomes includes both PM and cytosolic 
components, besides cytoskeleton proteins, 

Figure 1. Schematic representation of the biogene-
sis and release of exosomes by eukaryotic cells. Exo-
somes firstly formed as multivesicular body (MVB) by 
budding into early endosomes. Several mechanisms 
including ESCRT, lipids and tetraspanin-dependent, 
are involved in MVB formation. If MVBs did not target 
for lysosomal degradation, they may mobilize and 
fuse with plasma membrane (PM) to release exo-
somes, depending on Rab family and soluble NSF-
attachment protein receptor (SNARE) complexes 
respectively.
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but very few from other intracellular organelles 
(nucleus, mitochondria, Golgi) [6]. Studies from 
different cell type revealed that exosomes con-
tain about 4,563 proteins, 194 lipids, 1639 
mRNA and 764 microRNA, demonstrated their 
complexity [42, 43]. Both ubiquitous and cell-
specific proteins maybe target selectively to 
exosomes [44]. The former includes the compo-
nents involved in exosomes biogenesis and, 
perhaps, in some unknown common exosomes 
functions cytoskeletal components, such as 
tubulin, actin and actin-binding proteins, as 
well as ANNEXINS and RAB protein family who 
participate in intracellular membrane fusions 
and transport [44]. Exosomes also contain pro-
teins that involve in specific cell functions. 
Proteomics analysis of exosomes derived from 
DCs (Dexs) showed that it possesses MHC-I 
and -II molecules, which could potentially stim-
ulate CD8+ and CD4+ T cells. Costimulatory mol-
ecules are also contained in Dexs, forming a 
unique molecular composition for strong im- 
mune-stimulatory functionality [6, 8, 45, 46]. 
As characterized by matrix-assisted laser de- 
sorption ionization time-of-flight (MALDI-TOF), 
MHC-I was found to be present together with 
the heat shock proteins HSC70 or HSP90 in 
exosomes derived from human mesothelioma 
cells, revealing that Texs may be involved in 
tumor immunity process [47].

In addition to proteins, exosomes also contain 
mRNAs and microRNAs (miRNAs), which can be 
taken up by neighboring or distant cells, subse-
quently repress target mRNAs of acceptor DCs 
and modulate recipient cells [48, 49]. Transfer 
of exosomes represents a novel mechanism of 
DC-to-DC communication and post-transcrip-
tional regulation between DCs [14]. Exosomal 
miRNAs also play an important role in disease 
progression, and can stimulate angiogenesis 
and facilitate metastasis in cancers [50, 51]. 
Thus, exosomal miRNAs show potential for use 
as noninvasive biomarkers to indicate disease 
states [52, 53].

DCs-derived exosomes

As the professional APC of the immune system, 
DCs play a critical role in initiating antigen-spe-
cific immune response and tolerance [54]. DCs 
are responsible to capture, process, and pres-
ent antigens to naïve T cells, which are then 
activated, building an essential bridge between 

innate and adaptive immune responses [55, 
56]. In cancer immunity, DCs are involved in  
the first step of immune response that aims to 
eliminate tumor cells through triggering tumor-
specific cytotoxic lymphocyte [57]. Therefore, 
DCs induced from peripheral blood mononucle-
ar cells (PBMCs) of cancer patients are cultured 
in vitro and pulsed by tumor lysate or tumor 
antigen peptide for cancer immunotherapy  
[58-61]. Provenge, the first DCs vaccine prod-
uct approved by FDA, which was applying for 
immunotherapy for castration-resistant pros-
tate cancer, represented a 4.1-month improve-
ment in median survival (25.8 months in the 
sipuleucel-T group vs. 21.7 months in the pla-
cebo group) [62]. However, DCs vaccine is living 
cells. The cost is very high for storage and sta-
bility over longer periods. In addition, DCs are 
susceptible to immunosuppressive molecules 
and immune regulation in the tumor microenvi-
ronment [63].

Dexs carry many immune function-associated 
molecules of DCs, peptide/MHC complexes 
that trigger antigen specific T cell response [9, 
10], and co-stimulatory molecules including 
CD80, CD83, CD86, that contribute to the T cell 
priming and activation [8]. Particularly, exo-
somes derived from tumor antigen peptide-
stimulated DCs are able to prime tumor-specific 
CTLs in vivo, result in the tumor growth delayed, 
even eliminate tumor in some case of mouse 
models [8].

Scientists proposed several mechanisms to 
explain Dexs stimulate T cells via their MHC and 
costimulation molecules loading (Figure 2). 
Dexs activate T cells directly in vitro [9], howev-
er, direct Dex-to-T cell stimulation appears to be 
inefficient in priming naïve T cells and rarely 
occurs in vivo [64, 65]. Rather than direct Dex-
to-T cell stimulation, it is much more efficient 
than transfer antigenic peptide/MHC complex-
es in Dexs to bystander APCs. Dexs are inter-
nalized into the endosomes and processed by 
APCs, followed the antigen presentation on the 
surface of APCs indirectly [34, 66-69]. Another 
way that Dexs mediated indirect antigen pre-
sentation is Dexs fuse with APCs surface after 
binding to target APCs, thereby transferring 
their peptide/MHC complexes to APCs surfa- 
ce immediately [67, 70]. Dexs incorporated by 
tumor cells could turn tumor cells into immuno-
genic targets for a possibly more effective 
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response. In a recent study, treatment of hu- 
man breast adenocarcinoma cells with Dexs 
was able to restimulate previously primed T 
cells, showing significantly higher percentages 
of interferon-γ (IFN-γ)-secreting induction than 
exposure to non-Dex-treated adenocarcinoma 
cells [8]. These studies suggested that Dexs 
maintain the essential immunostimulatory fac-
ulties of DCs, may become a promising tool for 
cancer immunotherapy.

In addition, Dexs have the bilayer membrane  
to keep the bioactivity stable in -80°C for at 
least 6 months with a phenotype and function 
preserved [71]. Used as a cell-free cancer 
immunotherapy tool, Dexs maybe more resis-
tant to the immunosuppressive microenviron-
ment in the tumor, which can down-regulate 
costimulatory molecules on DCs, therefore 
block T cell response [72]. Compared to DCs, 
Dexs surface possess natural killer (NK) cell 
lectin-like receptor subfamily K, member 1 
ligands (NKG2D-L), which can engage with 
NKG2D expressed on NK cells, resulting in NK 

Texs bear MHC-I molecules, HSP70, and anti-
gens, that are considered to be a source of  
specific stimulus for the immune response 
against cancer. Texs trigger anti-tumor respons-
es more efficiently than irradiated tumor cells, 
apoptotic bodies, or lysate of cancer cells [11]. 
Stress-inducible exosomal HSP70 functions as 
an endogenous danger signal, promotes NK 
cell activation and cancer cell lysis via gran-
zyme B [79]. Texs can efficiently deliver a vari-
ety of tumor antigens to DCs (Figure 3) and, 
thus, have employed as antigen carriers for 
cancer immunotherapy [80]. Rao et al. demon-
strated that hepatocellular carcinoma (HCC) 
cell-derived exosomes, carried an array of HCC 
antigens, can elicit a stronger DC-mediated 
immune response than cell lysates in vitro and 
in vivo. In addition, HCC tumor microenviron-
ment was improved by HCC cell-derived exo-
somes, demonstrated by increased numbers of 
T lymphocytes, elevated levels of IFN-γ, and 
decreased levels of interleukin-10 and tumor 
growth factor-β in the tumor (Figure 3) [81, 82].

Figure 2. The role of exosomes derived from DC (Dexs) in anti-tumor immu-
nity. Dexs may stimulate T cells via direct and indirect routes. The presence 
of MHC/peptide complex on the surface of Dexs stimulates T cells directly. 
Dexs activate T cells indirectly by bystander DCs via two mechanisms, one is 
Dexs fuse with PM of DCs and transfer MHC/peptide complexes to DCs sur-
face immediately, the other one, Dexs are internalised into the endosomes 
and processed by APCs, following the antigen presentation on the surface 
of APCs indirectly. Dexs may also present MHC/peptide complexes to host T 
cells by MHC/peptide transfer to tumor cells. Dexs were shown to possess 
NKG2D ligand (NKG2DL), which can interact with NKG2D and activate NK 
cells.

cells activation (Figure 2) 
[73]. Dexs express BCL2-
associated athanogene 6 
(BAG6, also known as BAT3) 
on their surface, which has 
been shown to enhance NK 
cell cytokine release [74]. 
Additionally, tumor necrosis 
factor (TNF) in Dexs induces 
NK cell-mediated IFN-γ pro-
duction [75].

Because of their high poten-
tial and benefits for immuno-
therapy, Dexs have develop- 
ed as clinical cell-free cancer 
vaccines. Two phase I clinical 
trials [76, 77] and one phase 
II trial [78] of Dexs in advanc- 
ed cancer patients have been 
completed. The results sug-
gested that Dexs are safe, 
and a mild T cell response 
and a potential increase in NK 
cell lysis ability observed. So 
combined Dexs with NK cells 
for cancer immunotherapy 
might be considerable.

Tumor-derived exosomes



Exosomes in anticancer treatment

2169 Am J Cancer Res 2018;8(11):2165-2175

The same as Dexs, Texs may also be the poten-
tial candidate used as a cell-free tumor vac-
cine. However, the isolation of autologous Texs 
may require culture and expansion of patients’ 
cancer cells in vitro, which may be inconvenient 
in clinical applications. Ascites-derived exo-
somes (Aexs) of advanced colorectal carcino-
ma (CRC) patients are considered be released 
from CRC cells [83]. Aexs contain MHC-I and -II 
molecules, co-stimulatory molecules, ICAMs, 
and the immunogenic carcinoembryonic anti-
gen (CEA) of CRC, which maybe recognized by 
APCs. In a phase I clinical trial, Aexs were used 
to treat 40 advanced CRC patients with Aexs 
alone or Aexs plus GM-CSF [83]. Safety of Aexs 
on patients has confirmed, but no significant 
therapeutic effect observed when Aexs used 
alone. However, Aexs plus GM-CSF can activate 
CD8+ CTL thus elicit CEA-specific antitumor 
immune response. It is suggested that Aexs in 
combination with GM-CSF maybe a potential 
method for cancer immunotherapy in the future 
[83]. Nevertheless, the immunogenic potential 
and anti-tumor efficiency of Aexs still need to 
investigate in clinical trials.

Studies unraveled that Texs possess immuno-
suppressive properties and directly modify 

metalloproteinases and other exosomes car-
goes [88]. Cellular physiology of both surround-
ing and distant normal cells can also change by 
Texs to facilitate metastasis and growth of can-
cer cells [89, 90]. Therefore, it is vital to distin-
guish the immune-activated and immunosup-
pressive Texs, in order to remove the latter 
ones when technology is available, ensuring 
the curative effect of Tex vaccine. Alternative- 
ly, the immune-inhibitory effect of Texs suc-
cessfully suppressed by combining Texs with 
appropriate, immune-stimulatory adjuvants, 
thus an anti-tumor response might be devel-
oped [91]. On the other hand, Texs included dif-
ferent molecules from donors’ tumors that are 
involved in enhancing metastasis and invasive-
ness of tumor or inhibiting anti-tumor immune 
response. These molecules in Texs are useful 
markers to block as potential targets for cancer 
immunotherapy, but a great deal of additional 
research will be required to develop these ther-
apies for clinical use.

CTLs and CAR-T cells derived exosomes

Adoptive cell therapy (ACT) relieves tumors with 
infused CTLs. Mature DCs that pulsed by tumor 
lysates or tumor antigen peptides activate 

Figure 3. The role of tumor cells secreted exosomes (Texs) in anti-tumor im-
munity. Texs expressed tumor MHC/antigen complexes internalised by or 
fused with antigen-presenting cells (APCs) to prime T cells. Stress-inducible 
exosomal HSP70 functions as an endogenous danger signal, promotes NK 
cell activation and cancer cell lysis via granzyme B. Texs improve the HCC 
tumor microenvironment in vivo after infusion.

tumor cells’ intrinsic motility 
and invasiveness capacity. 
Texs has been shown to sup-
press T cell and NK cell 
response, stimulate myeloid-
derived suppressor cells (MD- 
SCs), resulting in facilitat- 
ing tumor growth [84, 85]. 
Texs could induce T cell apop-
tosis that facilitate evasion  
of immune surveillance [86]. 
In particular, Texs directly en- 
hance tumor cells’ metastasis 
and invasiveness through 
some mechanisms [18]. In- 
tegrins distributed on the  
Texs surface, which bind to 
extracellular matrix (ECM) 
components, such as fibro-
nectin, providing a substrate 
favoring cell adhesion and 
enhancing cell mobility [87]. 
Texs are involved in the bio-
genesis and activity of an 
invasive structure called inva-
dopodia of tumor cells via the 
MVB-dependent delivery of 
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naïve T cells isolated from PBMC, trigger CTLs 
induction. Most cytotoxic T cells express T-cell 
receptors (TCRs) that can recognize specific 
antigens. TCRs bind to the MHC/antigen com-
plex, and T cell destroys the target cell through 
releasing the cytotoxins perforin, granzymes, 
and granulysin (Figure 4) [92]. As early as  
in 1989, Peters et al. suggested that it’s es- 
sential for human T cell-derived exosomes to 
participate in the process of CTLs and target 
cell interaction [12, 93, 94]. As specifically 
expressed on CTLs surface, the presence of 
CD3, CD8, and TCR on CTLs-derived exosomes 
suggested that exosomes could deliver cytotox-
icity to targeted cells. Exosomes can interact 
with target cell by TCR binding to antigen/MHC-I 
complex, resulting in target cell death [12]. The 
cytotoxicity to target cells achieved by the cyto-
toxic compounds in the exosomes, including 
perforin, granzymes, and lysosomal enzymes 
[93]. In 2002, it was unraveled that the secre-
tion of exosomes by CTLs accelerated by TCR 
activation and the TCR/CD3ζ complex existed 
on the surface membrane of exosomes derived 
from human CTLs [95].

Adoptive transfer of CAR-T cells suggests a 
promising new method in cancer immunothera-
py. The targeting specificity of CAR-T cells are 

small nanometer-sized particles and were able 
to be located at specific antigen-targeted tumor 
in situ and to attack the tumor cells, since exo-
somes have the ability to cross biological barri-
ers such as the blood-brain barrier (BBB) [97-
99] and blood-tumor barrier (BTB) which was 
confirmed by the large quantity of Texs in body 
fluids [100]. The enhanced angiogenesis effect 
and leaky vasculature of the tumor are also 
attractive for intravenously injected exosomes 
to migrate to the tumor [100].

Conclusion and prospects

Exosomes are easily available through ultra-
centrifugation process generally. Ultracen- 
trifuges are widespread and straightforward to 
use, suggesting that the protocol of exosomes 
isolation and infusion can implement in clinical 
laboratories as a routine immunotherapy pro-
cedure for the cancer patients. But we now 
know that which isolated production is a mix-
ture of exosomes and other extracellular vesi-
cles (EVs). Here is impossible to distinguish 
them on the basis of a single property, such as 
size, structure, buoyant density, or presence of 
a given protein, so purification of exosomes is 
technically unavailable so far [7]. Novel isola-
tion methods are required to enrichment of the 

Figure 4. The role of exosomes derived from CTLs (CTL-EXO) and CAR-T cells 
(CAR-T-EXO) in anti-tumor immunity. The presence of TCR/CD3/CD8 on CTL-
EXO enable CTL-EXO target antigen expressing tumor cells specificly, and 
cytotoxic compounds contained in CTL-EXO kill the target cells. CAR-T-EXO 
may possess antibody-derived single-chain variable fragment (scFv), which 
determines the targeting specificity of CAR-T cells, can recognize specific 
molecules on target cells (such as CD19 on B-cell neoplasms) and kill them 
by cytotoxic compounds release.

determined by an antibody-
derived single-chain variable 
fragment (scFv) in the CAR 
structure. However, a major 
limitation of CAR-T cells ap- 
plication in clinic is poor ther-
apeutic effects in solid tu- 
mors rather than in lymphoid 
malignancies. CAR-T cell-de- 
rived exosomes might pos-
sess antibody-derived scFv, 
being the promising alterna-
tive of cell therapy. The cell-
to-cell contact between CAR-T 
cells or CTLs and tumor cells 
is necessary for the antican-
cer effect of CAR-T cells and 
CTLs. Unlike lymphoid malig-
nancies, CAR-T cells and CTLs 
must penetrate stroma rich 
matrixes of the solid tumor to 
interact with tumor cells. 
However, tumor microenviron-
ment may limit the activity of 
CAR-T cells and CTLs [96]. 
While cell-free exosomes are 
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specific subtypes [18]. Therefore, better knowl-
edge of specific markers of EVs subtypes is 
required. Extensive quantitative proteomic 
analysis have shown that several classically 
used exosomes markers, like MHC, flotillin, and 
HSP70 proteins, are similarly present in all EVs 
[101]. Nevertheless, a few new specific mark-
ers for different subtypes of exosomes are pro-
posed, which are tetraspanins CD9/CD63/
CD81, TSG101, and syntenin-1 for endosome-
derived exosomes, thus providing guidelines to 
define subtypes of exosomes precisely for 
future functional studies.

Two areas for improvement of cancer treatment 
are targeting and effectiveness. Exosomes  
schlep efficient targets homing to tumor sit- 
es. There is abundant source of exosomes in 
the culture supernatant of DCs and tumor  
cells. CTLs and CAR-T cells possess mighty 
expansion ability, ensuring the outlay of exo-
somes to be satisfied. With the remarkable 
effects in anti-tumor immune response men-
tioned above, exosomes could substitute or 
boost other strategies of cell-based immuno-
therapy or be used as a maintenance vaccine 
in the future. Exosomes derived from different 
sources hold diverse applications in cancer 
therapy. In addition to the detailed discussed 
above, there are exosomes derived from other 
sources, such as mesenchymal stem cells-
derived exosomes, HEK293T cells-derived exo-
somes, macrophage-derived exosomes, cere-
bral endothelial cell-derived exosomes, reticu- 
locyte-derived exosomes and so on. Thus, it is 
now vital to understand exosomes derived from 
different sources themselves with the aim of 
choosing the appropriate exosomes for cancer 
therapy.

However, these issues should not interfere with 
the diffusion of such clinically important thera-
py for cancer. The potential development of 
exosomes for efficient therapeutic strategies in 
cancer depends on further progression.
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