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Abstract: Gastric cancer (GC) is one of the leading causes of cancer related mortality in the world. Being asymptom-
atic in nature till advanced stage, diagnosis of gastric cancer becomes difficult in early stages of the disease. The 
onset and progression of gastric cancer has been attributed to multiple factors including genetic alterations, epigen-
etic modifications, Helicobacter pylori and Epstein-Barr Virus (EBV) infection, and dietary habits. Next Generation 
Sequencing (NGS) based approaches viz. Whole Genome Sequencing (WGS), Whole Exome Sequencing (WES), RNA-
Seq, and targeted sequencing have expanded the knowledge base of molecular pathogenesis of gastric cancer. In 
this review, we highlight recent NGS-based advances covering various genetic alterations (Microsatellite Instability, 
Single Nucleotide Variations, and Copy Number Variations), epigenetic changes (DNA methylation, histone modifica-
tion, microRNAs) and differential gene expression during gastric tumorigenesis. We also briefly discuss the current 
and future potential biomarkers, drugs and therapeutic approaches available for the management of gastric cancer.
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Introduction

Gastric Cancer (GC), accounting for 8.8% of all 
cancer related deaths, remains the third most 
common cause of cancer related mortalities 
worldwide. GC is more prevalent in males 
(67.3%) in comparison to females (32.7%) [1]. 
Prevalence of GC also shows a demographic 
variation with approximately half of the global 
occurrence confined to East Asian countries. 
GC incidence rate shows a drastic difference 
between China and USA with 46.5 and 8 GC 
cases per 1,00,000 people, respectively. This 
data implies a possibility of association of gen-
der and ethnicity with the occurrence of GC. 
Early diagnosis of the disease is difficult as 
manifestation of symptoms takes a substantial 
period of time. Lauren [2] categorized GC into 
intestinal type and diffuse type, the former 
being more prevalent in high-risk areas and the 
other type in low risk areas [3]. WHO has classi-
fied GC on the basis of its histological patterns 
into tubular adenocarcinoma, papillary adeno-
carcinoma, mucinous adenocarcinoma, poorly 
cohesive carcinomas and mixed carcinoma. A 
number of risk factors have been found associ-

ated with the occurrence of GC, including infec-
tion with Helicobacter pylori and Epstein-Barr 
Virus (EBV), dietary habits, smoking, consump-
tion of alcohol and red meat [4]. In addition to 
these risk factors, existence of genetic suscep-
tibility has been emphasized and defined as a 
major cause of gastric tumorigenesis on the 
basis of mutations in different genetic elements 
and epigenetic modifications. Recent advance-
ments on these lines have motivated research-
ers to take up comprehensive genetic and geno- 
mic analysis of gastric tumorigenesis. Applica- 
tion of Next Generation Sequencing (NGS) tech-
nologies exploiting whole genome sequencing 
to targeted sequencing has played an impor-
tant role in the identification of the genetic vari-
ations and anomalies leading to the develop-
ment of GC. NGS, not only provides a high th- 
rough-put, cost effective and faster technolo- 
gy, but also offers a more comprehensive and 
accurate tool for genome analysis [5, 6]. The 
edge of NGS over Sanger’s method in sensiti- 
vity and depth is evident by the fact that per-
centage detection of allele frequency in NGS  
is 2-10% as compared to 15-25% in Sanger’s 
sequencing [7]. Owing to these advantages, 
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NGS has profoundly been applied in the field of 
cancer biology for identifying genetic aberra-
tions underlying tumorigenesis.

All the four NGS-based approaches i.e. Whole 
Genome Sequencing (WGS) [8], Whole Exome 
Sequencing (WES) [9], RNA Sequencing (RNA-

This approach has been useful in the detection 
of alternative gene-spliced transcripts, post-
transcriptional modifications, gene fusions, 
single-nucleotide polymorphisms (SNPs), and 
changes in the level of gene expression. Next, 
targeted sequencing is an economical and time 
saving technique, when a set of specific genes 
need to be explored. It includes sequencing of 
exome, specific genes of interest (custom con-
tent), targets within genes, or mitochondrial 
DNA. A summary of important NGS-based stud-
ies in GC is presented in Table 1. The Cancer 
Genome Atlas (TCGA) categorises MSI+ GC 
(22%) as a subset of GCs along with EBV+ (9%), 
chromosomal instability (CIN; 50%) and genom-
ically stable (20%) GC [13] (Figure 1). Different 
factors contributing towards the onset and pro-
gression of GC are enumerated in Figure 2. 

In this review, we summarize the application of 
NGS technology in determining genetic and epi-
genetic modifications along with differential 
gene expression implicated in the molecular 
pathogenesis of gastric cancer. We also pro-
vide useful information about drugs developed 
or under clinical trials for the treatment of GC 
and their possible target sites. 

Table 1. Summary of NGS approaches applied to study molecular biol-
ogy of gastric cancer
Sequencing approach Sample source Platform Reference
Whole Genome Sequencing Cell Lines Ion Torrent/Illumina [35]

Cell Lines/Tissue Illumina [8]
Tissue/Blood Illumina [25]

Exome Sequencing Tissue Illumina [9]
Tissue/Blood Illumina [96]

Tissue Illumina [97]
Targeted Sequencing Source undefined Ion Torrent [30]

Source undefined Illumina [11]
Tissue Illumina [40]
Tissue Ion Torrent [18]

Tissue/Blood Ion Torrent [34]
Tissue Ion Torrent [29]
Tissue Ion Torrent [98]
Tissue Ion Torrent [41]
Tissue Illumina [37]
Tissue Ion Torrent [23]
Tissue Illumina [8]

RNA-Seq Tissue Illumina [99]
Cell Lines/Tissue Illumina [100]

Cell Lines Illumina [101]

Figure 1. TCGA classification of different subtypes of 
gastric cancer.

Seq) [10] and targeted 
sequencing [11] have 
been exploited for the 
detection of the genetic 
and epigenetic changes 
implicated in GC. As the 
terminology suggests, 
WGS represents sequ- 
encing of the complete 
genome facilitating de- 
tection of SNPs, InDels, 
copy number changes 
and large structural vari-
ants in the target gen- 
omes. Unlike WGS, WES 
deals with the sequenc-
ing of only exons or  
coding regions of the 
genome, which although 
representing less than 
2% of the genome,  
contains ~85% of the 
known disease-related 
variants [12]. Disparate 
to WGS and WES, RNA-
Seq identifies changes 
in the transcriptome. 
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Molecular biology of gastric cancer

Genetic alterations in gastric cancer

Variation in microsatellite sequences: Micro- 
satellites, also known as Simple Sequence 
Repeats (SSRs), refer to 1-6 base long tandem 
DNA repeats in the genome. These repeats 
have been found to be hypervariable incorpo-
rating insertions and deletions arising during 
replication and recombination events with 
mutation rate being 10-104 times higher in 
comparison to that at non-repetitive loci. Such 
expansion and contraction changes in the mic-
rosatellite regions have commonly been termed 
as microsatellite instability (MSI). Implication of 
microsatellite instability has been explored 
widely in many cancers, especially colorectal 
cancer, gastric cancer, ovarian cancer, and 
head and neck cancer. Microsatellite unstable 
tumors can be graded into two distinct MSI 
phenotypes: MSI-high (MSI-H) and MSI-low 
(MSI-L). MSI and related changes have been 
implicated in about 15-30% cases of gastric 
cancer [14, 15].

MSI influences cancer development by modu-
lating the expression pattern of many mismatch 
repair (MMR) genes, tumor suppressor (TS) 
genes and oncogenes. While tumor suppressor 
genes and oncogenes work by controlling cell 
proliferation, apoptosis, immune evasion and 
angiogenesis in carcinoma, mismatch repair 

explains the outcome of different molecular 
events causing instability in a microsatellite 
sequence.

Genetic and epigenetic modifications in DNA 
mismatch repair (MMR) genes result in a muta-
tor phenotype. MSI mainly accumulates frame-
shift mutations at microsatellite loci located in 
the coding regions of a target tumor suppressor 
or other tumor-related genes [16-18]. MSI+ GCs 
show epigenetic alterations such as hyperme- 
thylation of various genes including the key 
MMR gene MLH1. The differences in genotype 
and phenotype between MSI+ and MSI- GC are 
likely linked to other differences in biological 
and clinical features. Recent findings from NGS 
analysis such as the frequent mutation of the 
AT-rich interactive domain 1A (ARID1A) in MSI+ 
GCs support this notion [19].

WGS and RNA-Seq analyses of GC samples 
from Korea have revealed a total of 18,377 
mutations at different microsatellite loci with 
five or more repeat units in coding and untrans-
lated regions, suggesting a role of microsatel-
lite sequences in protein synthesis and carcino-
genesis [8]. Further, deletion mutations were 
identified at 14,895 MS loci, of which 3,482 
were detected exclusively through RNA-Seq. 
Using Selective Target database (SelTarbase), 
24 candidate genes having deletion in their 
CDS were selected on the basis of driver gene 
score and pathway analysis, and subsequently 

Figure 2. An outline representation of various molecular processes involved in 
gastric tumorigenesis.

genes are responsible for 
correction of the base-base 
mismatches and insertion 
or deletion impairs caused 
during DNA replication and 
recombination events. Gen- 
etic instability at microsatel-
lite loci in MMR genes cau- 
sed by different processes 
including DNA polymerase 
slippage and unequal cross-
ing over leads to the produc-
tion of truncated or altered 
products of these genes. 
Such aberrations in mismat- 
ch repair system are respon-
sible for cell’s inability to 
correct replication errors in 
downstream target genes, 
thereby affecting their nor-
mal expression. Figure 3 



NGS based molecular biology of gastric cancer

210 Am J Cancer Res 2018;8(2):207-225

validated through Sanger sequencing. Muta- 
tions within mononucleotide tracts in TGFBR2, 

CEP164, MIS18BP1, RNPC3, KIAA2018, CN- 
OT1 and CCDC150 genes were detected in 

Figure 3. Different molecular events and 
their consequences leading to microsat-
ellite instability shown in a hypothetical 
microsatellite sequence.
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more than 63% of the MSI-H GC. Low to indis-
cernible gene expression was detected when 
frame shift mutations were located in CDS (23 
genes), 5’UTR (13 genes) and 3’UTR (186 
genes). A comparative analysis of UTR mutated 
genes revealed lower expression levels for UTR 
MSI genes in comparison to those lacking 
these mutations. Deletion at (A)10 repeats in 
the coding region of TGFBR2 gene caused a 
loss of expression in MSI-H samples [8].

A high mutation rate in chromatin remodelling 
gene ARID1A has been found associated with 
instability at microsatellite loci. Mutations in 
ARID1A gene have also been suggested to be 
linked with concurrent mutations in PIK3CA 
gene. An analysis of high frequency of PIK3CA 
mutations in MSI+ gastric cancers has revealed 
the potential of PIK3CA inhibitors in the person-
alized treatment of MSI+ patients [20]. More- 
over, ARID1A displayed a gamut of protein inac-
tivating mutations in different molecular sub-
types of GC (83% MSI+ GC, 73% EBV+ GC and 
11% MSS, EBV- GC). In the MSI GC samples, 
97% of the mutations were InDels, mostly in- 
volving mononucleotide repeats of C or G 
(89%). A G7 tract located in exon 20 of ARID1A 
was found mutated in 26% of MSI+ gastric can-
cers. For the MSS gastric cancer samples (both 
EBV infected and non-EBV infected), 59% of  
the mutations were SNVs with 6 nonsense and 
4 missense mutations. Of these, only seven 
mutations were InDels, with one involving a 
mononucleotide repeat sequence. ARID1A ge- 
ne contains many short repeats of 4-7 mono-
nucleotides in its coding region. The overall 
mutation rate of ARID1A in MS instable GC 
(78%) is comparable to that of well-established 
and functionally validated driver genes inacti-
vated by MSI, such as TGFBR2 [21]. Absence of 
ARID1A alterations is an independent predictor 
for early recurrence of GC while ARID1A altera-
tions (mutation or protein deficiency) were rela- 
ted to longer progression-free survival (PFS) of 
GC patients. Wang et al. (2011) provided an 
explanation that ARID1A alterations might be a 
characteristic of a special GC subgroup, driven 
by epigenetic factors.

Exome sequencing of 22 GC patients revealed 
an average of 31.61 somatic mutations includ-
ing both SNVs and InDels per megabase of DNA 
in MSI+ GC samples in comparison to 3.29 in 
the MSS GC samples recording an approxim- 
ate tenfold change, expected as aftermath of a 

defective mismatch repair system. MSI+ GC 
samples had a markedly higher frequency of T 
to C transitions (30%) and tenfold higher num-
ber of protein-altering somatic mutations in 
comparison to MSS GC samples [21]. The 
reported somatic mutation rate in MSS GC 
samples was higher at 1.19 per Mb in compari-
son to that reported in earlier studies [22].

Good prognosis of cancer is characterized by a 
hypermutated profile showing at least one 
mutation in 90.5% cases comparative to the 
poor prognosis subgroup with at least one 
mutation in 46.2% cases. The median muta-
tion rate (total number of mutations/total num-
ber of cases) in the good prognosis group 
remained 2.0 per sample, whereas in the poor 
prognosis group this figure being 0.9 per sam-
ple. Moreover, the good prognosis subgroup 
showed MSI in 42.9% cases compared to 7.7% 
in the poor prognosis subgroup [23].

A remarkable association of PIK3CA mutations 
with MSI phenotype was observed in GC. Pyro- 
sequencing of MSI cancer samples revealed 
mutations in exon 1, exon 9 and exon 20 of 
PIK3CA and their frequency was significantly 
correlated with the level of MSI [24]. MSI in cod-
ing regions has other functional consequences 
also including lower average transcript levels. 
MSI frequency is also associated with chroma-
tin organization and nucleosome positioning 
[18]. Another study [21] reported significantly 
higher frequency of protein altering mutation in 
MSI tumors compared to that in MSS samples. 
In MSI samples, 16 significantly mutated genes 
including known oncogenes, KRAS and ERBB2, 
were identified. Other potential novel driver 
candidates are ZBTB1, TRAPPC2L, as well as G 
protein-coupled receptors GPR39, GPR85 and 
CHRM3 [21].

A comparative whole genome analysis of micro-
satellite and chromosome instable GC patients 
by Nagarajan and colleagues [25] in 2012 
found 14,856 somatic SNVs (11,738 InDels) in 
microsatellite instable sample and 17,473 
somatic SNVs (2,486 InDels) in chromosomal 
instable sample with an average mutation fre-
quency of five per Mb of the genome. More than 
100 SNVs were discovered to be located in the 
protein coding regions for each tumor type [25]. 
Exome specific somatic variants (5,588 SNVs 
and 2,347 InDels) were identified with a five 
times higher frequency through exome sequ- 
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Table 2. Type and frequency of mutations implicated in gastric cancer 
No. of patients Target Top mutated genes Mutation (%) Reference
121 409 genes TP53 SNV (91.1) Deletion (6.7) Insertion (2.2) [29]

SYNE1 SNV (93.7) Insertion (6.2)
CSMD3 SNV (100)
LRP1B SNV (100)
CDH1 SNV (81.81) Deletion (18.18)

PIK3CA SNV (100)
ARID1A SNV (45.4) Deletion (36.36) Insertion (18.18)
PKDH1 SNV (88.88) Insertion (11.11)
LPHN3 SNV (100)
MLL2 SNV (75) Deletion (25)

PRKDC SNV (87.5) Insertion (12.5)
ERBB3 SNV (100)
ROS1 SNV (85.71) Deletion (14.28)
KAT6B SNV (100)

PDE4DIP SNV (66.66) Insertion (33.33)
RUNX1T1 SNV (100)

22 Exome TP53 SNV (36.36) [21]
PTEN SNV (9) Indel (18)

ARID1A SNV (9) Indel (18)
RPL22 Indel (13.6)

TTK Indel (18)
FMN2 SNV (18)

SPRR2B SNV (9)
PTN SNV (4.5) Indel (4.5)

ACVR2A Indel (18)
PMS2L3 SNV (4.5) Indel (4.5)
DNAH7 SNV (27.27) Indel (4.5)

TTN SNV (22.72)
FSCB SNV (13.63)

CTNNB1 SNV (9)
SEMA3E SNV (9) Indel (4.5)
MCHR1 SNV (13.63)

SPANXN2 SNV (9)
METTL3 SNV (9)
EIF3A SNV (13.6)

EPB41L3 SNV (9)
15 Exome TP53 SNV (73.3) [20]

DBR1 SNV (13)
RIT2 SNV (13)

CCNL1 SNV (13)
HTR1E SNV (13)
ARID1A SNV (20)
OR4C46 SNV (13)
OR4C15 SNV (13)
PIK3CA SNV (20)

SHROOM3 SNV (13)
20 50 genes KIT SNP (58) [42]

PDGFRA SNP (26)
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encing of 37 GC samples comparative to that in 
other contemporary sequencing studies [20, 
21], highlighting the statistical advantage of 
whole-genome analysis for studying mutation 
signatures in gastric tumorigenesis. The MSI+ 
tumor exhibited an excess of SNVs in protein 
coding regions and a striking seven-fold higher 
frequency of micro-indels but lack of large-
scale SNVs and amplifications or deletions. In 
MSI+ GCs, ACVR2A, RPL22, LMAN1, and STAU2 
showed recurrent single base thymine dele-
tions in poly (T) regions, later confirmed through 
screening of additional 94 gastric cancer/nor-
mal paired samples. Mutations in ACVR2A, 
RPL22 and STAU2 at (T)8 MS locus were 
observed in 86%, 64% and 29% of MSI+ GC 
tumors, respectively. Mutations in LMAN1 at 
(T)9 MS locus were present in 50%, of MSI+ GC 
tumors. ACVR2A, a gene found to be recurrent-
ly mutated in MSI+ colorectal cancer [26] was 
also observed in MSI+ GC also [25] indicating 
the probability of existence of common key 
players between the two types of cancers. Also, 
the frequency of mutations seen here was com-
parable to the previously reported frequency in 
MSI+ colorectal cancers [27, 28] emphasizing 
the importance of ACVR2A and TGF-β signalling 
in MSI+ GC. The oncogenic role of RPL22 and 
LMAN1 requires further investigations [25].

The foregoing discussion clearly suggest that 
NGS has proved to be an advancement over the 
traditional Sanger’s sequencing in delving dif-
ferent features of MSI related factors implicat-
ed in gastric tumorigenesis. Instead of relying 
on forward and reverse reads of microsatellite 
bearing gene(s), availability of millions of NGS 
reads of hundreds of microsatellite containing 
genes allow high throughput search for MSI 
alterations with more accuracy generating huge 
amount of reliable low cost data with amazing 
speed.

Single nucleotide variations, InDels and copy 
number variations

Genetic aberrations like insertions, deletions, 
SNVs and SNPs are mutations that vary from a 
single base pair change to a few base pair 
change in a region of the genome. Both SNV 
(Single Nucleotide Variation) and SNP (Single 
Nucleotide Polymorphism) are single base pair 
substitutions with different frequency of occur-
rence in a population. Recent advancements in 
NGS techniques have proved their importance 

in revealing individual specific variations in- 
stead of common mutations across genomes 
routinely done through earlier sequence analy-
sis techniques. Table 2 summarizes data on 
various single nucleotide mutations associated 
with gastric cancer.

Kuboki et al. [29] analysed 409 cancer related 
genes in 121 advanced stage GC samples to 
detect copy number variations and mutations 
using targeted NGS. The top mutated genes 
showing 8-36% mutation frequency were TP- 
53, SYNE1, CSMD3, LRP1B, CDH1, PIK3CA, 
ARID1A and PKHD. The relative reading depth 
to the reference (RRDR) of an individual gene 
was calculated for the analysis of copy number 
variation keeping RRDR of >2 as indicator of 
copy number variation in the study. Out of the 
409 genes studied, 203 genes showed RRDR 
values of >2 and the percentage of samples 
with CNV ranged 0.8-20% [29].

Gain in DNA copy number with high mRNA level 
through Illumina microarray has been analysed 
in 50 gastric adenocarcinoma samples. Ma- 
jority of the genes with increased level of mRNA 
were present on chromosomal regions 20q and 
8q indicating that amplifications at these loca-
tions have greater effect on mRNA level. There 
is concurrence in data on mutations obtained 
by deep sequencing and genotyping arrays. Out 
of 18,549 mutations, 3,357 somatic variants 
were nonsynonymous and exonic. The observed 
alterations were located in genetic elements 
participating in different pathways like WNT, 
Hedgehog, cell cycle, DNA damage and epithe-
lial-to-mesenchymal-transition pathway. A non-
sense germline mutation (c.1023T>G) in CDH1 
gene causing premature formation of stop 
codon resulting in low level of transcription has 
been described in different studies [30, 31]. 
Another mutation in CDH1 gene (c.1849G>A) 
detected in GC has also been reported in other 
cancers like endometrial and breast cancer 
[32, 33].

TCGA has categorised significantly mutated 
genes into two panels to assess the utility of 
panel based targeted sequencing. Twenty ge- 
nes were placed in one group (selective hots- 
pot panel) while 58 genes were included in the 
other group (comprehensive panel) in 21 re- 
sected GC specimens. TP53, MUC6, APC and 
SYNE1 genes were among the most mutated 
genes in patients with early stage of GC [34]. 
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Copy number variation (CNV) has been detect-
ed for KRAS, JAK2, CD274 and PDCD1LG2 
genes applying three whole genome amplifica-
tion methods of single cell resequencing [35]. A 
total of 27,732 somatic mutations were identi-
fied using exome sequencing, out of which 40% 
were protein altering (8,726 missense, 1,661 
InDels, 494 nonsense, 10 stop loss and 221 
essential splice site) mutations. The altered 
pathways included TP53, RTK, PI3K and cell 
cycle pathway. ERBB2 point mutations in GC 
were found to be different from the activating 
point mutations in breast cancer [36, 37]. 

RNA-Seq data showed an inframe deletion of 
26 residues which disrupts the domain essen-
tial for protein kinase activity, thereby losing 
the tumor suppressing potential of MAP2K4 
[37]. Zang and colleagues [38] have character-
ized the protein coding regions of 537 kinases 
in 14 commonly studied cell lines using NGS 
and detected more than 300 novel kinase 
SNVs. A family wise analysis further revealed a 
significant SNV enrichment in MAPK related 
genes. 

Recurrent point mutations in various genes 
including TP53, PIK3CA, CDH1, KRAS, RHOA, 
ERBB2, ERBB4, were analysed in regular GC 
while TP53, PIK3CA and KRAS were also found 
to be significantly mutated in hypermutated 
GC. CDH1 and SMAD4 mutations were signifi-
cantly associated with shortened survival of GC 
patients [39]. Mutations were detected in prog-
nostically selected (good prognosis and bad 
prognosis) groups in GC patients revealing that 
PIK3CA, KRAS and TP53 represent the highly 
mutated genes in the good prognosis group. 
The poor prognosis group showed a lower 
mutation rate in comparison to that observed 
in the good prognosis group. High frequency of 
mutations in TP53 gene was reported in 25 
archival gastrointestinal samples using Illumina 
MiSeq platform [40]. A total of 737 targets in 
45 genes representing oncogenes and tumor 
suppressor genes were analysed in 238 GC 
samples revealing missense point mutations in 
TP53 in 9.7% population [41]. Moreover, 58% 
mutation in KIT and 26% mutation in PDGFRA 
were also reported [42].

Using targeted multigene sequencing, 46 can-
cer related genes were explored in five GC sam-
ples, out of which TP53 and PIK3CA were found 
mutated in 60% and 40% samples, respective-

ly [43]. A study reported whole genome se- 
quencing of 30 diffuse type GC samples and 
observed recurrent RHOA mutations which 
were confirmed through further validation ex- 
periments. Mutations were observed in RHOA 
in 22 out of 87 cases [44]. 

Epigenetic modifications 

One of the crucial mechanisms that steer the 
onset of cancer is the occurrence of wide-
spread epigenetic modifications that can lead 
to abnormal gene expression and genomic 
instability. NGS technologies have surpassed 
array techniques applied in earlier methylation 
studies by providing high density coverage of 
the epigenome. Methylation across the genome 
is unravelled through whole genome bisulfite 
sequencing as well as targeted sequencing 
aiming screening of the specific desirable 
regions of interest. 

An epigenetic trait has been defined as a “sta-
bly heritable phenotype resulting from chang- 
es in a chromosome without alterations in  
the DNA sequence” [45]. Any abnormality in  
the epigenetic system has been attributed as 
pathogenic mechanism causing the initiation 
and progression of several complex diseases. A 
vast amount of research has been conducted 
linking aberrant DNA methylation profiles and 
histone modifications to developmental defe- 
cts, obesity, asthma, cancers and neurodegen-
erative disorders [46]. However, given the com-
plexity of epigenetic mechanisms, which are 
influenced by aging, genetic variations, such  
as polymorphisms, and environmental factors, 
there is still a long way towards collecting, rese- 
arching, and deciphering epigenetic informa-
tion [47, 48]. Translation of all these mecha-
nisms into relevant biological information re- 
quires an integrated approach of research cov-
ering related fields. These epigenetic altera-
tions either accelerate or decelerate the cell’s 
transcription machinery thereby regulating the 
expression of genes in the concerned section 
of chromatin [49-51]. Epigenetic changes are 
somewhat similar to genetic mutations that 
change the underlying structure of the DNA, 
contributing towards the initiation and progre- 
ssion of cancer [52]. For normal gene expres-
sion, epigenetic machinery responsible for DNA 
methylation, DNA hydroxymethylation, post-tr- 
anslational modifications (PTMs) of histone pro-
teins, nucleosome remodelling, and regulation 
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by noncoding RNAs performs in harmony with 
cis and trans acting elements [53-55]. 

Aberrant DNA methylation in the promoter 
region of genes that leads to inactivation of 
tumor suppressor and other cancer-related 
genes is the most well-defined epigenetic hall-
mark in GC. In mammalian cells, DNA methyla-
tion consists of covalent attachment of a meth-
yl group to the 5’ position of cytosine residues 
in CG dinucleotides [56, 57]. CG dinucleotides 
are not randomly distributed throughout the 
genome, but tend to cluster in regions called 
CpG islands, mainly present in the promoter 
region of the genes [54, 55, 57]. An accepted 
definition of CpG islands describes them as 
DNA sequences, more than 200 base pair long, 
with CG content greater than 50% and an ob- 
served/expected CpG ratio of more than 60% 
[54, 58]. Methylation can also occur at non-
promoter CpG islands, defined as CpG shores, 
located in the vicinity of CpG islands up to 2  
kb long [59, 60]. Methylation of CpG islands is 
typically associated with gene silencing, while 
demethylation of these sites enables transcrip-
tion [54, 61]. Various risk factors like age, diet, 
chronic inflammation, infection with H. Pylori 
and EBV also act as a causative agent of aber-
rant gene methylation in GC [62].

Defective DNA methylation in CDH1, CHFR, 
DAPK, GSTP1, p15, p16, RARβ, RASSF1A, 
RUNX3 and TFPI2 has been considered as a 
serum biomarker for the diagnosis of GC [62, 
63]. A large number of genes have been identi-
fied to be methylated in the gastric mucosa of 
GC patients. Among them, RASGRF1 methyla-
tion has been found significantly elevated in 
mucosa from patients with either intestinal- or 
diffuse-type GC in comparison to mucosa from 
healthy individuals [64]. Silencing of miRNAs is 
also associated with hypermethylation of CpG 
islands. Methylation of the miR34-b/c was ubi- 
quitous in GC cell lines but not in normal gastric 
mucosa from healthy H. pylori-negative individ-
uals [65]. Aberrant DNA methylation in noncan-
cerous gastric mucosa has been implicated in 
gastric carcinogenesis and could be a useful 
biomarker for the assessing risk of GC.

Multiple techniques are being used to identify 
aforementioned changes in the DNA methyla-
tion. Among them, pyrosequencing has been 
proved to be a more reliable method in com-
parison to both methylation specific polyme- 

rase chain reaction (MSP) and bisulfite sequ- 
encing [66]. In a comparative analysis, frequen-
cy of promoter region methylation in TCF4 gene 
was reported to be higher when analyzed by 
pyrosequencing than MSP in advanced GC 
samples [67]. 

Hypermethylation in GPX3 promoter region with 
a 10% cut off was detected using pyrosequ- 
encing in 60% of the GC samples and 6 out  
of 9 cell lines [68]. Hypermethylation in EDNRB 
gene was analysed in 96 GC and adjacent nor-
mal tissues and correlated it with tumor infiltra-
tion [69]. Similarly, loss of expression of FAT4 
gene was observed in highly methylated GC cell 
lines and removal of methylation by demethyl-
ating agent restored its expression. Methylation 
status of FAT4 has also been associated with H. 
pylori infection in GC [70]. The Cancer Genome 
Atlas (TCGA), by analysing 295 GC samples  
for CpG methylation level in 86 genes and 14 
miRNAs, grouped hypermethylated genes into 
three categories: hypermethylated in EBV-posi- 
tive subtype, hypermethylated in both EBV-po- 
sitive and MSI-high subtypes, and other hyper-
methylated genes. Prominent methylation ch- 
anges were observed in RUNX1, ARHGDIB, 
PSME1, GZMB and RBM5 genes while VAMP5 
and POLG showed a marginal methylation dif-
ference between normal and GC cells.

The available literature documenting the role of 
epigenetic factors in the occurrence of gastric 
cancer clearly demonstrate the importance of 
strengthening efforts to pinpoint the key play-
ers that can be explored for the development of 
biomarkers and leads for better cancer man-
agement. A key advantage of NGS platforms is 
their ability to provide a comprehensive and 
unbiased view of the epigenome, facilitating 
investigations over content-limited microarray 
platforms. 

Differential gene expression in gastric cancer

Study of differential gene expression in the nor-
mal versus tumor tissue provides important 
insights about the events governing the onset 
and progression of the disease. Information 
generated about the number and fold change 
of upregulated and downregulated genes dur-
ing tumorigenesis may provide useful leads for 
further investigations aiming to identify relative 
importance of different pathways and key play-
ers participating in the disease progression. In 
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recent years, RNA-Seq approach has supersed-
ed the well-known microarray technique to an 
extent for assessing/computing of gene expres-
sion levels. Unlike microarrays, RNA-Seq can 
be used for the analysis of expression of novel 
transcripts without using probes.

Gene expression studies through NGS have 
been conducted using ovarian, colorectal and 
lung cancer specimens [71-73]. Transcriptome 
profiling of gastric tumor and normal tissues 
using Illumina sequencing revealed a total of 
13,228 genes expressed in cancerous tissue in 
comparison to 13,674 genes expressed in nor-
mal tissue. Out of the expressed genes, 114 
genes exhibited significant differential expres-
sion pattern between cancer and normal tis-
sues with threshold false discovery rate (FDR) 
<0.05. CDH1 was the most significantly upregu-
lated gene and its expression was surprisingly 
309 times higher in cancer samples while DPT 
was the most downregulated gene showing 40 
fold change. Dermatopontin gene (DPT) has 
been postulated to modify the behaviour of 
TGFBR2 through interaction with decorin and 
low expression was detected for both of these 
genes [10]. Another transcriptome profiling 
study in Chinese GC patients revealed 36 fold 
higher expression of CDH1 while DPT and 
TGFBR2 showed decreased expression in can-
cer samples [74] corroborating the earlier study 
[10]. The low expression of DPT in oral cancer 
has also been validated by qRT-PCR which sub-
stantiates the role of DPT as a common player 
in various cancers [75]. A study correlating 
gene expression and alteration pattern sug-
gested that HER2 overexpression was in cho-
rus with the ERBB2 amplification in 80% of the 
cases, while this phenomenon was exclusive 
and these patients did not have alterations in 
other receptor tyrosine kinases (RTKs) [29].

Length polymorphism at microsatellite loci in 
coding regions of genes may affect their ex- 
pression by premature occurrence of stop co- 
don. TGFBR2, a tumor suppressor gene, show- 
ed lack of expression in MSI-H samples. Expre- 
ssion of 139 genes with MSI in their UTR region 
was observed to be low when compared to 
genes without UTR mutations. Upregulated ex- 
pression of 137 genes containing 210 muta-
tions at microsatellite loci was observed and 
96% of these mutations were present in the 
UTR regions. These observations suggest an 
influence of mutations in UTR on gene expres-

sion. Significant downregulated expression of 
MGLL, SORL1, C20orf194, WWC3, and PXDC1 
genes was seen in MSI-H cell lines in contrast 
to MSS cell lines through transcriptome analy-
sis and further validated by q-PCR. Mutations 
in 3’UTR region of MGLL gene resulted in 42.6% 
downregulation of recombinant luciferase indi-
cating presence of aberrant gene products as a 
consequence of MSI. Deregulation of gene 
function in UTR could result from transcriptome 
altering mutations also [8].

Some studies have reported over expression of 
genes involved in receptor kinase activity. A 
tyrosine kinase receptor gene EGFR exhibited 
amplification and over expression in GC [76, 
77]. Inhibitors of another gene of the RTK fam-
ily, fibroblast growth factor receptor 2 (FGFR2), 
have shown some clinical efficacy in GC [11]. 
Ki23057, one of the FGFR inhibitors, along with 
5-fluorouracil has displayed synergistic antitu-
mor effects for GC treatment [78]. Loss of func-
tion of SMAD4 gene helps in epithelial mesen-
chymal transition and its re-expression has 
been seen in reversing the process [79]. Expre- 
ssion of one of the important genes involved in 
breast cancer, BRCA1, is correlated with sensi-
tivity to chemotherapeutics in gastric cancer 
[80, 81]. Silencing and overexpression of ARI- 
D1A gene led to both increased and decreased 
proliferation, respectively in tissue culture. 
Silencing of ARID1A gene also increases the 
level of E2F1 and cyclin E1 transcription fac-
tors. Long recurrence free survival has been 
predicted from mutation or deficiency of pro-
tein of ARID1A [20]. Expression of beta-catenin, 
FHIT, E-Cadherin, APC, CDX2, MET, TOPO2A, 
HER2 and p53 has been investigated using 
FISH and immunohistochemistry. The results 
have suggested that beta-catenin, E-Cadherin 
and FHIT were among the highly expressed pro-
teins. Expression of beta-catenin and E- 
cadherin was higher in patients with bad prog-
nosis while FHIT was high in patients with good 
prognosis [23].

Liu and co-workers [37] have performed RNA-
Seq analysis of 51 primary GC samples and 32 
cell lines to study differential gene expression. 
SMTN, a smooth muscle expression marker, 
showed low expression in tumor as compared 
to normal tissue. One hundred and seventy dif-
ferential isoform usage genes were identified 
including ZAK, KRAS, MCM7, ELK7 and CCND3 
between tumor and normal gastric tissue. Sig- 
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nificant increase in the ZAK TV1 isoform frac-
tion was observed in tumor samples while de- 
pletion of this isoform has been seen inhibit- 
ing proliferation in GC cell lines [37]. Important 

on DNA hypomethylation and miRNA are being 
explored for their applicability in screening for 
GC. The repertoire of prognostic GC markers 
based on MSI, CDH1, PI3K, KRAS, ALDH, SHH, 

Figure 4. Important differentially expressed genes during gastric cancer and 
their chromosal positions. Upregulated genes are shown in green and down 
regulated genes are shown in blue.

genes differentially regulat-
ed during GC and their chro-
mosomal locations are sh- 
own in Figure 4.

Exploiting the leads for a 
better GC therapy

A substantial amount of 
efforts have been directed 
to find a cure and develop 
better treatment regimes for 
different types of cancer. 
Still most of the generic ther-
apies involve platinum and 
taxol based drugs, which 
despite their impressive suc-
cess rates, also have severe 
side effects. Overall survival 
(OS) rate and quality of life 
post treatment by these  
chemotherapeutic agents is 
also low. This has led 
researchers to further look 
for disease and patient spe-
cific drugs with the major 
focus being on either activat-
ing the patient’s own immune 
system against the tumor 
cells or using the mutant and 
overexpressed protein spe-
cific antibodies. The insights 
gained from genetic and 
genomic studies on molecu-
lar pathogenesis of GC have 
prompted various studies 
aiming to identify different 
genetic biomarkers allowing 
early diagnosis and progno-
sis of the disease. 

Classical biomarkers used 
for the diagnosis of GC in- 
clude carcinoembryonic anti-
gen (CEA) and cancer anti-
gen 19-9 (CA-19-9), however, 
these biomarkers are not 
exclusive for GC and, there-
fore, their sensitivity and 
specificity is low. Other novel 
potential biomarkers based 
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Table 3. Details of drugs released/under trial for the treatment of gastric cancer
Phase Drug Product type Target Clinical trial/Drug bank Source
Approved Paclitaxel Small molecule Microtubules DB01229 Taxusbrevifolia
Marketed Apatinib mesylate Small molecule EGFR http://advenchen.com/?page_id=13 Chemical synthesis

Docetaxel Small molecule Microtubules DB01248 Taxol derivative
Doxorubicin Small molecule DNA intercalation DB00997 Streptomyces
Fluorouracil Small molecule Thymidylate synthase DB00544 Semi-synthetic
Mitomycin Small molecule DNA intercalation DB00305 Streptomyces
Ramucirumab Monoclonal antibody VEGFR-2 DB05578 Human
Trastuzumab Antibody drug conjugate HER-2 DB00072 Antibody drug conjugate

Phase III Bevacizumab Monoclonal antibody VEGF-A NCT00887822 Humanized antibody
Catumaxomab Bispecific antibody; hybrid; rat-mouse CD-3 and EpCAM NCT00836654 Rat-mouse hybrid monoclonal antibody
Everolimus Small molecule FKBP-12 NCT00879333 Semi-synthetic from Streptomyces hygroscopicus
Lynparza Small molecule PARP NCT01924533 Chemical synthesis
Nimotuzumab Monoclonal antibody EGFR NCT01813253 Humanized antibody
Nivolumab Biologic PD-1 NCT03006705 Human
Pembrolizumab Monoclonal antibody PD-1 NCT03019588 Humanized antibody
Pertuzumab Monoclonal antibody HER-2 NCT01774786 Humanized antibody

Phase II Afatinib Small molecule Mutant EGFR NCT02501603 Chemical synthesis
Alpelisib Small molecule PI3k NCT01708161 Chemical synthesis
AMG 337 Small molecule Hepatocyte growth factor receptor NCT02016534 Chemical synthesis
Atezolizumab Biologic PD-L1 NCT02458638 Humanized antibody
AZD4547 Small molecule FGFR NCT01795768 Chemical synthesis
Cabazitaxel Small molecule Microtubules NCT01956149 Taxoid derivative
Camptothecin Small molecule DNA topoisomerase 1 NCT00080002 Camptothecaacuminata
Dovitinib lactate Small molecule Receptor tyrosine kinase NCT01478373 Chemical synthesis
Durvalumab Monoclonal antibody PD-L1 NCT03094286 Human
GlutaDON Small molecule Glutamate analogue Semi-synthetic
Ipatasertib Small molecule Akt NCT01896531 Chemical synthesis

Phase II Ipilimumab Monoclonal antibody CTLA-4 NCT02935634 Human
Luminespib Small molecule Hsp90 NCT01084330 Chemical synthesis
LY-2875358 Monoclonal antibody Hepatocyte growth factor receptor NCT01874938 Humanized antibody
Masitinib Small molecule Receptor tyrosine kinase NCT01506336 Chemical synthesis
MM-111 Bi specific antibody HER-2 and HER-3 NCT01774851 Human serum albumin based antibody
Mogamulizumab Biologic C-C chemokine receptor 4 NCT02281409 Humanized antibody
Neratinib Small molecule HER-2 and EGFR NCT01953926 Chemical synthesis
Oxaliplatin Small molecule; Monoclonal antibody DNA intercalation NCT01980407 Chemical synthesis
Poziotinib Small molecule EGFR NCT01746771 Chemical synthesis
Regorafenib Small molecule Receptor tyrosine kinase NCT01913639 Chemical synthesis
Sacituzumab govitecan Antibody drug conjugate TROP-2 NCT01631552 Semi-synthetic
Tasquinimod Small molecule S100 calcium-binding protein A9 NCT01743469 Chemical synthesis
Telatinib Small molecule Receptor tyrosine kinase NCT00952497 Chemical synthesis
Tivantinib Small molecule Hepatocyte growth factor receptor NCT01152645 Chemical synthesis
Tremelimumab Monoclonal antibody CTLA-4 NCT02340975 Human
Varlitinib tosylate Small molecule HER-2 and EGFR http://www.arraybiopharma.com/product-pipe-

line/other-compounds/aslan001-arry-543/
Chemical synthesis
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Sox9, HER2, EGFR, VEGF, Hippo/YAP, MET tar-
gets show a detection rate varying from 4 to 
40%, while some others like PD1, PDL are being 
considered promising futuristic markers requir-
ing further validation [82, 83]. Development of 
these biomarkers has not only facilitated an 
early diagnosis of the disease but also played 
an important role in achieving recent advance-
ments in the field of patient specific and tar-
geted therapy. For example, trastuzumab, a 
HER2 specific monoclonal antibody is being 
used as a primary therapy in combination with 
chemotherapy. HER2 combinatorial drug has 
been shown to improve both quality of life and 
overall survival rate in HER2 mutation positive 
gastric cancers [84-86].

The success of overexpression of specific anti-
bodies approach can be seen by the develop-
ment and use of trastuzumab, a HER2 specific 
monoclonal antibody, approved specifically for 
HER2 overexpressing GC patients, in combina-
tion with 5-flurouracil or capecitabine. Adding 
trastuzumab to chemotherapy regime has im- 
proved median survival of GC patients by 2.5 
months. The combination therapy also showed 
an enhancement in progression free survival 
(PFS) and overall response rate by 6.7 months 

versus 5.5 months and 47.3% vs. 34.5% over 
chemotherapy alone [87]. This positive result of 
trastuzumab treatment, has also led to its 
inclusion in National Comprehensive Cancer 
Network (NCCN) guidelines for a standard care 
therapy [88]. Similarly, ramucirumab, a VEGFR2 
inhibitor, has also received approval from FDA 
for metastatic gastric cancer after showing an 
increase in OS and PFS in comparison to pla-
cebo [89]. Table 3 presents an overview of the 
drugs marketed and under development for GC 
along with their mechanism of action. As can 
be inferred from the data available, most of the 
drugs under development are biological mole-
cules, which act on the oncogenic cells either 
by activating the immune system or by inhibit-
ing the proteins involved in metastasis and dis-
ease progression. Among the immunothera-
peutic agents nivolumab and pembrolizumab 
have shown promising results in gastric cancer 
[90, 91]. These molecules target programmed 
cell death 1 (PD-1), which on interacting with 
PD-L1 causes suppression of the immune sys-
tem. PD-1/PD-L1 related immune suppression 
and their expression level has also been asso-
ciated with MSI+ GC [92, 93]. Obviously, many 
drugs undergo clinical trials but only a few clear 
the hurdles of accreditation. Different drugs 
have been grouped according to their nature 
and status of clinical phases as shown in Figure 
5.

Genome wide association studies can help us 
understand the prevalence and identification of 
the specific therapies which could be delivered 
to the patients for better OS and quality of life. 
Different population and genetic studies have 
revealed various population specific mutations 
in GC. For example PF-06671008 a bispecific 
anti-cadherin and anti-CD3 antibody, which is 
under clinical trials for breast cancer, colorectal 
cancer and non-small cell lung cancer [94] 
could also be used in treating GC patients with 
CDH1 mutations. CDH1 has also been identi-
fied as one of the prominent genetically trans-
mitted gene for GC occurrence [95]. Several 
other studies based on genetic analysis of the 
GC patients have led to the identification of tar-
get for the development of patient specific 
drugs (https://ClinicalTrials.gov/show/NCT02- 
331693).

Conclusion

Comprehensive NGS-based studies on genetic 
and epigenetic changes, and differential gene 

Figure 5. Relative distribution of drugs according to 
clinical phases (A) and product type (B) developed for 
the treatment of gastric cancer.
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expression have generated enhanced thrust 
towards understanding different aspects of of 
gastric tumorigenesis. Although, a pleothera of 
genetic and epigenetic factors have been impli-
cated, no consensus lines have evolved to 
define the molecular pathogenesis of gastric 
cancer. Nevertheless, a number of differentially 
expressed genes and genetic/epigenetic vari-
ants have been identified as potential targets 
for future investigations aiming to develop new 
biomarkers for early diagnosis of the disease. 
Moreover, new leads have been identified to 
assist the development of drugs to facilitate 
personalized therapy to complement patient 
specific treatment. The success of different 
NGS-based investigations in generating imme- 
nsely useful information recently, will encour-
age researchers to undertake more extensive 
multidisciplinary efforts for better understand-
ing of the events involved in the onset and pro-
gression of gastric cancer and identification of 
new targets for drug development.
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