
Am J Cancer Res 2018;8(7):1239-1248
www.ajcr.us /ISSN:2156-6976/ajcr0073891

Original Article
Trametinib suppresses chemotherapy-induced  
cold and mechanical allodynia via inhibition of  
extracellular-regulated protein kinase 1/2 activation

Masanobu Tsubaki1, Tomoya Takeda1, Mikihiro Matsumoto1, Natsuki Kato1, Ryo-ta Asano1, Motohiro Imano2, 
Takao Satou3, Shozo Nishida1

1Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan; 2Depart-
ment of Surgery, School of Medicine, Kindai University, Osakasayama, Osaka, Japan; 3Department of Pathology, 
School of Medicine, Kindai University, Osakasayama, Osaka, Japan

Received February 2, 2018; Accepted February 11, 2018; Epub July 1, 2018; Published July 15, 2018

Abstract: Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of some anti-cancer 
drugs and leads to discontinuation of chemotherapy and detrimental dose reductions, thereby affecting the quality 
of life of cancer patients. Currently, no treatment can effectively prevent or treat chemotherapy-induced neuropathy. 
Therefore, understanding its underlying molecular mechanisms may help to identify novel therapies for treating 
it. Some disease-induced neuropathy involve the activation of mitogen-activated protein kinases (MAPKs), such 
as extracellular-regulated protein kinase 1/2 (ERK1/2). In the present study, we investigated whether ERK1/2 
inhibition can prevent chemotherapy-induced neuropathy. We found that trametinib, an MEK inhibitor, suppressed 
oxaliplatin-, paclitaxel-, vincristine-, and bortezomib-induced cold and mechanical allodynia in mice. In addition, 
treatment with oxaliplatin, paclitaxel, vincristine, or bortezomib enhanced ERK1/2 and c-Jun N-terminal kinase 
(JNK) phosphorylation in the spinal cord lumbar segments 4-6, and when combined with trametinib, can prevent 
chemotherapy-induced neuropathy via the suppression of ERK1/2 activation, but does not affect JNK activation. 
In conclusion, we demonstrated that the disruption of this pathway by MEK inhibitors suppresses oxaliplatin-, pa-
clitaxel-, vincristine-, and bortezomib-induced neuropathy. This suggests that inhibition of the MEK/ERK pathway 
could prevent chemotherapy-induced neuropathy and MEK inhibitors could be used in combination with anti-tumor 
drugs during pharmacotherapy.
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Introduction

Chemotherapy-induced neuropathy is a com-
mon and potentially dose-limiting side effect of 
many chemotherapy treatment regimens [1]. 
The prevalence rate of chemotherapy-induced 
neuropathy was 68.1% within the first month  
of treatment [2] and varies from 10% to  
100% depending on the chemotherapy, regi-
men dose, and patient situation [3]. A high 
prevalence of chemotherapy-induced neuropa-
thy has significantly decreased the quality of 
life and has often resulted in the discontinua-
tion of chemotherapy, which may ultimately 
affect overall survival. However, to date, no 
studies have reported method for preventing 
chemotherapy-induced neuropathy [3, 4]. This 
has generated a large unmet medical need for 

novel agents to improve relief of chemotherapy-
induced neuropathy. 

The activation of mitogen-activated protein ki- 
nases (MAPKs), including extracellular-regulat-
ed protein kinase 1/2 (ERK1/2), p38MAPK, 
and c-Jun N-terminal kinase (JNK), can con- 
tribute to chemotherapy-induced neuropathy. 
Oxaliplatin induces apoptosis through the acti-
vation of ERK1/2 in rat dorsal root ganglion 
(DRG) cells, and the protein kinase C (PKC)/ 
ERK pathway in the spinal cord and brain is  
activated during cold and mechanical allodynia 
[5-7]. Phosphorylated ERK1/2 and p38MAPK 
levels in spinal cord and spinal microglia are 
correlated with paclitaxel-induced neuropathy 
[8], and in rats, treatment with paclitaxel evok- 
ed mechanical hypersensitivity via increased 

http://www.ajcr.us


Suppression of chemotherapy-induced neuropathy

1240 Am J Cancer Res 2018;8(7):1239-1248

ERK1/2 and JNK activation in the spinal cord 
[9]. In glia-mediated neuroinflammation, vin-
cristine induced the activation of glial cells; 
phosphorylation of ERK1/2, JNK, and p38- 
MAPK; and production of inflammatory cyto-
kine in the spinal cord. This suggests that vin-
cristine produces mechanical hypersensitivity 
[10]. It was also demonstrated that the ad- 
ministration of bortezomib induced mechanical 
hypersensitivity through upregulation of the 
expression of tumor necrosis factor α and 
phosphorylated JNK in the DRG of rats [11]. 
Furthermore, activation of MAPKs modulated 
activities of ion channels, such as sodium ch- 
annel Nav1.7, Nav1.8, and transient receptor 
potential (TRP) vanilloid 1 (TRPV1), which have 
also been reported to contribute to chemot- 
herapy-induced neuropathy [12-16]. Moreover, 
activation of ERK1/2 in spinal cord was ob- 
served in allodynia and hyperalgesia [17], and 
noxious stimuli-induced ERK1/2 phosphoryla-
tion has been studied in numerous animal pain 
models [18]. Additionally, ERK1/2 is thought  
of as involved with the mechanisms of neuro-
pathic pain and may be targeted for therapy

Trametinib is a highly selective allosteric inhi- 
bitor of MAPK kinase (MEK) 1/2. It inhibits 
ERK1/2 phosphorylation [19]. In clinical set-
tings, a BRAF inhibitor composed of trameti- 
nib and dabrafenib is widely used for treat- 
ing and preventing metastatic melanoma [20]. 
Cetuximab, an anti-epidermal growth factor re- 
ceptor (EGFR) antibody, in combination with  
trametinib, an MEK1/2 inhibitor that is used  
for treating colorectal cancer by targeting the 
NRAS mutant gene, underscores the impor-
tance of therapeutic intervention against the 
MEK/ERK and EGFR pathways to achieve maxi-
mal therapeutic efficacy in colorectal cancer 
harboring NRAS mutations [21]. Trametinib 
enhances the sensitivity to phosphoinositide 
3-kinase inhibitors in triple negative breast 
cancer [22]. Because it is already clinically 
used, trametinib could also be used for sup-
pressing chemotherapy-induced neuropathy. 
Therefore, we investigated whether the MEK 
inhibitor trametinib suppresses chemotherapy-
induced neuropathy in a mouse model. 

Materials and methods

Mice

Male Balb/c mice (age, 5 weeks) were pur-
chased from Shimizu Laboratory Animals (Ky- 

oto, Japan). The mice were maintained in an 
environment of 25°C under controlled lighting 
(12-h light/12-h dark cycle) and allowed free 
access to water and food pellets. All animal 
studies and protocols were approved by Kindai 
University Animal Care and Use Committee. 

Drugs 

Trametinib, oxaliplatin, and Bortezomib were 
purchased from LC Laboratories (Woburn, MA, 
USA). Paclitaxel and vincristine were purchas- 
ed from Wako (Osaka, Japan). Trametinib, pa- 
clitaxel, vincristine, and bortezomib were dis-
solved in saline containing 0.5% dimethyl sulf-
oxide (DMSO). Oxaliplatin was dissolved in 5% 
glucose solution.

Oxaliplatin, paclitaxel, vincristine, and bortezo-
mib-induced allodynia models

To measure the cold and mechanical sensitivi-
ty, mice were treated with (Day 0 and 7), oxali-
platin (6 mg/kg), paclitaxel (6 mg/kg), vincris-
tine (0.2 mg/kg), bortezomib (1 mg/kg), or 
vehicle (saline) on Day 0 and 7 (n = 10 for each 
group). On Day 0, mice were treated with tra-
metinib, 12 h after the administration of oxali-
platin, paclitaxel, vincristine, or bortezomib. Tra- 
metinib was administered orally (p.o.) at 0.5 
mg/kg daily from Day 0 to 14 (n = 10 for each 
group). Behavioral tests were performed from 
Day 0 to 14.

Behavioral assays

Behavioral assays were performed as describ- 
ed in a previous study [6]. Cold sensitivity was 
assessed with the hot/cold-plate analgesime-
ter (Ugo Basile, Milan, Italy). Each mouse was 
placed on the center of a plate maintained at 
10°C (cold allodynia); chemotherapy-induced 
pain-related behaviors, such as lifting and lick-
ing of the hind paw, were observed and the 
time was recorded (cut-off time at 30 s). 

Mechanical allodynia and hyperalgesia were 
investigated using 0.16, 0.4, and 1.4 g of von 
Frey filaments (Ugo Basile). For each filament, 
five stimuli were applied at an interval of 3-5 s, 
and mechanical sensitivity was scored as fol-
lows: 0, no response; 1, paw withdrawal; or 2, 
immediate flinching of the stimulated paw. Paw 
withdrawal threshold of five trials from both 
hind paws of each mice were averaged and 
recorded as mean ± S.E.M.
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Luminex assay

The lumber spinal cords were homogenized in 
ice-cold buffer and proteins were extracted. 
The supernatants were examined using a BCA 
protein assay kit (Thermo Scientific, Rockford, 
IL, USA). Protein phosphorylation of ERK1/2 
(Thr185/Tyr187), JNK(Thr183/Tyr185), nucle-
ar factor κB (NF-κB) (Ser536), CREB (Ser133), 
and p38MAPK (Thr180/Tyr182) was determin- 
ed with the 9-plex Multi-Pathway Magnetic 
Bead Panel (#46-680MAG, Merck Millipore, 
Nottingham, UK) following the manufacturer’s 
protocol. β-Tubulin beads (#64-713MAG, Me- 
rck Millipore) was added to correct for protein 
load.

Western blotting

The protein extract of the lumber spinal cords 
in mice was obtained and western blotting 
assay was performed as previously described 
[6]. The supernatants of protein extract were 
examined using a BCA protein assay kit (Ther- 
mo Scientific). The protein extracts (20 μg) were 
fractionated uisng SDS-PAGE and transferred 
to PVDF membranes (GE Healthcare, Bucking- 
hamshire, UK). The membranes were block- 
ed with a solution containing 3% skim milk  
and incubated overnight at 4°C with each of  
the following antibodies: anti-phospho-ERK1/2 
(Thr202/Tyr204), anti-ERK1/2 (Cell Signaling 
Technology, Beverly, MA, USA), and anti-β-actin 

Figure 1. Trametinib inhibited oxaliplatin-induced cold and mechanical allodynia. Oxaliplatin (6 mg/kg, n = 10) was 
administered i.p. weekly for 2 weeks (days 0 and 7). Trametinib (0.5 mg/kg, n = 10) was administered p.o. daily for 
14 days. (A) Withdrawal latencies, presented as means ± S.E.M., represent the time it took the mice to withdraw 
their hind paws following cold stimulation (10°C). *P < 0.01 vs. vehicles (ANOVA with Dunnet’s test). (B-D) Number 
of paw lifts elicited by five mechanical stimulations using von Frey filaments corresponding to (B) innocuous (0.16 
g), (C) intermediate (0.4 g), and (D) noxious (1.4 g) bending forces. The pain threshold is obtained for two paw lifts. 
*P < 0.01 vs. vehicles (ANOVA with Dunnet’s test).
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antibody (Sigma, St. Louis, MO, USA). Then, the 
membranes were incubated with horseradish 
peroxidase-conjugated anti-rabbit IgG sheep 
antibodies (GE Healthcare) for 1 h at room tem-
perature. The reactive proteins were visualized 
using Luminata Forte (Merck Millipore) accord-
ing to the manufacturer’s instructions.

Statistics

All results are expressed as means and S.E.M. 
of several independent experiments. Statistical 
comparisons were performed by analysis of 
variance (ANOVA) with Dunnett’s test for multi-
ple comparisons. P values less than 5% were 
regarded as significant.

Results

Trametinib suppresses chemotherapy-induced 
neuropathy

To evaluate the protective effect of trametinib 
against oxaliplatin-, paclitaxel-, vincristine-, or 
bortezomib-induced neuropathy, we adminis-
trated 0.5 mg/kg of trametinib daily to mice 
that received oxaliplatin, paclitaxel, vincristine, 
or bortezomib, 1 week apart (days 0 and 7). 
Oxaliplatin, paclitaxel, vincristine, and bortezo-
mib induced a significant progressive reduc- 
tion in withdrawal thresholds at 10°C (Figures 
1A, 2A, 3A, and 4A, respectively). Oral adminis-
tration of trametinib significantly suppressed 

Figure 2. Trametinib inhibited paclitaxel-induced cold and mechanical allodynia. Paclitaxel (6 mg/kg, n = 10) was 
administered i.p. weekly for 2 weeks (days 0 and 7). Trametinib (0.5 mg/kg, n = 10) was administered p.o. daily for 
14 days. (A) Withdrawal latencies, presented as means ± S.E.M., represent the time it took the mice to withdraw 
their hind paws following cold stimulation (10°C). *P < 0.01 vs. vehicles (ANOVA with Dunnet’s test). (B-D) Number 
of paw lifts elicited by five mechanical stimulations using von Frey filaments corresponding to (B) innocuous (0.16 
g), (C) intermediate (0.4 g), and (D) noxious (1.4 g) bending forces. The pain threshold is obtained for two paw lifts. 
*P < 0.01 vs. vehicles (ANOVA with Dunnet’s test).
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oxaliplatin-, paclitaxel-, vincristine-, and bort-
ezomib-induced cold allodynia (Figures 1A,  
2A, 3A, and 4A, respectively). In addition, tra-
metinib inhibited oxaliplatin-, paclitaxel-, vin-
cristine-, and bortezomib-induced withdrawal 
response in the von Frey test (0.14, 0.4, and 
1.4 g respectively) (Figures 1B-D, 2B-D, 3B-D, 
and 4B-D). Mice, which received oxaliplatin, pa- 
clitaxel, vincristine, bortezomib, and trametinib, 
did not exhibit any weight loss (Supplementary 
Figure 1). These observations suggest that  
trametinib suppressed oxaliplatin-, paclitaxel-, 
vincristine-, and bortezomib-induced neuropa- 
thy.

Trametinib inhibited chemotherapy-induced 
phosphorylation of ERK1/2 expression 

The initial screening of signal transduction mol-
ecules involved in oxaliplatin-, paclitaxel-, vin-
cristine-, and bortezomib-induced neuropathy 
was performed using the Luminex assay in the 
spinal cord (lumber segments 4-6). Oxaliplatin, 
paclitaxel, vincristine, and bortezomib induced 
the activation of ERK1/2 and JNK, but not 
p38MAPK, NF-κB, and CREB (Figure 5A). Tra- 
metinib inhibited the expression of phosphory-
lated ERK1/2 (phospho-ERK1/2), but not JNK 
(Figure 5A). 

Figure 3. Trametinib inhibited vincristine-induced cold and mechanical allodynia. Vincristine (0.2 mg/kg, n = 10) 
was administered i.p. weekly for 2 weeks (days 0 and 7). Trametinib (0.5 mg/kg, n = 10) was administered p.o. daily 
for 14 days. (A) Withdrawal latencies, presented as means ± S.E.M., represent the time it took the mice to withdraw 
their hind paws following cold stimulation (10°C). *P < 0.01 vs. vehicles (ANOVA with Dunnet’s test). (B-D) Number 
of paw lifts elicited by five mechanical stimulations using von Frey filaments corresponding to (B) innocuous (0.16 
g), (C) intermediate (0.4 g), and (D) noxious (1.4 g) bending forces. The pain threshold is obtained for two paw lifts. 
*P < 0.01 vs. vehicles (ANOVA with Dunnet’s test).
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Next, using western blotting, we confirmed the 
expression of phospho-ERK1/2 in the lumbar 
spinal cord. A marked increase in the expres-
sion of phospho-ERK1/2 was observed in mice 
treated with oxaliplatin, paclitaxel, vincristine, 
or bortezomib. Treatment with trametinib sup-
pressed ERK1/2 activation because of oxalipl-
atin, paclitaxel, vincristine, or bortezomib (Fi- 
gure 5B). These results indicate that the inhi- 
bitory effects of trametinib on oxaliplatin-, pa- 
clitaxel-, vincristine-, or bortezomib-induced ne- 
uropathy are expected through the suppression 
of the MEK/ERK pathway. 

Discussion

In the present study, we demonstrated that  
trametinib suppresses oxaliplatin-, paclitaxel-, 

vincristine-, and bortezomib-induced neuropa-
thy through the inhibition of the MEK/ERK pa- 
thway. Oxaliplatin-induced neuropathy involves 
the PKC activation within the spinal cord, thala-
mus, and periaqueductal area in the brain [6, 
7]. In addition, paclitaxel-induced neuropathic 
pain involves the activation of PKCβII, PKCδ, 
and PKCε in the DRG of mice [23]. It was also 
reported that bortezomib-induced neuropat- 
hy correlates with the activation of glutamate 
N-methyl-D-aspartate receptor via PKC in the 
spinal cord of rats [24]. The activation of PKCα, 
PKCδ, and PKCε induced ERK1/2 phosphoryla-
tion in lumbar segments of mouse spinal cord 
[6]. Moreover, the present study is the first  
to present evidence of the phosphorylation of 
ERK1/2 in the spinal cord during bortezomib-
induced neuropathy. These findings suggest 

Figure 4. Trametinib inhibited bortezomib-induced cold and mechanical allodynia. Bortezomib (1 mg/kg, n = 10) 
was administered i.p. weekly for 2 weeks (days 0 and 7). Trametinib (0.5 mg/kg, n = 10) was administered p.o. daily 
for 14 days. (A) Withdrawal latencies, presented as means ± S.E.M., represent the time it took the mice to withdraw 
their hind paws following cold stimulation (10°C). *P < 0.01 vs. vehicles (ANOVA with Dunnet’s test). (B-D) Number 
of paw lifts elicited by five mechanical stimulations using von Frey filaments corresponding to (B) innocuous (0.16 
g), (C) intermediate (0.4 g), and (D) noxious (1.4 g) bending forces. The pain threshold is obtained for two paw lifts. 
*P < 0.01 vs. vehicles (ANOVA with Dunnet’s test).
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that chemotherapy-induced neuropathy invo- 
lves the ERK1/2 activation and that its inhibi-

tion may be beneficial for preventable chemo-
therapy-induced neuropathy. 

Figure 5. Trametinib inhibited the oxaliplatin-, paclitaxel-, vincristine-, and bortezomib-induced the activation of 
ERK1/2. (A) Spinal cords were lysed and phosphorylation of ERK1/2, p38MAPK, JNK, NF-κB, or CREB protein were 
measured by Luminex assay. (B) phosphorylated ERK1/2 (phospho-ERK1/2) protein content analyzed by western 
blotting in the spinal cord (L4-L6) obtained from mice on day 14 after treatment with oxaliplatin, paclitaxel, vincris-
tine, bortezomib or trameinib. Loading of equivalent amounts of protein was verified by the relative expression of 
β-actin. 
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Several members of the TRP family of receptors 
are implicated in chemotherapy-induced neu-
ropathy. It was reported that the treatment of 
cultured DRG neurons with oxaliplatin increas-
es the expression of TRPV1, TRPA1, and TRPM8 
mRNA, and oxaliplatin-induced cold allodynia 
correlates with the upregulation of TRPA1 and 
TRPM8 in mice and rats [25, 26]. In addition, 
paclitaxel-induced cold and mechanical allo-
dynia is associated with increased TRPA1 and 
TRPV1 expression in the DRG neurons of mice, 
rats, and humans [27, 28]. It has also been  
indicated that the up-regulation of TRPV1 con-
tributes to vincristine-induced mechanical allo-
dynia and that TRPA1 antagonist HC-030031 
inhibits bortezomib- and oxaliplatin-induced 
cold and mechanical allodynia [29, 30]. These 
findings suggest that the activation and/or 
upregulation of members of the TRP family is 
important in chemotherapy-induced neuropa-
thy. It was reported that ERK1/2 activation 
increases TRPV1 expression in DRG neurons 
[31]. Furthermore, a study reported that inte- 
rleukin-1α increased TRPA1 expression via 
ERK1/2 activation [32]. PKC/ERK pathway ac- 
tivation by nerve growth factors promotes the 
sensitization of TRPV1 in DRG neurons [33]. 
Moreover, TRPV1, TRPA1, and TRPM8 activa-
tion enhances the transient levels of intracellu-
lar Ca2+, leading to ERK activation [34, 35]. Al- 
together, these findings suggest that ERK1/2 
and members of the TRP family, such as TR- 
PV1, TRPA1, and TRPM8, interact with each 
other, which may affect nerve sensitivity during 
chemotherapy. 

In this study, we found that the orally adminis-
tered trametinib (0.5 mg/kg) suppressed oxali-
platin-, paclitaxel-, vincristine-, and bortezomib-
induced neuropathy. It has been previously re- 
ported that the Cmax following 0.5 mg/kg tra-
metinib administration, was approximately 70 
ng/mL in mice [36]. However, the Cmax of tra-
metinib following a daily oral administration of 
2.5 mg/day was 63.2 ng/mL in cancer pati- 
ents [37]. A comparison of trametinib plasma 
concentrations in mice and humans showed 
that the Cmax in humans was similar to that of 
mice. These findings suggest that treatment 
with trametinib in mice or humans may achieve 
commensurate plasma drug concentrations.

In conclusion, we provide the first evidence of 
effective inhibition of oxaliplatin-, paclitaxel-, 
vincristine-, and bortezomib-induced neuropa-

thy by trametinib. Our findings indicate that 
oxaliplatin-, paclitaxel-, vincristine-, and bortez- 
omib-induced neuropathy is involved in MEK/
ERK pathway activation, which effectively su- 
ppresses chemotherapy-induced neuropathy. 
Therefore, MEK inhibitors, such as trametinib, 
may be therapeutically beneficial for preventing 
chemotherapy-induced neuropathy. 
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Supplementary Figure 1. Co-treatment with trametinib and oxaliplatin, paclitaxel, vincristine, or bortezomib did not 
affect body weight in mice. Safety of oxaliplatin, paclitaxel, vincristine, or bortezomib and trametinib administrated 
in vivo. (A) Oxaliplatin (6mg/kg, n = 10), (B) Paclitaxel (6 mg/kg, n = 10), (C) vincristine (0.2 mg/kg, n = 10), or (D) 
bortezomib (1 mg/kg, n = 10) were administrated i.p. weekly for 2 weeks (days 0 and 7). Trametinib (0.5 mg/kg, n = 
10) was administrated p.o. daily for 14 days. Mice were weighed before the first treatment and daily for the duration 
of treatment. Means and S.E.M. are shown.


