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Abstract: Iron as an important element plays crucial roles in various physiological and pathological processes. Iron 
metabolism behaves in systemic and cellular two levels that usually are in balance conditions. The disorders of 
the iron metabolism balances relate with many kinds of diseases including Alzheimer’s disease, osteoporosis and 
various cancers. In systemic iron metabolism that is regulated by hepcidin-ferroportin axis, plasma iron is bound 
with transferrin (TF) which has two high-affinity binding sites for ferric iron. The generic cellular iron metabolism 
consists of iron intake, utilization and efflux. During the iron intake process in generic cells, transferrin receptors 
(TFRs) act as the most important receptor mediated controls. TFR1 and TFR2 are two subtypes of TFRs those bind 
with iron-transferrin complex to facilitate iron into cells. TFR1 is ubiquitously expressed on the surfaces of generic 
cells, whereas TFR2 is specially expressed in liver cells. TFR1 has attracted more attention than TFR2 by having 
diverse functions in both invertebrates and vertebrates. Recently reports showed that TFR1 involved in many kinds 
of diseases including anemia, neurodegenerative diseases and cancers. Most importantly, TFR1 has been verified 
to be abnormally expressed in various cancers. Some experimental and clinical drugs and antibodies targeting TFR1 
have showed strong anti-tumor effects, herein TFR1 probably become a potential molecular target for diagnosis and 
treatment for cancer therapy. This paper reviewed the research progresses of the roles of TFR1 in the tumorigenesis 
and cancer progression, the regulations of TFR1, and the therapeutic effects of targeting TFR1 on many kinds of 
cancers.
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Introduction 

Iron as an important element plays crucial roles 
in various physiological and pathological pro-
cesses. In all kinds of mammalian cells, iron is 
indispensable to cell growth and division [1, 2], 
and it predominantly controls the formation of 
heme- and iron-containing proteins participat-
ing in oxygen transport [3-5], energy metabo-
lism [6-8], neurotransmitter generation and 
release [9, 10], synthesis of DNA [11-13], colla-
gen and steroid hormones [14-16], nonspecific 
resistance, etc. [17]. However, iron concentra-
tion must be strictly controlled, as iron is 
involved in the generation of free radicals in 
cells [18], a process leading to damage of bio-
molecules (proteins, lipids, nucleic acids) and 
in the progression of oxidative stress [19]. Iron 

metabolism has been reported the close relat-
ed to cancer progression [20-22]. Disorders  
of iron metabolism, especially excessive iron 
acquisition and retention, can induce tumori-
genesis and cancer’s growth as well [23, 24]. 
However, high concentration of intracellular 
iron can make cells in extremely oxidative 
stress and may induce tumor death. As a no- 
vel form of regulated cell death, ferroptosis is 
typified by lipid peroxidation and relies on iron 
and reactive oxygen species (ROS). Ferroptosis 
is morphologically and biochemically different 
from other known types of cell death [25, 26]. 
Thus, whether iron deprivation or induced iron 
overload in tumor cells can inhibit tumor growth 
and cause tumor cell death. A variety of stra- 
tegies for antitumor therapies have been de- 
signed to target intracellular iron [27, 28], 
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including utilization of transferrin receptor 1 
(TFR1)-mediated cytotoxic drug conjugates and 
iron chelators. As a membrane protein regulat-
ing iron import [29, 30], TFR1 is a member of 
the TFR family that shows nanomolar affinity to 
transferrin (TF) bound to Fe (III) [31]. The com-
plex of TF-TFR1 is internalized through endocy-
tosis mediated by clathrin, and Fe (III) is disas-
sociated from TF when pH decreases to 5.5. At 
this pH, apotransferrin and TFR1 are still asso-
ciated and recycled to cell surface with physio-
logical pH, so the former is released [32, 33]. 
Iron uptake by transferrin receptor is the most 
important way for cancer cells to absorb iron, 
thus accumulating evidence has proven that 
TFR1 participated in tumor onset and progres-
sion, and its expression was dysregulated sig-
nificantly in many cancers [34, 35]. The rela-
tionship between TFR1 and cancers has been 
revealed, rendering TFR1 a valuable pharma-
ceutical target for intervening with cancers [36-
39]. Based on these reported studies, in this 
review will summarize the regulatory effects of 
TFR1 on tumorigenesis, and the potential ther-
apeutic effects of targeting TFR1 on cancers.

Biological functions and regulations of trans-
ferrin receptors

Transferrin receptors (TFRs) encoded by TFRC 
is a membrane glycoprotein, which can import 
iron by binding a plasma glycoprotein, transfer-
rin (TF) [40]. TF was first referred to as serum 
protein, with two specific sites binding Fe (III),  
so it is an iron source for synthesizing hemoglo-
bin. Meanwhile, TF-bound iron undergoes cel-
lular uptake requiring interaction between this 
protein and a specific TFR [33, 41]. The molecu-

lar weight of TFR as a homodimer is 180 kDa 
[42]. Each monomer contains a TF-binding 
C-terminal domain, a short N-terminal domain 
and a single transmembrane domain [33].
Transferrin receptors have two subtypes, trans-
ferrin receptor 1 (TFR1) and transferrin recep-
tor 2 (TFR2). TFR1 is a homodimeric type II 
transmembrane glycoprotein that is express- 
ed ubiquitously on the surfaces of most cells 
while another member of TFRs, TFR2 is mainly 
expressed in the liver [43, 44].

After TF was discovered as the iron source for 
immature red blood cells synthesizing hemo-
globin, TFR1 was first considered as a cell sur-
face receptor by which TF delivered iron to cells 
[45]. Mammalian TFR1 comprises 760 residue 
subunits that can be divided into a globular 
extracellular region, a hydrophobic intramem-
branous region and the remaining residues 
within the cytoplasm [33]. Consisting of two 
monomers, TFR1 is linked by two disulfide 
bridges, forming a 190 kDa molecule. It is a 
gatekeeper which regulates iron uptake [46]. 
Except for mature red cells, almost all cells 
have TFRs on their surfaces, being most abun-
dant in the placenta, erythron and liver [38]. 
Human TFR1 has three N-linked and one 
O-linked oligosaccharide. Appropriate folding 
and transport of this protein to cell surface are 
significantly affected by N-linked glycosylation 
[33].

TFR1 expressions are delicately regulated at 
many levels, and several genes are involved in 
the regulation of TFR1 (Table 1). Intracellular 
iron concentration regulates the TFR gene post-
transcriptional regulation by binding iron-regu-
latory proteins 1 and 2 (IRP1 and IRP2) to the 
iron response elements in the 5’-untranslated 
region of TFR transcript [45, 47]. IRPs are acti-
vated by the deprivation of cellular iron, which 
is inhibited through iron repletion [48]. IRP 
activities can be regulated by other iron-inde-
pendent effectors such as inflammation [49], 
oxidative stress [50], hypoxia and xenobiotics 
[51], or such stimuli under pathophysiological 
conditions [38, 52]. Hypoxia induces the tran-
scription of TFR1 gene by binding hypoxia-in- 
ducible factors (HIFs) to specific promoter ele-
ments [53]. This process can also be activated 
by an oncogenic transcription factor c-Myc [38]. 
Thirdly, HFE is implicated in the pathogenesis 
of disordered toxic and progressive iron over-

Table 1. Genes involved in the regulation of 
TFR1
Gene Regulation Reference
CREBBP Activation [56]
EP300 [57]
HIF-1A [58]
ARNT [59]
c-myc [38]
c-ETS-1 DNA binding [60]
c-Jun [60]
HIF-1α [61, 62]
ATF-1 [63]
CREB1 Inhibition [63]
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load, i.e. hereditary hemochromatosis [54]. It 
competes for binding receptor with TF, thus hin-
dering iron uptake [55]. In addition to the com-
pounds mediating TFR1 regulation mentioned 
above, its transcription is also influenced by 
some other transcription factors like CREB1 
and c-Jun [56] (Figure 1).

Transferrin receptor 1 and cancer

The transformation of normal cells into tumo- 
rigenic ones and tumor progression involve 
complicated processes which are still largely 
unknown. The changes mainly result from accu-
mulated mutations of some key genes or pro-
teins [64, 65], thus damaging the balances of 
tumor cells growth [66], proliferation [67], 
death [68], gene transcription [69] and angio-
genesis [70]. Tumor cells’ proliferation is en- 
hanced and apoptosis is inhibited by some of 
the essential signaling pathways varied upon 
tumorigenesis [71-73], while invasion and me- 

tastasis are promoted by others [74, 75]. The 
key roles of transferrin receptors (TFRs) in con-
trolling the above processes have been well 
demonstrated over the last decade. TFR1 par-
ticipating in tumor progression is abundantly 
expressed in liver, breast, lung and colon can-
cer cells [76-79]. Immunohistochemical find-
ings of TFRC in various tumor tissues showed 
most cancers displayed moderate to strong 
cytoplasmic positivity. Carcinoid, prostate and 
testicular cancer was negative from The Human 
Protein Atlas [80]. Although the effects of TFRs 
on cancer pathophysiology have been studied, 
the expressions of TFR1 in different cancers 
are inconsistent and the mechanisms by which 
TFR1 participates in tumor progression remain 
elusive.

Given that TFR1 is abnormally expressed in 
various cancers (Figure 2A, 2B), it definitely 
affects cancer cells’ proliferation [81], migra-
tion [82], invasion [83], apoptosis and metasta-

Figure 1. Regulation of TFRC transcription. Oxidative stress, inflammation and hypoxia induce HIF expression. HIF 
induces binding of IRP1 and IRP2. Binding of IRP1 and IRP2 promotes TFRC transcription. C-Jun, C-Myc and cyclin D 
expressions also induce TFRC transcription. Meanwhile, CREBBP and EP300 are activated to promote TFRC expres-
sion. Moreover, ATF-1, CREB1, c-Ets-1 and HIF-1alpha influence the transcription of TFRC by binding DNA.



The review of TFR1 in cancer

919 Am J Cancer Res 2018;8(6):916-931

sis [76, 84]. Accordingly, several examples 
showed the regulatory effects of abnormal 
TFR1 expression on the biological behaviors of 
cancers (Figure 3).

Transferrin receptor 1 in brain cancer

TFR1 participates in regulating the physiology 
of glioma cells and the progression of brain 
cancer. Rosager et al. reported that TFR1 was 
overexpressed in brain cancer [84]. TFR1 me- 
diated ROS formation and iron accumulation, 
as a crucial downstream effector of corre-
sponding transcription factors facilitating pro- 
liferation of glioma and glioma-induced death 
of neurons [85]. Weston et al. reported that 
iron was necessary for cell division and cancer 
pathophysiology was affected by dysregulation 
of IRPs. Based on the public data from The 
Cancer Genome Atlas (TCGA), they studied the 
relationships between the expressions of 61 
genes coding iron regulatory proteins (IRPs) in 
patients with Grade II-III gliomas according to 
the criteria of World Health Organization and 
survival. The outcomes were poorer in patients 
with higher TRF1 expressions, indicating TFR1 

played a negative role in the prognosis of glio-
ma [86]. 

By using the univariate Cox regression model, 
Yu et al. assessed the prognostic values of 
genes in two independent datasets of glioblas-
toma multiforme (GBM). TFR1 was highly ex- 
pressed at the early stage. Besides being relat-
ed with clinical outcomes, TFR1 also affected 
chemoresponse. This reference model poten-
tially allowed identification of new prognostic 
markers and development of novel therapies 
[87]. Hence, TFR1 may dominantly mediate the 
biological behaviors of brain cancer, accurately 
predict the prognosis of GBM, and help identify 
new drug targets.

Transferrin receptor 1 in breast cancer

Breast cancer is the most devastating type 
among females of Western countries and also 
has the highest incidence in women patients  
of China [74]. The growth of breast cancer ce- 
lls requires increasing iron uptake that can be 
realized by TFR1 over expression [76]. TFR1 
has been reported to be overexpressed in 

Figure 2. Location of TFR1 in three cancer cell lines. Immunofluorescence analysis of TFR1 in A431, U2OS and 
U251 MG was obtained from The Human Protein Atlas database. TFR1 (Green fluorescence) expressed in vesicles 
(A), endosomes and lysosomes (B).
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human breast cancer [88, 89], also as a suit-
able biomarker for diagnosing and treating can-
cer patients at the early stage [89]. Based on 
public microarray datasets consisting of 674 
cases of breast cancer, Miller et al. detected 
the expression of TFR1 gene linked to breast 
cancer prognosis, and high expression of TFR1 
indicated poor prognosis [90]. Singh et al. 
found that TFR1 expressions in benign and nor-
mal lesions were significantly lower than tho- 
se in invasive carcinoma and premalignant 
lesions. In the meantime, more TFR1 was 
expressed in high-grade breast cancer than in 
other grades [83]. Jiang et al. explored whether 
breast cancer cells altered the expression of 
TFRC. The growth of breast cancer was sup-
pressed by regulating the expression of iron 
transporter genes. Reverse transcription-poly-
merase chain reaction showed that more TFRC 
was expressed in MCF-7 cells than in human 

mammary epithelial MCF-12A cells. Moreover, 
TFRC antisense oligonucleotides decreased 
intracellular total iron and TFRC mRNA levels, 
as well as suppressed 4T1 cell proliferation in 
culture medium and tumor growth and pulmo-
nary metastasis in a 4T1 mouse model of mam-
mary adenocarcinoma [91]. Wang et al. found 
that upon breast cancer, IRP2 dominated in 
iron accumulation. IRP2 overexpression was 
related with increase of TFR1 and reduction of 
ferritin heavy chain. Knock-down of IRP2 in 
human triple-negative breast cancer cells MDA-
MB-231 elevated the expression of ferritin 
heavy chain and reduced that of TFR1, thereby 
decreasing the labile iron pool and inhibiting 
the growth of MDA-MB-231 cells in the mam-
mary fat pad of mice [92]. Estrogen receptor 
(ER)+/progesterone receptor (PR)+ invasive duc-
tal breast cancer accounts for approximately 
45% of invasive cases in the United States of 

Figure 3. TFR1 expression in various normal tissues 
and tumor tissues. Immunohistochemistry analysis 
of TFR1 in various normal tissues and tumor tissues 
was obtained from The Human Protein Atlas data-
base. TFR1 is overexpression in multiple tumor tis-
sues compared to normal tissues. 
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further studies. Okazaki et al. found that the cir-
cadian organization of molecular clock affected 
TFR1 expression in colon cancer cells of mice 
and the 24 h rhythm of TFR1 expression may 
participate in cancer therapies targeting TFR1 
[59, 96]. The progression of colorectal cancer 
has been related to high intake of dietary iron 
and chronic intestinal inflammation. Chua, et 
al. found high expression of TFR1 activated the 
IL-6/IL-11-Stat3 signaling pathway in the colon, 
enhanced DSS-induced proliferation and apo- 
ptosis of colon epithelial cells, and aggravat- 
ed mucosal damage and tumorigenesis [97]. 
Okazaki et al. observed a 24 h rhythm of IRP2 
expression in colon-26 tumor-bearing mice, 
and IRP2 post-transcriptionally modulated the 
24 h rhythm of TFR1 mRNA expression through 
binding iron-response elements, i.e. RNA stem-
loop structures. Moreover, the expression of 
CLOCK (Delta19) attenuated the proliferation 
rate of wild-type colon-26 cancer and the time-
dependent changes of iron levels in cells. Ac- 
cordingly, circadian organization regulated iron 
metabolism to facilitate tumor cell proliferation 
[59]. Referring to TCGA database, the expres-
sions of IRP2 and TFR1 were evaluated and 
compared to common mutations in cancers. 
Compared with the normal colon mucosa, IRP2 
had overexpression in colorectal cancer, also 
being positively correlated with the expression 
of TFR1 [77]. These results provide a thera- 
peutic target for intervening with colorectal 
tumorigenesis.

Transferrin receptor 1 in liver cancer

The liver is the most important organ related to 
iron storage [32]. Thus, liver cancer is closely 
linked to iron metabolism and expression of 
TFR1. Iron metabolism is altered upon hepato-
cellular carcinoma (HCC), which is typified by 
iron-deficient phenotype and essential to tu- 
mor growth. Iron has been suggested as a risk 
factor mainly in HCC patients with cirrhosis and 
hereditary haemochromatosis (HH). Beckman 
et al. found HFE (wild-type HH) protein compl- 
exes of TFR. Cys282Tyr and His63Asp, two HFE 
mutations, augmented the affinity of TFR to TF, 
thus promoting cellular iron uptake and HCC 
progression [98]. Holmstrom et al. detected 
significantly higher mRNA levels of genes par-
ticipating in uptake of iron, especially TFR1, in 
HCC. Variations in the expressions of TFR1 in 
HCCs inferred that bioavailable iron was in- 

America. Buas et al. selected 121 cases and 
121 matching controls 12.5 months prior to 
diagnosis, and divided them equally into test- 
ing and training sets. They employed a custom-
ized antibody array targeting over 2000 pro-
teins, and found that TFR1 expressions were 
significantly different (P < 0.05) between cases 
and matching controls. Additionally, they veri-
fied TFR1 as a feasible plasma protein biomark-
er for ER+/PR+ ductal breast cancer with pre-
diagnostic biospecimens [35]. Marques et al. 
detected TFR1 changes in tumor microenviron-
ment-derived stromal inflammatory cells. TFR1 
expressions in tissues of primary breast cancer 
and axillary lymph nodes were measured by 
immunohistochemical assay to clarify the iron 
profiles of lymphocytes, epithelial cells and 
macrophages. Macrophages and lymphocytes 
infiltrated primary tumors, and TFR1 expres-
sion increased in metastatic lymph nodes, be- 
ing related to the clinical and pathological 
markers for poor prognosis (e.g. tumor size  
and negative hormone receptor status) [93]. 
Rychtarcikova et al. investigated the deregu- 
lation of TFR1 in breast tumor-initiating cells 
(TICs), managing to find critical genes and pro-
teins related with iron metabolism, which may 
be applicable to cancer diagnosis or therapy 
[76]. TFR1 has high expressions in tumor cells, 
upon iron deficiency in particular. Jian et al. 
studied the signaling role of TFR1 in cells of 
breast cancer by using gambogic acid (GA) and 
a known ligand of TFR1, TF. The sensitivity of 
TFR1 Tyr (20) phosphomutants to apoptosis 
mediated by GA was higher. Thus, TFR1 was a 
signaling molecule indeed, and Tyr (20) phos-
phorylation by Src resisted apoptosis and 
boosted the survival of breast cancer cells [94]. 
Collectively, TFR1 is both a significant indepen-
dent prognostic marker and a promising thera-
peutic target for breast carcinoma.

Transferrin receptor 1 in colon cancer

As a prevalent disease, colon cancer has the 
eighth highest mortality rate among all cancers 
of adult males at present [95]. The TFR1 levels 
on cell surface, which modulate the uptake of 
TF binding iron, are associated with cell prolif-
eration rate [96]. Since cancer cells have high-
er TFR1 expression than normal cells, it is a 
potential target for treating cancers. Overex- 
pressed in many types of cancers, TFR1 still 
exerts unclear effects on colon cancer, needing 
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sion and body-iron stores on prostate cancer 
are still controversial. By using enzymatic im- 
munoassay, Kuvibidila et al. detected serum 
ferritin and serum transferrin receptor (sTFR) 
levels in 72 controls and 27 males with newly 
diagnosed, untreated prostate cancer. The lev-
els of sTFR in males with prostate cancer sig-
nificantly exceeded those without. However, 
these changes of sTFR did not correlate with 
tissue inflammation, tumor stage, or acute-
phase proteins [103]. While Johnson et al. 
detected TFR1 expressions in prostate cancer 
and normal cells, and reported that the former 
cells had significantly increased mRNA and pro-
tein expressions of TFR1 [104]. Taken together, 
altered TFR1 expression whether can be a 
novel biomarker for accurate diagnosis of pros-
tate cancer and prognosis need further study.

Transferrin receptor 1 in lung cancer

TFR1 predominantly mediates the proliferation 
of lung cancer by regulating the uptake of iron 
binding TF. Wang et al. demonstrated that TFR1 
promoters contained sequences that mediated 
the transcriptional inhibition depending on cell 
density. TFR1 expression was affected by lung 
cancer cell density [105]. Zhu et al. reported 
that human lung cells SPC-A1 in which more 
TFR1 was expressed were more sensitive at 
identical GA concentrations, and TFR1 expres-
sion level in tumor tissue, which was quantified 
by histopathological assay, may predict the 
sensitivity of lung cancer to treatment with GA 
[106].

Kukulj et al. reported that TFR1 expression in 
lung tumor tissue significantly surpassed that 
in normal lung tissue. The expression in tumor 
tissue was positively correlated with alpha-
globulin level [107]. In addition, epidermal 
growth factor receptor (EGFR), which drives 
oncogenesis, binds and modulates subcellular 
TFR1 distribution through tyrosine kinase activ-
ity, thereby being demanded for the import of 
cellular iron. Accordingly, EGFR can modulate 
iron homeostasis in cells by redistributing 
TFR1, so it is necessary for the onset and pro-
gression of lung cancer [79].

Transferrin receptor 1 in leukemia

Human leukemias are liquid malignancies char-
acterized by diffuse infiltration of the bone mar-
row by transformed hematopoietic progenitors 

creasingly required and the iron turnover was 
high in neoplastic cells [99]. Miwa et al. found 
that TFRC expression was elevated with in- 
creasing cancer stage, and its selective expres-
sion in lesions undergoing proliferation indicat-
ed that variations in iron homeostasis were 
involved in the promotion or progression of 
tumor [100]. By using immunohistochemical 
assay, Sakurai et al. detected the expressions 
of TFR1 and TFR2 in tumor and paracancerous 
normal liver tissues collected from 41 patients 
with HCC. They also analyzed iron uptake by 
HCC cells and hepatocytes with iron staining. 
HCC samples had significantly higher TFR1 
expressions than those of normal samples, and 
such expression was significantly related with 
the concentrations of serum des-gamma car-
boxy prothrombin and alpha-fetoprotein [101]. 
The above results revealed that TFR was 
expressed responding to iron deficiency in the 
midst of liver carcinogenesis. Moreover, accord-
ing to TCGA database, Iryna et al. found that 
TFRC was overexpressed but microRNA-152 
(miR-152) level plummeted in human HCC tis-
sue compared to those in normal liver tissue, 
suggesting that raised TFRC levels in human 
HCC cells and tissues may partly be ascribed to 
the post-transcriptional mechanism that was 
mediated through miR-152 down-regulation. In 
short, targeting of TFRC specific to miR-152 
may be a selective HCC therapy [78]. 

Transferrin receptor 1 in ovarian cancer

Ovarian cancer is the fifth most fatal malignan-
cy among females in the USA, and also the 
most deadly gynecologic type. It is well-docu-
mented that TFR1 played key roles in ovarian 
cancer. Basuli et al. demonstrated that iron 
metabolism underwent targetable alterations 
during ovarian cancer. As an iron importer, 
TFR1 expressions increased in tumor tissues 
collected from patients with high-grade serous 
ovarian cancer. Moreover, the expression of 
TFR1 increased in a TIC model of ovarian  
cancer [102]. The findings can be exploited 
therapeutically.

Transferrin receptor 1 in prostate cancer 

As a devastating health problem, prostate can-
cer accounts for 25% of all newly diagnosed 
cancer cases and approximately 9% of all can-
cer-related deaths of adult men in the USA 
annually [74]. However, effects of TFR1 expres-
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Figure 4. TFR1 and its regulatory effects on tumors Iron concentration changes significantly in cancer cells. TFR1 
binds mutated HFE to promote iron intake. Iron concentration influences TFRC post-transcription by regulating the 
binding of IRP1 and IRP2. Meanwhile, iron concentration affects the activities of c-Jun, cyclin D and C-myc. Some 
miRNAs also influence TFRC transcription. These bioprocesses contribute to cell progression and tumor growth.

[108]. Iron as the most important hematopoi-
etic element plays a key role in leukemia. TFR1 
was initially found as an important iron uptake 
receptor inducing the growth of leukemia cell 
lines, HL-60 and KG-1 [109]. Many studies have 
found that TFR1 was upregulated in leukemia 
[110]. Liu et al. investigated the TFR1 could be 
a potential marker in the diagnosis of acute 
leukemia (AL) [111]. Płoszyńska A et al. evalu-
ated TFR1 expression on acute lymphoblastic 
leukemia (ALL) cells. TFR1 expression was sta-
tistically higher on T-lineage leukemias while in 
the B lineage ALL, a significant difference in 
TFR1 expression existed between precursor B 
ALL and mature B-ALL, which showed higher 
TFR1 expression. TFR1 expression positively 
correlated with Hgb concentration at diagnosis 
[112]. In summary, TFR1 could be a good target 
for leukemia therapy.

Mechanisms by which transferrin receptor 1 
affects cancers

Given that TFR1 is widely overexpressed in can-
cers, the regulatory mechanisms of TFR1 for 

carcinogenesis are complicated and often in- 
terrelated. (Figures 4 and 5) The high expres-
sion of TFR1 in tumor cells is mainly to meet the 
iron requirement of tumor cell proliferation [93, 
102]. It was reported that TFR1 is a signaling 
molecule and tyrosine phosphorylation at posi-
tion 20 by Src enhances anti-apoptosis and 
potentiates breast cancer cell survival [94]. 
TFR1 was also reported as a mitochondrial reg-
ulator contributed to cancer cell growth via ac- 
tivating JNK signaling pathway [36]. Jeong et  
al. reported that TFR1 induced the growth  
of human pancreatic ductal adenocarcinoma 
(PDAC) by supporting ROS production and  
mitochondrial respiration in tumor cells. Up- 
regulation of TFR1 expression generated ROS 
in PDAC cells by inducing oxidative phosphory-
lation. Moreover, PDAC growth required ROS 
derived from mitochondria. Furthermore, the 
sensitivity of PDAC cells to oxidative stress  
was determined by TFR1 expression. By trigger-
ing ROS production and mitochondrial respira-
tion, TFR1 significantly participated in pancre-
atic cancer growth and survival [34]. Wang et 
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al. found that IRP2 increased TFR1, playing a 
key role in breast cancer progression. As an 
early nodal point for iron metabolism changes 
upon breast cancer, dysregulation of IRP2 may 
result in unsatisfactory outcomes of some 
patients [92]. Pham et al. found that sphingo-
sine kinase 1, a lipid kinase catalyzing the  
production of sphingosine 1-phosphate, could 
modulate cell proliferation, survival as well as 
neoplastic transformation by promoting TFR1 
expression [113]. Bayeva et al. reported that 
iron homeostasis was modulated by mammali-
an target of rapamycin (mTOR) through varia-
tions of cellular iron flux and regulation of TFR1 
stability. They identified an anti-inflammatory 
protein, tristetraprolin, as the downstream tar-
get of mTOR which bound TFR1 mRNA and fa- 
cilitated its degradation. Therefore, TFR1 in- 
duced carcinogenesis by regulating metabo-
lism, inflammation and iron [114]. Chirasani et 
al. demonstrated that TFR1-induced accumu- 
lation of oxidants altered cellular signaling 
through inactivation of pRB protein tyrosine 

significantly boosted in vivo tumor formation 
mediated by c-Myc. The results mentioned 
above provide molecular bases for elevated 
expressions of TFR1 in human tumors, con- 
firming the effects of TFR1 on the network of 
c-Myc target genes. Targeting TFR1 may be 
useful for cancer therapy [115].

Therapeutic potential of targeting TFR1 in 
cancers

As TFR1 is expressed in many kinds of cancers 
and significantly involved in tumorigenesis and 
progression of cancers, it may be feasible to 
intervene with the progression of cancers by 
targeting TFR1. As evidenced by currently av- 
ailable studies targeting TFR1, curcumin was 
among the most successful chemopreventive 
compounds. Jiao et al. evaluated the influence 
of curcumin on iron regulatory proteins and 
TFR1. Both TFR1 and IRP increased responding 
to curcumin [116]. Yang et al. also found cur-
cumin induced the autophagy and apoptosis  

Figure 5. TFR1 interaction network. Based on the search tool of the Euro-
pean Molecular Biology Laboratory for retrieving interacting genes/proteins, 
an interaction network with confidence levels of > 0.7 is exhibited for geneti-
cally interacting, possibly TFR1-related proteins. A thicker line represents a 
stronger interaction.

phosphatase and p21/cdk-
n1a, and activation of Akt and 
mitogen-activated protein kin- 
ase. When the cell cycle regu-
lators were inactivated, cells 
were prone to entry into the S 
phase. TFR not only affected 
proliferation, but also facilitat-
ed release of glutamate, caus-
ing decrease in neuron mass 
through the mediation by N- 
methyl-D-aspartate-receptor 
[85]. O’Donnell et al. proved 
that TFR1 was a key down-
stream target for c-Myc, and 
the expressions of TFR1 in 
both in vitro and in vivo models 
of B-cell lymphoma were acti-
vated by c-Myc which bound 
the conserved region of TFR1 
directly. Also, inhibiting TFR1 
attenuated cell proliferation 
and induced arrest in the G1 
phase without influencing the 
size of cells. Consistently, ex- 
pression profiling showed that 
depletion of TFR1 changed the 
expressions of cell cycle-regu-
latory genes. Additionally, in- 
creasing TFR1 expression was 
beneficial to cell growth and 
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of different tumor cells by inhibiting TFR1 ex- 
pression, inferring that curcumin was a poten-
tial TFR1 inhibitor for cancer therapy [117]. 
Anti-transferrin receptor monoclonal antibody 
A24 significantly blocks the proliferation of 
T-cell leukemia cell, induces apoptosis of tumor 
T lymphocytes from acute T-cell leukemia pa- 
tients [118, 119]. Also, miRNA drug targeting 
TFR1 has been reported to be a good drug in 
clinical treatment of leukemia [120]. Moreover, 
nanomedicine and antibodies targeting TFR1 
have been developed for tumor-specific target-
ed therapy, providing a valuable opportunity for 
developing eligible TFR1 inhibitors in the field  
of precision oncology [121, 122]. TFR1 is high- 
ly expressed in adult T-cell leukemia/lympho-
ma. Shimosaki et al. developed a novel mole- 
cular-targeted therapy against TFR1 to modu-
late HTLV-1-associated adult T-cell leukemia/
lymphoma iron metabolism to inhibit the adult 
T-cell leukemia/lymphoma. JST-TFR09, an anti-
body to human TFR1, has great affinity to TF- 
R1 on adult T-cell leukemia/lymphoma cells. It 

could interfere with binding between TFR1 and 
TF, inhibited the iron intake of adult T-cell leuke-
mia/lymphoma, which may become a promis-
ing therapy for the treatment of adult T-cell leu-
kemia/lymphoma [123].

Conclusions and future directions

We herein reviewed the roles of TFR1 in the 
onset and progression of cancers, its regulato-
ry effects on tumorigenesis, together with the 
potential of TFR1-targeted cancer therapies. 
Regardless of considerable studies concern- 
ing TFR1 since it was discovered, several key 
issues still exist. (Figure 6) Firstly, whether 
TFR1 interacts with additional signaling path-
ways or proteins on the cellular level remains 
elusive, which may be essential to the develop-
ment of therapies based on TFR1. Being dif- 
ferent from the traditional apoptosis and ne- 
crosis, the recently discovered ferroptosis is 
caused by iron-dependent accumulation of lipid 
peroxides. Cells which are subjected to ferrop-

Figure 6. Future directions for TFR1 research in tumor. The direct effects of TFR1 expression on carcinogenesis 
remains further study. TFR1’s functions and mechanisms in cancer cell ferroptosis are still unclear. Nanomedicine 
combine with magnetic fields targeting TFR1 will be a potential cancer therapy.
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totic death suffer from shrinkage of volumes 
and raised density of the mitochondrial mem-
brane. Iron metabolism plays a curial role in fer-
roptosis [124]. Ferroptosis induced by erastin 
or Cys2 deprivation is prevented by silencing 
TFRC gene, which encodes TFR1 required for 
the uptake of TF-iron complexes into cells. 
However, TFR1, an important iron intake recep-
tor in cancer cells, still has unclear functions 
and mechanisms in ferroptosis. Furthermore, 
TFR1 expressions are up-regulated in some 
drug-resistant human cancer cells [45], requir-
ing more in-depth studies though. Last but not 
least, since drug therapies may suppress TFR1 
expression, developing a TFR1-specific revers-
ible antagonist is the only single most effective 
strategy for both basic research and clinical 
practice. Notably, tumor progression can be 
inhibited through magnetic fields that aug- 
ment the concentrations of TFR1-targeted su- 
perparamagnetic iron oxides in tumor tissues, 
inspiring future cancer therapy [125-127].
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