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Review Article
Fluid shear stress and tumor metastasis
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Abstract: The tumor microenvironment (TME) is a key factor regulating tumor cell invasion and metastasis. The ef-
fects of biochemical factors such as stromal cells, immune cells, and cytokines have been previously investigated. 
Owing to restrictions by the natural barrier between physical and biochemical disciplines, the role of physical fac-
tors in tumorigenesis is unclear. However, with the emergence of interdisciplinary mechanobiology and continuous 
advancements therein in the past 30 years, studies on the effect of physical properties such as hardness or shear 
stress on tumorigenesis and tumor progression are constantly renewing our understanding of mechanotransduc-
tion mechanisms. Shear stress, induced by liquid flow, is known to actively participate in proliferation, apoptosis, 
invasion, and metastasis of tumor cells. The present review discusses the progress and achievements in studies 
on tumor fluid microenvironment in recent years, especially fluid shear stress, on tumor metastasis, and presents 
directions for future study.
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Introduction

Metastasis is a complex dynamic cascade, 
accounting for approximately 90% of tumor-
related mortalities [1]. Previous studies have 
focused on the effects of biochemical factors, 
such as stromal cells, immune cells, and cyto-
kines, on tumor metastasis. However, during 
metastasis, tumor cells also interact with vari-
ous biochemical and biophysical factors in the 
tumor microenvironment (TME). Therefore, it is 
essential to elucidate the dynamic response of 
tumor cells to different physical and chemical 
factors in the TME. 

In 2015, a landmark study reported that long-
term 1-kPa magnetic load in intestinal crypts 
can upregulate the oncogene c-Myc and lead  
to carcinogenesis, which indicates that a sim-
ple physical process can induce tumorigenesis 
[2]. Moreover, the biophysical characteristics  
of tumor cells have been gradually unveiled 
with developments in biomechanics for approx-
imately 60 years [3]. Biomechanics refers to 
the study of the deformation and movement of 
living bodies and validates the laws of mechan-
ics in life. In the 1990s, with the emerging 

mechanics tools such as atomic force micros-
copy and Förster resonance energy transfer 
(FRET), physicists shifted their focus on biome-
chanics from the tissue level to the cellular or 
gene level, and subsequently gradually shifted 
from biomechanics to mechanobiology. During 
this shift, a series of mechanosensitive mole-
cules such as Cav-1, BMP, IGF-2, VEGF [4, 5], 
and nuclear transcription factors YAP/YAZ [6], 
c-Myc [2], and Atoh8 [7] were identified, which 
play an important role in tumorigenesis or tu- 
mor progression [8, 9]. This aspect triggered a 
widespread concern among oncologists, espe-
cially in the past 4 years, and numerous studies 
then focused on the mechanobiological mecha-
nism of tumorigenesis and metastasis.

As a classic mechanical feature, matrix hard-
ness has been considered a peculiar mechani-
cal feature in predicting tumor metastasis and 
prognosis [10, 11]. Wei et al. confirmed that 
matrix hardness can activate the TWIST1-
G3BP2 pathway to promote tumor cell invasion 
and metastasis [12]. Nonetheless, the flow of 
biological fluids is a vital physical property of 
the TME; however, owing to continuous changes 
in the parameters including flow diameter and 
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fluid velocity in vivo, in vitro modeling of the 
tumor fluid microenvironment has been faced 
with numerous technical challenges. In recent 
years, with the application of microfluidic tech-
nology and mechanical measurement methods 
in studies on cancer, developments in tumor 
fluid mechanics accelerated. Increasing evi-
dence now indicates that fluid shear stress 
(FSS) is an essential factor affecting fluid me- 
chanics, and its role in metastasis has received 
increasing attention.

FSS is defined as the internal frictional force 
between moving layers in laminar flow. Addi- 
tionally, FSS, the product of fluid viscosity and 
shear rate, is an important parameter of cellu-
lar stress in flowing liquid, measured in Newtons 
per square meter (N/m2) or dynes per square 
centimeter (dyn/cm2) [13]. FSS is a key regula-
tor of vascular endothelial phenotypes and to 
induce polarity in endothelial cell [14], cytos- 
keletal rearrangement [14], and post-transla-
tional modifications (e.g., phosphorylation, etc.) 
and gene expression [15]. Liquid laminar flow is 
prevalent in biological systems and is usually 
categorized as blood, lymphoid, and interstitial 
flow. Tumor cells primarily encounter interstitial 
shear stress and blood shear stress during 
metastasis to the target organs. The former 
plays a role in promoting tumor metastasis, 
lymphatic drainage, and anti-cancer drug de- 
livery [16]. Current evidence suggests that on 
tumorigenesis, blood shear stress has dual 

effects. It could promote tumor invasion and 
metastasis, adhesion, and extravasation under 
certain circumstances while [17] conversely, 
mechanically eliminating circulating tumor cells 
(CTCs) [18], and they promote cell cycle arrest 
in tumor cells [19]. The development of relat- 
ed technology, four types of tumor-related fluid 
microenvironments and the mechanism of FSS 
in various stages of the tumor metastasis cas-
cade are summarized herein to provide a re- 
ference for subsequent studies on tumor fluid 
mechanics.

Technological advancements in microfluidics

In the past few decades, the need to explore 
the biological significance of mechanical force 
has led to the development of several innova-
tive approaches. Furthermore, the emergence 
of pN-level mechanical measurement and visu-
alization tools such as biofilm probes, traction 
force microscopy, and atomic force microscopy 
have shifted the focus from traditional biome-
chanics to mechanotransduction at the cellu- 
lar and subcellular level [20], and the use of 
microfluidic chips and 4-dimensional flow mag-
netic resonance imaging to model in vitro and 
in vivo mechanical microenvironments has re- 
ceived increasing attention [21, 22]. The follow-
ing sections focus on the advancements in fluid 
mechanic tools and their applications in stud-
ies on cancer (Table 1). These novel methods 
have enhanced the general understanding of 

Table 1. Tools for the study of fluid mechanics of cancer
Tool or technique Application Refs
Mechanical measurement Microfluidic traction force 

microscopy
Observe the traction and shear deformation of cells under fluid environment;
To study mechanotransduction in angiogenesis and the initial growth of 
tumors;

[23, 24]

Intracellular tension sen-
sors/FRET

Realize the visualization of intracellular forces;
To detect the location and interactions of cellular structures (including 
intergrins and membrane proteins);

[25]

Confocal microscopy 
or optical coherence 
tomography

Investigate the effect of shear stress on cell-cell interactions and mechano-
transduction mechanism;
To measure biomechanical properties of developing, engineered, and 
natural tissues and to understand the role of mechanical stimuli such as 
shear stress;

[22, 26, 27]

4-dimensional flow mag-
netic resonance imaging

Analyze the flow and wall shear stress; 
To monitor the chemoembolization of hepatocellular carcinoma;

[21, 28]

Mechanical simulation Parallel plate flow 
chamber

Mimic the fluid environment of cancer cell growth;
To investigate the effect of shear stress on cell-cell interactions and mecha-
notransduction mechanism;

[29, 30]

Bionic chips or microflu-
idic platforms

Model and study the cell-cell interactions and mechanotransduction mecha-
nism under shear stress;
To detect cancer biomarkers and to isolate characteristic cancer cells;

[31-33]

Computational fluid 
dynamics modeling

Simulate drug distribution in a single tumor nodule or tumor-induced angio-
genesis, etc.;
To observe various cell behaviors on micro-rheology of cancer cells in 3D 
environments;

[34-36]
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the correlation between tumor metastasis and 
fluid shear stress.

Pioneering advancements have been made in 
fluid mechanics. However, it is important to 
investigate the biological mechanisms involved 
in fluid mechanics. At present, the process of 
integrating mechanical sensing and mechani-
cal simulation, or in other words, during dynam-
ic hydrodynamic sensing, simulating positive 
and negative feedback regulation mechanisms 
and adjusting the parameters of the microflu-
idic model in real time to restore the complexity 
of fluid mechanics may be the direction for 
future studies. In addition, the need to estab-
lish a reliable in vivo model of fluid dynamics is 
still urgent for the development of mechanical 
technology. 

Tumor metastasis-related fluid microenviron-
ment 

Tumor growth and metastasis are influenced by 
changes in the fluid microenvironment, such  
as interstitial flow, lymph flow, blood flow, and 
other organ-specific components.

Interstitial flow

The gradual flow of fluid in tumor tissues is 
known as interstitial flow. In a physiological 

reported a similar result in glioma cells [39]. 
Apart from promoting tumor invasion and me- 
tastasis, higher interstitial flow rate is also an 
independent predictor of poor prognosis in  
cancer patients [40].

Blood flow

When primary tumor cells intravasate into bl- 
ood vessels, they become CTCs and are then 
widely disseminated through circulation. Many 
clinical studies have suggested that CTCs are 
responsible for most postoperative recurrenc-
es and distant metastasis in patients with 
malignant tumors [41]. Moreover, metastatic 
colonization of CTCs is much less efficient. Al- 
though millions of tumor cells differentiate into 
CTCs per day, only 0.02% survive to success-
fully undergo metastasis [42]. Apart from an- 
oikis and killing by natural killer cells, the me- 
chanical damage from FSS is the main cause  
of death of CTCs. The mean FSS in veins, ca- 
pillaries, and arteries is 1-4 dyn/cm2, 10-20 
dyn/cm2, and 4-30 dyn/cm2 [43], respectively 
(Figure 1). In addition, FSS is significantly high-
er in close proximity to large vessels, heart tur-
bulence, and blood vessel bifurcations, where 
the FSS of tumor cells encountering may ap- 
proach 3000 dyn/cm2 [13, 44]. FSS is omni-
present in circulation; hence, CTCs are exposed 

Figure 1. Shear stress levels are variable in tumor metastasis-related fluid 
microenvironment. Blood shear stress levels are higher than interstitial flow 
and lymph flow. Additionally, the FSS in hepatic sinusoid and central veins 
is 0.1-0.5 dyn/cm2 and over 2 dyn/cm2, respectively. The FSS in the central 
pulmonary artery and distal arteries are higher, approximately 20.5 ± 4.0 
and 14.1 ± 0.7 dyn/cm2 in that order. 

state, most of the fluid that 
leaks out of capillaries is di- 
rected back to the capillaries, 
and only a fraction of fluid that 
passes through tumor tissues 
is recycled by the lymphatic 
vessels. The aforementioned 
process completes the exch- 
ange of material between the 
capillaries and the surround-
ing tissues and prevents the 
accumulation of fluid in inter-
stitial spaces. In tumor tis-
sues, however, it was reported 
that owing to the increased 
flow rate and high vascular 
permeability [15], interstitial 
pressure increased and th- 
erefore interstitial shear str- 
ess approached approximate-
ly 0.1 dyn/cm2 [13, 37] (Figure 
1). Under continuous flow of 
interstitial fluid in an in vitro 
3D culture, the migration rate 
of breast cancer cells tended 
to increase [38]. Munson et al. 
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to varying levels of FSS. There is growing evi-
dence that blood shear stress can bilaterally 
regulate tumor cell proliferation [19], induce 
apoptosis [45], promote CTC adhesion and 
extravasation [46], etc., thereby serving as a 
vital factor affecting tumor metastasis.

Lymphatic flow

In general, the lymphatic system participates in 
blood and body fluid circulation by assisting the 
re-entry of body fluid into the circulatory sys-
tem. In addition, it can also transport immune 
cells and deliver antigens, shouldering impera-
tive immune function. The average FSS of lym-
phatic vessels is 0.64 ± 0.14 dyn/cm2 and the 
peak is 4-12 dyn/cm2 [47] (Figure 1), which is 
far lower than blood shear stress. Recent stud-
ies have reported that the FSS generated at 
sentinel lymph nodes can significantly upregu-
late ICAM-1 in lymphoid endothelial cells, th- 
ereby facilitating lymph node metastasis [48]. 
Overall, lymphatic shear stress is considered  
to probably increase lymph node metastasis 
and affect immune regulation in cancer.

Target organ-specific blood microenvironment

When primary tumor cells infiltrate the circula-
tory system, they usually stagnate in the vascu-
lature of the target organs minutes after being 
in rapid blood flow [18]. Clinically, the liver [49], 
lung [50], and brain [51] are highly metastatic 
organs; all of these have unique blood micro-
vasculature, and their FSS is enlisted in Figure 
1. 

For instance, the hepatic sinusoid and alveolar 
walls both have a dual blood supply system.  
A key process of organ-specific metastasis is 
that CTCs are captured by the different vas- 
culature. Weiss et al. have analyzed the rela-
tionship between the metastatic rate of eight 
target organs and their arterial blood flow in 
colorectal cancer and esophageal squamous 
cell carcinoma. They found that the frequency 
of organ metastasis is positively correlated 
with blood flow [52]. Recently, researchers 
have developed a series of organ-specific mi- 
crofluidic chips, such as liver, lung, brain chips, 
etc. [53-55]. Using these chips as experimen- 
tal systems, they confirmed that FSS affects 
the metabolism of and secretion from hepato-
cytes, the immune response of lung tissue, and 
the integrity and penetrability of the blood-

brain barrier [53-55]. Clinically, the mechanism 
underlying organ-specific metastasis and wh- 
ether fluid mechanics is a contributor warrant 
further investigation. Hence, it seems worth-
while to investigate the following two aspects 
using microfluidic chips: first, to set up various 
tissue/organ-specific microfluidic chips in se- 
ries and observe tumor cell invasion and me- 
tastasis under different fluid dynamics; second, 
to seed different cell types (tumor cells, endo-
thelial cells, immune cells, etc.), and investigate 
the interactions between tumor cells and other 
stromal cells, using the microfluidic chips. 

Fluid shear stress plays significant roles in the 
tumor metastasis cascade

Dynamic response of tumor cells to FSS 

FSS induces tumor cell death: The size, action 
time, and acting form of FSS changes with time 
for CTCs. In general, CTCs undergo an FSS  
that can vary from 0.1 dyn/cm2 to 1-40 dyn/
cm2, sometimes approaching 3000 dyn/cm2 

[13, 44]. To better understand the effects of 
FSS of various strengths on tumor metastasis, 
we have defined four grades of FSS, based  
on the existing literature: micro, low, medium, 
and high; these correspond to FSS ranges of 
0-0.5 dyn/cm2, 0.5-15 dyn/cm2, 15-30 dyn/
cm2, and >30 dyn/cm2, respectively (Figure 1). 
Lien et al. reported that laminar shear stress 
(LSS) of 0.5-12 dyn/cm2 can induce apoptosis 
of Hep3B, MG63, SCC25, and A549 cells, un- 
like oscillation shear stress (OSS), which sug-
gests that the different effects of FSS-induced 
apoptosis might depend on the model of FSS 
(Figure 2) [45]. Under certain circumstances, 
such as liver fibrosis or high interstitial pres-
sure, blood flow tends to be reversible [15, 56] 
and easily induces OSS, leading to decreased 
FSS-induced apoptosis in tumor cells. Accor- 
dingly, a high metastatic characteristic in a par-
ticular region is likely to attribute to a variant 
FSS model.

Notably, FSS primarily induces tumor cell apop-
tosis or autophagy rather than necrosis. The 
human colorectal carcinoma cell line HCT116  
has been reported to undergo almost no cell 
death within the first 2 min under continuous 
FSS of 8-60.5 dyn/cm2; however, tumor cell 
death rate increases to 60% after 20 h [57]. 
Similarly, Sagar reported that high FSS (60 dyn/
cm2) eliminates more circulating tumor cells 
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than low FSS (15 dyn/cm2), and high FSS can 
eliminate more than 90% of tumor cells within 
4 h; apoptosis of tumor cells continued even 
after termination of FSS in 16-24 h [58]. These 
results indicate that FSS-specific cell death has 
a residual effect that is positively correlated 
with FSS size and action time. In terms of the 
molecular mechanism, Fu reported that high 
FSS increased reactive oxygen species (ROS) 
levels in tumor cells, which could cause oxida-
tive stress and ultimately induce tumor cell 
death (Figure 2) [38]. Furthermore, FSS also 
upregulates BMPRIB, thereby activating the 
Smad1/5/p38 MAPK signaling pathway, en- 
hancing protein expression of cleavage cas-
pase-3 or LC3B-I, to promote apoptosis or 
autophagy (Figure 2) [45]. In addition, it has 
been reported that FSS-induced cell death  
may be attributed to cytoskeleton destruction, 
thereby preventing cell adhesion and inducing 
anoikis.

FSS regulates tumor proliferation: In addition 
to cell death, FSS was reported to influence cell 
proliferation. Studies have reported that tu- 
mor cell proliferation can be obviously reduced 
by increasing the FSS stimulation time [19]. 

Further experiments have indicated that FSS 
can lead to G1/S or G2/M cell cycle arrest in 
tumor cells. A previous study reported that  
61% of colon cancer cells were arrested in the 
G1 phase with sustained FSS stimulation at 15 
dyn/cm2, compared to 24% in the FSS-free 
group [59]. Similarly, Chang reported that low 
FSS stimulation of 2-20 dyn/cm2 activated 
Smad1/5, causing cell cycle arrest at the G2/M 
phase and downregulating cell differentiation 
in the adherent human osteosarcoma cell line 
(MG63) (Figure 2) [60]. Simultaneously, the 
study reported that p-Smad1/5 was upre- 
gulated with increasing FSS strength [60].  
Fan reported that when FSS of different 
strengths were applied to circulating human 
colon cancer cells (HCT116) for a constant  
period, cancer cells in the high FSS group  
(60.5 dyn/cm2) had higher cell vitality and 
β-catenin expression than those in the low FSS 
group [19]. Recent studies have also reported 
that tumor cells have shear stress resistance, 
implying that tumor cells can adapt to shear 
stress stimulation up to 6000 dyn/cm2 and 
show increased survival after repeated expo-
sure to FSS, relative to normal epithelial cells 
[61]. The findings of these two studies are not 

Figure 2. Dynamic response of tumor cells to fluid shear stress (FSS) related to cell survival. FSS targets bone mor-
phogenetic protein (BMP) and integrin, and then accelerates the process of G2/M cell cycle arrest and cell death. 
On one hand, FSS upregulates BMPRIB, activating the Smad1/5/p38 MAPK signaling pathway, enhancing cleavage 
caspase-3 or LC3B-I and further promotes apoptosis or autophagy. On the other hand, FSS increases the levels of 
reactive oxygen species in tumor cells and directly induces tumor cell death. Moreover, FSS activated Smad1/5, 
causing cell cycle arrest at the G2/M phase and inhibiting cell differentiation.
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consistent with those of Chang, and we sur-
mise the reasons may be related to the FSS 
range and cell state employed in the study. 
Although FSS has been reported to have vari-
ous regulatory effects on tumor proliferation, 
FSS is consistently reported to play a vital role 
in tumor proliferation.

FSS promotes tumor invasion and metastasis: 
Increasing evidence indicates that low FSS 
stimulation upregulates or activates a series  
of cytokines or mechanosensitive molecules, 
such as IGF-2, VEGF, ROCK, and Cav-1, trigger-
ing downstream molecular pathways and pro-
moting invasion and metastasis of tumor cells 
(Figure 3) [62, 63]. For instance, Wang report- 
ed that application of low FSS (2 dyn/cm2) to 
chondrosarcoma cells promoted the synthesis 
of cAMP and IL-1β or activation of IGF-2 and 
VEGF-B/D, targeting the PI3-K, p38, or other 
signaling pathways, ultimately enhancing the 
invasion of chondrosarcoma cells in vitro [64, 
65]. Lee supported this conclusion by demon-
strating that FSS (0.05 dyn/cm2) activated the 
ROCK-LIMK-cofilin signaling axis, inducing nu- 
clear translocation of YAP1, and regulating 
transcription of metastasis-related genes in 
prostate cancer cells [17]. Yang’s team also 
verified that Cav-1 can activate the down- 
stream PI3K Akt/mTOR pathway and promote 
metastasis of breast cancer cells under low 

VEGF can also repress antigen presentation in 
mature dendritic cells, thereby inhibiting their 
immune surveillance function. Besides mediat-
ing immunity escape of carcinoma cells, plate-
lets can directly trigger EMT of CTCs [18] or 
mobilize neutrophils via the secretion of TGF-β/
PDGF, and leading to tumor micrometastasis 
[69]. However, in most situations, platelets will 
directly bind to CTCs to form cell complexes, 
thus promoting the evasion of CTCs from the 
immune, inhibiting CTC apoptosis, and mediat-
ing CTC extravasation [70].

At low FSS of 1.84 dyn/cm2, thrombin-activated 
platelets can produce a 5-fold increase of en- 
dothelial adherence in cervical cancer cells 
(HeLa) [71]. At low FSS (5 dyn/cm2), tumor gan-
gliosides can drastically enhance the dynamic 
adhesion of platelets in the bloodstream, facili-
tating the capture of platelet-CTC complexes  
by endothelial cells (Figure 4) [72]. However, at 
an FSS of 50 dyn/cm2, the adhesion efficiency 
was not further enhanced, thereby indicating 
that low FSS is sufficient to enhance the adhe-
sion of platelet-CTC complexes to endothelial 
cells [72]. In addition, Egan et al. reported that 
low FSS would similarly reduce LDH levels in 
tumor cells; LDH can be a quantitative molecu-
lar marker of membrane damage induced by 
FSS, which indicates that platelets can pro- 
tect cancer cells from FSS-induced mechanical 

Figure 3. Various factors activated by fluid shear stress (FSS) can induce 
tumor cells metastasis. FSS stimulation upregulates a series of cytokines 
or mechanosensitive molecules, such as IGF-2, VEGF and Cav-1, activating 
PI3K/AKT, c-Jun and NF-kB pathway and promoting invasion and metasta-
sis; FSS can also combine integrin receptors, activating the ROCK-LIMK-
cofilin signaling axis, inducing nuclear translocation of YAP1 and promoting 
invasion and metastasis.

FSS, using in vivo and in vitro 
experiments [66].

In conclusion, FSS has an im- 
portant effect on proliferation, 
death, invasion, and metasta-
sis of tumor cells, which is la- 
rgely dependent on the type, 
size, and action time of the 
FSS. 

FSS-dependent interaction 
among tumor cells and other 
blood components 

Platelets: Clinically, thrombo-
cytosis is often observed in 
metastatic cancer patients, 
suggesting that platelets may 
contribute to tumor metasta-
sis [67]. Platelets can down-
regulate the NK cell-surface 
receptor NKG2D through pa- 
racrine TGF-β signaling [68]; 
meanwhile, platelet-derived 
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damage (Figure 4) [73]. However, with the in- 
crease in FSS, although a similar number of 
platelets adhered to tumor cells, the protective 
effect from platelets in FSS-induced tumor  
cell death decreased [73]. Thus, low FSS can 
enhance platelet promotion of tumor metasta-
sis; however, high FSS may reverse the effect.

Neutrophils: There is growing evidence that 
neutrophils may play a dual role in tumor me- 
tastasis. On one hand, when neutrophils have 
immediate contact with tumor cells, they can 
produce TNF-α, IL-1β, protease, membrane per-
forators, and other compounds to eliminate 
tumor cells [74]; on the other hand, gastrointes-
tinal and other malignant tumors are character-
ized by neutrophil infiltration [75], and neutro-
phils can enhance tumorigenic potential [76].

The formation of neutrophil-tumor cell complex-
es is mediated by the sizes of the FSS; spe- 
cifically, the number of neutrophils binding to 
tumor cells decreases with an increase in FSS. 
The mechanism underlying this phenomenon is 
that at low FSS, neutrophils can bind directly to 

tumor cells through the surface molecule 
CD11b, while at high FSS, binding is a two-step, 
sequential process. In detail, neutrophils first 
bind transiently to tumor cells via L-selectin, fol-
lowed by conversion of the transient binding 
into stable adhesion via the synergistic effect 
of CD11a and CD11b (Figure 4) [77]. In 2008, 
another study confirmed that the accumulation 
of neutrophils and melanoma cells into a cellu-
lar mass is dependent on FSS size and shear 
rate, mainly via β2 integrin and selectin [78].

Monocytes and macrophages: Similar to neu-
trophils, macrophages are important immune 
cells, with phagocytosis, antigen presentation, 
and other immune functions, while various ma- 
crophage subtypes play different roles in tumor 
metastasis. Previously, tumor-associated mac-
rophages (TAMs), which specifically infiltrate tu- 
mor tissue, were the focus of studies on cancer 
associated with macrophages. However, in re- 
cent years, in vivo studies have reported that 
circulating monocytes/macrophages are clo- 
sely linked to the process of extravasation of 
breast cancer cells [79]. Based on an in vitro 

Figure 4. Fluid shear stress (FSS) regulates the interactions among tumor cells and other blood components. Blood 
shear stress can enhance the interactions between circulating tumor cells (CTCs) and platelets, neutrophils, mono-
cytes, and other blood components, thereby protecting them from mechanical damage and promoting CTC adhesion 
to endothelial cell. Moreover, different magnitudes of shear stress can regulate the binding of CTCs to neutrophils.
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model loaded with a dynamic FSS, Evani et al. 
reported that breast cancer cells would not 
adhere to endothelial cells directly under low 
FSS (0.5-2 dyn/cm2), but instead formed a 
tumor cell/monocyte complex before binding  
to endothelial cells (Figure 4) [80]. Briefly, FSS 
determines the binding of tumor cells/mono-
cyte complexes and endothelial cells.

These results suggest that FSS can mediate 
the interaction between CTCs and various bl- 
ood components; moreover, the formation of 
tumor cell complexes contributes to CTC sur-
vival, adhesion, extravasation, etc. In the fu- 
ture, targeting the tumor cell complex-endothe-
lium axis should be investigated as a promising 
therapy.

FSS is an essential regulator of tumor extrava-
sation

Extravasation is a preliminary step in tumor 
metastasis. Similar to leukocyte exudation, tu- 
mor cell extravasation primarily involves three 
steps: adhesion, trans-endothelial migration 
(TEM), and crossing the vascular basement 
membrane (Figure 5) [81]. Previous studies 
indicate that FSS not only plays an important 
role in the neutrophil recruitment cascade (cap-
ture-scrolling-activating-adhesion), but also is 
closely related to the extravasation of CTCs 
[82].

FSS regulates tumor cell adhesion: The adhe-
sion of CTCs to vasculature endothelial cells is 
a prerequisite for tumor extravasation, wherein 
selectin, cadherin, and integrin are key pro-
teins. Essentially, cell adhesion involves bind-
ing between a specific receptor and its ligand, 
which can be subdivided into two stages: initial 
rolling adhesion and stable adhesion. Different 
adhesion molecules display diverse molecular 
dynamics of reaction rate or affinity; therefore 
FSS is likely to affect tumor cell adhesion via 
regulating adhesion/dissociation efficiency or 
expression levels of adhesion molecules.

Low FSS has been shown to affect the stable 
adhesion of tumor cells; furthermore, it has 
been reported that as the FSS increases, the 
adhesion efficiency first increases and then 
decreases. Fennewald reported that the quan-
tity of cancer cells (HNSCCs) adhered to the 
matrix gel was significantly higher in the group 
with FSS (0-0.05 dyn/cm2). Similarly, another 
study reported that low FSS induced a 2-fold 
increase in the number of breast cancer cells 
adhered to endothelial cells, compared with the 
group without FSS [83]. However, Fennewald 
also reported that tumor cell adherence was 
gradually reduced to zero as the FSS increas- 
ed (in the range of 0.05 to 1 dyn/cm2) [84]. 
Papadimitriou and Richter successively report-
ed the same conclusion that FSS, within a par-
ticular range, can inhibit tumor cell adhesion 

Figure 5. Fluid shear stress (FSS) is an essential regulator of tumor cell adhesion and extravasation. FSS plays a 
dual role in the adhesion of tumor cells to endothelial cells, and as the FSS increases, the adhesion efficiency first 
increases and then decreases. There may be different tendencies in the manner of adhesion of single tumor cells 
and tumor cell clusters in blood. FSS stimulation can promote intracellular generation of reactive oxygen species 
and pseudopodia formation, thereby triggering trans-endothelial migration. 
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[85, 86]. It is noteworthy that although FSS is  
a two-way regulation of tumor adhesion, the 
response of different tumor cells to varying 
degrees of FSS may be positive or negative 
[87], which may be associated with the type or 
expression level of adhesion molecules at the 
tumor cell surface. Other than stable adhesion, 
FSS can negatively regulate rolling adhesion 
within a certain range (Figure 5). Aigner report-
ed that the ratio of rolling adhesion in three 
cancer cell types (KS, HL-60, and SkW3) signifi-
cantly declined with FSS stimulation (0.25-2.75 
dyn/cm2) [88].

Since the effect of FSS varies with time and site 
of application, it is worth investigating how the 
dynamic FSS play roles in tumor cell adhesion. 
Through in silico modeling, Yan observed that 
the adhesion rate of tumor cells to curving ves-
sels was 1.5-fold times greater than that to 
straight vessels, and nearly 45% of tumor cells 
preferentially adhered to medial curving ves-
sels. Based on the hydrodynamic theory, the 
authors concluded that a positive shear stress 
gradient enhanced tumor cell adhesion while a 
negative gradient weakened it [89]. Thus, a 
constantly increasing FSS (within 50 dyn/cm2) 
is likely to promote tumor cell adhesion, and 
vice versa.

FSS has differing effects on cell adhesion in 
single cells and clustered cells, the two major 
forms of CTCs. Yano et al. compared adhesion 
rate between N17 single cells and NL17 cell 
clusters at low FSS. They found that the bind- 
ing frequency increased in NL17 cell clusters, 
which was mostly short-term attachment, with 
less stable adhesion, but single cells are more 
likely to develop stable adhesion at the same 
FSS [90]. However, subsequent in vivo experi-
ments reported that NL17 cell clusters result in 
greater tumor metastases than did N17 single 
cells (Figure 5) [90], which may attributed to 
the stronger killing effect of FSS on single 
tumor cells.

FSS regulates TEM of tumor cells: TEM refers to 
the process whereby tumor cells stably adhere 
to endothelial cells and then penetrate the 
endothelial tissue. There are two primary TEM 
pathways in tumors: 1) paracellular TEM, wh- 
erein tumor cells reduce the endothelial cell 
junction and cause endothelial cell retraction 
and separation via secretion of VEGF, TGF-β, 
and other cytokines, promoting TEM [91]; and 

2) transcellular TEM, wherein tumor cells pass 
directly through vascular endothelial cells [46, 
92].

The potential for TEM increases as the reten-
tion time of tumor cells in endothelial cells 
increases, and that retention time largely de- 
pends on FSS [93]. As mentioned earlier, a 
stronger FSS can not only increase the adhe-
sion between tumor cells and endothelial cells, 
but also reduce the duration and prevent TEM. 
However, using a zebrafish model, Ma reported 
that ROS levels in tumor cells are upregulated 
with FSS (10-15 dyn/cm2) stimulation, activat-
ing the MEK/ERK signaling pathway and pro-
moting TEM (Figure 5) [94]. Another study re- 
ported that when the shear rate is greater than 
400 s-1, that is, physiological shear conditions, 
FSS could induce the formation of a pseudo-
foot in tumor cells, which is also conducive to 
TEM [95].

Future research directions for fluid mechanics 
in tumor metastasis

Establishment of guidelines for tumor research 
using fluid mechanics

Fluid mechanics of tumors, as an emerging 
interdisciplinary research field, faces many 
challenges. Unlike solid mechanics and struc-
tural mechanics, fluid mechanics involves the 
investigation of components that continually 
change their form and are in a constant state  
of motion. Therefore, it entails more complicat-
ed theoretical analysis and numerical calcula-
tions. However, in practical research, there are 
no uniform standards to determine FSS mode 
or microfluidic devices, leading to poor repro-
ducibility and weak clinical translation of most 
findings. Hydrodynamics has a significant im- 
pact on vascular remodeling and tumor me- 
tastasis. Therefore, a multidisciplinary team of 
professionals including physicists, biologists, 
and clinicians should be constituted to pro- 
mote interdisciplinary integration and establish 
guidelines for research in this field. The back-
ground and history of mechanobiology deve- 
lopment, its scope, theoretical basis, research 
and experimental methodologies, existing ac- 
hievements, scientific problems remain to be 
solved, and the future developmental direc-
tions urgently need to be comprehensively and 
systematically summarized.
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Elucidation of the mechanism of mechano-
transduction

Mechanotransduction, which constitutes the 
core of biomechanics, can be divided into five 
stages-stimulus, sensing, signaling, gene ex- 
pression, cellular response, and cellular func-
tion [96]. Among these, molecular mechano-
sensing is the most widely studied process. The 
activity of biomolecules is closely related to 
their physical form or conformation, which is 
the basis for the mechanical sensitivity of me- 
chanosensing molecules. For example, stress 
can induce a conformational change in p130- 
Cas adhesion spot, exposing the phosphoryla-
tion site of Src protein and allowing it to phos-
phorylate and activate the downstream p38/
MAPK signaling pathway [97]. Numerous stud-
ies have reported various mechanosensitive 
cell-surface molecules such as integrins, ad- 
herent proteins, and calcium channels [98], 
which can dynamically detect changes in me- 
chanical forces and activate downstream sig-
naling pathways, which regulate gene transc- 
ription and translation to effect phenotypic  
and functional changes. However, how these 
mechanosensitive molecules detect changes 
in the magnitude and direction of mechanical 
forces and subsequently mediate the activa-
tion of downstream pathways is unclear. Stu- 
dies using intracellular tension sensors and 
other new technologies are needed to address 
these questions. 

Furthermore, hydrodynamics influences cell fa- 
te through multiple routes, such as epigene- 
tic modifications (DNA methylation) [99], modu-
lation of mRNA and protein levels, and altera-
tion of chromatin structure [100]. Fernandez-
Sanchez et al. reported that long-term 1-kPa 
magnetic load can activate the Wnt pathway in 
intestinal crypt cells, thereby upregulating the 
oncogene c-Myc and leading to carcinogenesis. 
These effects are not reversed by the with- 
drawal of the magnetic load, suggesting that 
mechanical forces can induce stable genetic 
effects and lead to tumorigenesis [2]. There- 
fore, the core molecules or pathways that  
mediate the biological effects of mechanical 
forces could be unique targets for antitumor 
therapy. 

Strengthening of clinical applications

The tumor microenvironment is a network of 
biological, chemical, physical, and other signals 

that interact with each other. Thus, tumori- 
genesis and tumor progression cannot be ex- 
plained without considering both mechanics 
and biology.

The use of microfluidic chips and computation-
al fluid dynamics modeling tools can enhance 
our understanding of the biological mecha-
nisms of tumor metastasis. Microfluidic tech-
nology, a popular tool, can simulate a wide 
array of complicated tumor microenvironments, 
allowing the study of various chemical and 
mechanical effects and facilitating the compre-
hensive study of the TME. 

In addition, FSS not only directly promotes 
migration of T lymphocytes [101] and helps 
screen antigen-specific T cells [102], but also  
it induces M1 polarization of macrophages 
[103] and activates the immunoregulatory fu- 
nction of mesenchymal stem cells [104]. Th- 
erefore, detailed studies on molecular mecha-
nisms through which FSS stimulates tumor 
cells, immune cell differentiation, and induces 
antigen presentation are needed. Furthermore, 
numerous studies have reported that PD-L1, 
CD47, and other immunosuppressive molecu- 
les expressed on the surface of CTCs are sig-
nificantly increased compared with that on  
primary tumor cells [105-107]. Aside from the 
primary tumor, one of the biggest changes for 
CTCs in the tumor microenvironment is FSS. We 
speculate that FSS likely induces evasion from 
the immune system through upregulation of 
immunosuppressive molecules in CTCs. In the 
future, more basic studies are needed to de- 
termine whether and how FSS affects tumor 
immunity.

In recent years, researchers have developed 
numerous novel mechanosensing carriers such 
as liposomes and microaggregates for clinical 
application, especially for treating cardiovascu-
lar disease [108]. These materials can sense 
changes in shear force and respond by releas-
ing their contents, diffusion, cohesion, or induc-
ing polymerization to achieve mechanics-tar-
geted drug delivery. Future studies on hydro- 
dynamics-based antitumor strategies would 
focus on further clarifying how mechanistic  
and biological factors together impact tumor 
growth, designing fluid mechanics-based tar-
geted drugs, and changing the tumor hydrody-
namic microenvironment.
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Outlook

Fluid dynamics is an important dynamic vari-
able in physiological phenomena. Like He- 
raclitus famously said that no man ever steps 
in the same river twice. Despite infinite varia-
tions in mechanobiology, the goal of under-
standing the universal law and the vital signal 
transduction mechanisms can be attained with 
persistent effort. To determine the essence 
and verify the laws, a specific spatiotemporal 
event or a specific biological aspect for investi-
gation (such as FSS) should be focused on to 
begin with, investigated progressively, and then 
the accumulated evidence should be interpret-
ed and explained sequentially, thereby reveal-
ing the role of fluid mechanics in tumor de- 
velopment.

The tumor fluid microenvironment, especially 
the FSS, plays an indispensable role in tumor 
progression and metastasis. Rapid advance-
ments in research tools and computer algo-
rithms will certainly improve the general un- 
derstanding of the mechanism underlying the 
induction of tumorigenesis and tumor progres-
sion by mechanotransduction, and fluid me- 
chanics will provide novel strategies and new 
targets for antitumor therapy. 
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