
Am J Cancer Res 2018;8(8):1564-1575
www.ajcr.us /ISSN:2156-6976/ajcr0082970

Original Article
Co-inhibition of TIGIT, PD1, and Tim3  
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protein-1 (WT1)-specific CD8+ T lymphocytes  
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Abstract: Dendritic cell (DC) vaccines have been shown to stimulate tumor antigen-specific CD8+ T cells; however, 
this strategy has demonstrated variable clinical efficacy likely due to immune escape mechanisms that can induce 
tumor-specific CD8+ T cell dysfunction. Herein, we evaluated the functional characteristics of DC vaccine-induced 
CD8+ T cells with regard to immune checkpoint inhibitors in gastric cancer patients who were administered Wilms 
tumor protein-1 (WT1)-targeted DC vaccine. We observed the upregulation of the inhibitory molecule, TIGIT and the 
inhibitory T cell co-receptors PD1 and Tim3 in limiting WT1-specific CD8+ T cell growth and function in GC patients. 
TIGIT-expressing PD1+Tim3- CD8+ T cells were the largest subset, while TIGIT+PD1+Tim3+ was the most dysfunc-
tional subset of WT1-specific CD8+ T cells in gastric cancer patients. Importantly, the co-inhibition of TIGIT, PD1, 
and Tim3 pathways enhanced the growth, proliferation, and cytokine production of WT1-specific CD8+ T cells. In 
conclusion, our data suggests that targeting TIGIT, PD1, and Tim3 pathways may be important in reversing immune 
escape in patients with advanced gastric cancer.
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Introduction

Gastric cancer (GC) is the fourth most common 
cancer and the second leading cause of can-
cer-related deaths worldwide [1]. Due to con-
founding gastrointestinal symptoms, most pa- 
tients often have advanced disease at the time 
of diagnosis, and median survival time for 
patients with GC is less than 1 year [2]. Surgi- 
cal resection remains the first-line therapy 
option for GC, with few alternatives available 
for targeted immunotherapies. Therefore, th- 
ere is a need to understand the mechanisms 
that promote progression of GC in order to 
develop treatment strategies that may be more 
efficacious.

Tumor antigens are often recognized as self-
antigens by T cells, thus inducing weak immune 
responses and resulting in tolerance. However, 
while tumor-specific cytotoxic CD8+ T lympho-
cytes (CTLs) can recognize tumor antigens, 
CTLs may become unresponsive to the tumor, 
and thus fail to impede tumor growth [3]. Re- 
cent reports suggest that CTLs may become 
dysfunctional and exhibit characteristics of 
anergy, including lack of proliferation and re- 
duced secretion of effector cytokines [4, 5]. 
These factors contribute to the immunosup-
pressive tumor microenvironment (TME), and 
may be enhanced by activation of inhibitory 
checkpoint signaling pathways. Indeed, recent 
therapies have focused on targeting inhibitory 
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pathways, such as PD1 and PD-L1, to promote 
anti-tumor CTL responses both in vitro and in 
vivo [6-11]. Inhibition of immune checkpoint 
using anti-PD1 antibodies has been effica-
cious, with improved outcomes seen in pati- 
ents with advanced PD-L1-positive GC. Other 
promising strategies have targeted the co-
inhibitory receptors, CTLA-4 and PD1 [11]. 
While the exact mechanisms underlying blo- 
ckade of inhibitory checkpoint signaling path-
ways are still unclear, recent evidence has 
shown that anti-PD1 therapy response is 
improved by the presence of CTLs within the 
TME. As various factors collectively contribute 
to the immunosuppressive TME, it is reason-
able to postulate that targeting multiple inhibi-
tory pathways within the TME may be useful for 
patients with advanced malignancies, including 
GC. 

TIGIT (T cell immunoreceptor with Ig- and ITIM 
domains) is an inhibitory receptor expressed  
by activated T cells, regulatory T cells (Tregs), 
and natural killer (NK) cells. TIGIT is ligated to 
the adhesion molecules CD155 (Necl-5) and 
CD112 (nectin-2), which are important for T ce- 
ll and NK cell-mediated cytotoxicity against 
tumors [12-17]. CD155 and CD112 also bind to 
other ligands including CD226 (DNAM-1), the 
costimulatory partner to TIGIT, and interacts 
with LFA-1 to positively regulate T cell respons-
es [18, 19]. Moreover, CD155 and CD112 are 
important in anti-tumor T cell and NK cell-medi-
ated cytotoxicity [15, 16]. CD155 is expressed 
in epithelial cells, endothelial cells, platelets, 
dendritic cells (DCs), activated T cells [12, 16, 
20, 21], and in various tumors, including GC 
[22]. Furthermore, a previous report indicated 
that TIGIT exerted its immunosuppressive 
effects by promoting IL-10 production in DCs 
through CD155, thus inhibiting CD4+ T cell pro-
liferation and function [12]. Nevertheless, other 
studies have demonstrated that TIGIT con-
strains T cell functions directly by competing 
with CD226 [17, 23]. Recently, it has been 
reported high expression of TIGIT by tumor-infil-
trating lymphocytes (TILs) in non-small cell lung 
cancer (NSCLC) and colon cancer, which was 
correlated with PD1 expression, and dysfunc-
tional tumor antigen-specific CTLs [24]. Another 
T cell inhibitory receptor that has received 
much attention is Tim3 (T cell immunoglobulin 
and mucin-domain containing-3). The expres-
sion of Tim3 has been observed in dysfunction-

al CTLs in both solid tumors and hematological 
cancers [25, 26]. Interestingly, these studies 
found that Tim3+CD8+ T cells also expressed 
PD1, and these Tim3+PD1+ CTLs exhibited 
greater dysfunction in their effector function as 
compared to PD1+ CTLs, suggesting a synergis-
tic relationship between these co-inhibitory 
receptors in cancer. 

A recent promising immunotherapy modality is 
DC-based vaccines pulsed with tumor antigens 
[27]. Wilms’ tumor protein-1 (WT1) is an onco-
genic tumor antigen, which has been used in 
DC-based vaccines for hematological and solid 
tumors [28]. Studies have demonstrated that 
this DC-based vaccination can induce WT1-
specific CTLs and contribute to tumor regres-
sion in the clinical setting [29]. The goal of 
DC-based vaccines is to produce tumor-specific 
CTL response [30]; therefore, the generation of 
sustained memory CTL responses is of utmost 
importance.

In the present study, we aimed to evaluate the 
functional impact of WT1-targeted DC vaccina-
tion on the expression of TIGIT, PD1 and Tim3. 
Patients with advanced GC were immunized 
with DCs pulsed with WT1 peptides and the util-
ity of TIGIT+PD1+Tim3 blockade on anti-tumor 
response was evaluated. 

Materials and methods

Patients and ethics statement

Ten HLA-A2*2402-restricted patients with 
stage III/IV gastric cancer were enrolled in this 
Phase I study. All patients provided written 
informed consent prior to study initiation. This 
study was conducted in accordance with guide-
lines established by the Declaration of Helsinki. 
The Institute Ethical Committee of the Affiliated 
Hospital of Capital Medical University approved 
the study protocol.

Study protocol

Peripheral blood mononuclear cells (PBMCs) 
were freshly isolated from each patient using 
Ficoll density gradient centrifugation. Mono- 
cytes were incubated for five days in AIM-V 
medium (Gibco) containing GM-SCF (granulo-
cyte macrophage colony-stimulating factor; 
100 ng/mL) and IL-4 (50 ng/mL) to generate 
immature DCs. Next, DCs were collected from 
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monocytes isolated using CD14+ cell magne- 
tic selection kit (Miltenyi Biotech) and matu- 
ration of monocyte-derived DCs was achieved 
by incubation with 10 ng/mL TNF-α for 24 
hours. 

For each vaccination course, DCs were pulsed 
with MHC-I-restricted WT1 epitopes, depending 
on their HLA status. Briefly, mature DCs were 
incubated with WT1 peptides restricted to HLA-
A*0204 (a modified-type, 9-mer WT1 pepti- 
de residues 235-243: CYTWNQMNL; NeoMPS 
Inc.) for 30 minutes and washed with saline. 
Approximately 1 × 107 DCs were injected into 
the axillary region of each patient (intradermal) 
with OK-432, a streptococcal preparation, at 
2-week intervals for at least 6 sessions (one 
course) before clinical and immunological eval-
uation. Additional vaccinations were adminis-
tered if a positive treatment response or no 
adverse effect was observed after one vaccina-
tion course.

Phenotype analysis of WT1-specific CTLs 

PBMCs were isolated from each patient and 
CD8+ T lymphocytes were purified using MA- 
CS Column Technology (Miltenyi Biotec). CTLs 
were subsequently incubated with APC-labeled 
HLA-A*2402/WT1 235-243 tetramers. HIVenv/
HLA-A24 peptides and matched isotype IgG 
were used as negative controls. CTLs were 
stained with the following antibodies: CD8-
FITC, TIGIT-biotin or IgG2a-biotin or PD1-PE or 
Tim3-PE or IgG2a-PE (BD Pharmingen) and 
streptavidin-ECD (Invitrogen) conjugated anti-
bodies. Cell viability was evaluated using a 
LIVE/DEAD violet amine reactive dye.

For in vitro stimulation assays, PBMCs were 
incubated for 6 days in culture medium con-
taining IL-2 (50 IU/mL) and WT1 peptide (10 μg/
mL). Cells were exposed to the following three 
blocking monoclonal antibodies (either individ-
ually, combination of any two, or combination  
of all three): 10 μg/mL anti-TIGIT (BPS Bio- 
science, CA, USA), anti-PD1 (clone EH12.2H7; 
BioLegend), and anti-Tim3 (clone 2E2; Merck-
Millipore). Isotype antibodies were used as con-
trol. After the 6-day incubation, cells were 
restimulated for 6 hours with WT1 pepti- 
de (10 μg/mL) followed by incubation with 
Brefeldin A (10 μg/mL, Sigma-Aldrich) to en- 
hance intracellular cytokine staining. Cells we- 
re subsequently incubated with CD8-PE, CD4-
PE-Cy7, CD14-ECD, CD19-ECD, CD56-biotin, st- 
reptavidin-ECD and intracellularly stained with 
IFN-γ-FITC, IL-2-APC and TNFα-Alexa 700 (BD 
Pharmingen) antibodies. Cell viability was eval-
uated using a LIVE/DEAD violet amine reactive 
dye. Cells were analyzed via flow cytometry 
using an LSR II (BD Biosciences) and data were 
analyzed using FlowJo v8.8.7 (Tree Star, Inc.).

For in vitro proliferation assays, CFSE-labeled 
PBMCs were treated with IL-2 and WT1 pep-
tides, and incubated for 6 days with the block-
ing antibodies as described above. After the 
6-day incubation, cells were incubated with 
APC-labeled HLA-A2/WT1 235-243 tetramers, 
CD8-PE, CD4-PE-Cy7, CD14-ECD, CD19-ECD, 
CD56-biotin, streptavidin-ECD conjugated anti-
bodies and reagents. Cells were analyzed via 
flow cytometry using an LSRII (BD Biosciences) 
and data were analyzed using FlowJo v8.8.7 
(Tree Star, Inc.).

Table 1. Summary of patient characteristics, clinical outcomes and 
immune responses of DCs-based immunotherapy
Patient 
No.

Age (yrs) 
Sex

Clinical 
stage

Clinical outcomes Immunologi-
cal responses

Overall sur-
vival (mos)Recist Clinical effect

1 68, M III SD Yes + 10.5
2 65, M IV SD Yes + 13.2
3 47, M IV SD Yes + 20.6
4 57, F III SD Yes + 19.2
5 75, M IV PD Yes + 12.1
6 59, M III PD No - 7.3
7 49, M IV PD Yes + 10.1
8 52, M IV SD Yes + 23.1
9 67, M III SD Yes + 21.3
10 56, F IV PD No - 9.6

Functional analysis of WT1-
specific CTLs 

Functional analysis of WT1-
specific CTLs was perfor- 
med via cytokine production 
assays as previously report-
ed [8]. Briefly, T cells were 
purified from isolated PB- 
MCs, and CD4+ and CD8+ T 
cells were separately incu-
bated with an equal number 
of non-CD3 autologous cells 
pulsed with 10 µg/mL WT1 
peptide prior to cell surface 
staining. 
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Figure 1. Expression of WT1-specific CD8+ T lymphocytes following DC vaccination. A. The expression of WT1-
specific CD8+ T lymphocytes of selected GC patients before and after DC vaccination using a tetramer assay. Data 
shown are representative of two independent experiments performed in duplicate. B. Data from the 10 patients with 
advanced GC showing the proportion of WT1-specific CD8+ T lymphocytes expressed as a percentage of CD8+ cells. 
The black horizontal bar shows the median. Each data-point represents the proportion of WT1-specific CTLs for each 
patient. Differences between values before and after vaccination achieved statistical significance (***P < 0.001).

Figure 2. TIGIT is upregulated and co-expressed with PD1 and Tim3 on WT1-specific CD8+ T cells following DC vac-
cination. A. Dot plots from one representative gastric cancer patient showing TIGIT, PD1, and Tim3 expression on 
WT1-specific CD8+ T cells. Values indicate the proportion of CD8+ T cells expressing PD1 and/or TIGIT among tet+ 
CD8+ T cells and expressing Tim3 within different subsets of tet+ CD8+ T cells defined by TIGIT and PD1 expression. 
B. Pooled data from 10 gastric cancer patients showing the distribution of WT1-specific and total CD8+ T cells based 
on TIGIT, PD1, and Tim3 expression. Horizontal bars depict the mean percentage of TIGIT and/or PD1 and/or Tim3 
expression on tet+ CD8+ T cells. Each data-point represents the proportion of WT1-specific CTLs for each patient. 
Data shown are representative of two independent experiments performed in duplicate.
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Statistical analysis

T cell responses to the DC vaccines were evalu-
ated with tetramer analysis (Medical & Bio- 
logical Laboratories Co., Ltd.) or WT1-specific 
cytokine-producing T cells. Wilcoxon signed 
rank test was used to evaluate the significan- 
ce of T cell responses and paired baseline vs. 
post-treatment results from the same patient. 
Tests were two-sided and P < 0.05 was consid-
ered statistically significant. Data were ana-
lyzed using SigmaStat 3.5 software (Systat 
Software, Inc.).

Results

Baseline clinical characteristics

The baseline clinical characteristics of the 10 
patients with advanced (stage III/IV) GC are 
presented in Table 1. Of the 10 patients, 2 
were females and the mean age was 59.5 years 
old. Majority (6 patients) had stage IV at the 
time of diagnosis, and the average time since 
diagnosis was 1.6 months. 

WT1-specific CD8+ T lymphocytes are detect-
able after DC vaccination in gastric cancer 
patients

We examined the ex vivo frequency of WT1-
specific CD8+ T lymphocytes with WT1 pep-
tide/HLA-A*2402 tetramers isolated from PB- 
MCs collected from the 10 patients with ad- 
vanced GC. The assays were performed prior  
to the first DC vaccination course and after 
completion of vaccination course. The expres-
sion of WT1-specific CTLs significantly increas- 
ed following DC vaccination (Figure 1). Previous 
studies demonstrated that upregulated co-
inhibitory molecules expression in tumor anti-
gen-specific CTLs was positively correlated with 
the expression of activation markers, and were 
further enhanced upon TCR activation with 
tumor antigen ex vivo [7, 8]. Moreover, the co-
expression of PD1 and Tim3 has been reported 
to play a critical role in CTL dysfunction and 
regulating the proliferation and expansion of 
tumor antigen-specific CD8+ T cells [25, 26].  
To investigate whether vaccination with DCs 
pulsed with WT1 peptides influenced the ex- 
pression of inhibitory receptors, we assessed 
the expression of TIGIT in combination with 
PD1 and Tim3 by vaccination-induced WT1-
specific CTLs before and after vaccine therapy 

in all patients (Figure 2). We observed that  
the mean proportion of upregulation of TIGIT  
in WT1-specific CTLs was significantly higher 
than total CD8+ T cell subsets and majority of 
TIGIT+WT1-specific CTLs co-upregulated PD1 
expression. We further found that TIGIT+ 
PD1+Tim3- (35.3% ± 10.2%) represented the 
largest WT1-specific CD8+ T cell subset as 
compared to TIGIT+PD1+Tim3+ (14.1 ± 5.6%), 
TIGIT+PD1-Tim3- (13.7% ± 3.1%), TIGIT-PD1+ 
Tim3- (26.3% ± 13.2%) and TIGIT-PD1-Tim3- 
(19.4% ± 9.6%) CTL subsets (Figure 2). 

Impaired cytokine production by TIGIT+PD1+ 
Tim3+WT1-specific CTLs following DC vaccina-
tion

TIGIT+PD1+Tim3- and TIGIT+PD1+Tim3+WT1-
specific CTLs produced significantly less IFN-γ 
than TIGIT-PD1+Tim3- (P = 0.02) (Figure 3A). In 
addition, TIGIT+PD1+Tim3+WT1-specific CTLs 
produced significantly less IFN-γ than TIGIT+ 
PD1+Tim3- CTLs (P = 0.04). We also observed 
that TIGIT+PD1+Tim3+WT1-specific CTLs pro-
duced significantly less TNF and IL-2 than 
TIGIT+PD1+Tim3- (both P = 0.02). Interestingly, 
TIGIT+PD1+Tim3+ CTLs, but not TIGIT+PD1+ 
Tim3-WT1-specific CTLs, produced significantly 
less IL-2 than TIGIT-PD1-Tim3- (P = 0.004) 
(Figure 3). However, we did not observe any sig-
nificant differences in cytokine secretion 
between TIGIT-PD1-Tim3- and TIGIT-PD1+Tim3-
WT1-specific CTLs.

TIGIT inhibition increases the proportions of 
cytokine-producing WT1-specific CD8+ T cells 
and synergizes with PD1 and Tim3 inhibition

We next investigated the effect of TIGIT pa- 
thway inhibition alone or combined with PD1 
and/or Tim3 pathway inhibition in the propor-
tions of WT1-specific CTLs that produced effec-
tor cytokines in response to WT1 peptide and 
anti-TIGIT mAbs, as compared to IgG control 
antibodies. The frequencies of IFN-γ, TNF-α  
and IL-2 secretion by WT1-specific CTLs was 
enhanced in the presence of anti-TIGIT and 
anti-PD1 mAbs when compared to either anti-
TIGIT mAbs alone, anti-PD1 mAbs alone, and 
IgG control antibodies, resulting in a 2.0-fold, 
2.2-fold and 2.7-fold change in the proportions 
of IFN-γ, TNF-α-, and IL-2-producing WT1-sp- 
ecific CTLs, respectively (Figure 4). No syner- 
gistic effect was observed in the presence of 
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Figure 3. Impaired effector function of WT1-specific CTLs following DC vaccination. A. Dot plots from one representative gastric cancer patients showing the pro-
portions of cytokine-producing WT1-specific CD8+ T cells based on TIGIT, PD1 and Tim3 expression. B. Pooled data from ten gastric cancer patients showing the 
proportion of cytokine-producing WT1-specific CTLs based on TIGIT, PD1 and Tim3 expression. Values indicate the percentages of cytokine-producing CTLs among 
Tim3+ and/or Tim3- fractions of TIGIT-PD1-, TIGIT-PD1+ and TIGIT+PD1+ WT1-specific CTLs. The P values were obtained by the Wilcoxon signed rank test. *P < 
0.05; **P < 0.01. Each data-point represents the proportion of WT1-specific CTLs for each patient. Data shown are representative of two independent experiments 
performed in duplicate.
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Figure 4. TIGIT inhibition synergizes with PD1 and Tim3 inhibition to promote the frequencies of cytokine-produc- 
ing WT1-specific CD8+ T cells. A. Dot plots from one representative gastric cancer patient showing the propor- 
tions of IFN-γ-, TNF- and IL-2-producing A2/WT1 235-243 tet+ CD8+ T cells among total CD8+ T cells. PBMCs  
from gastric cancer patients were incubated for 6 days with WT1 235-243 peptide and blocking mAbs against TIGIT 
(αTIGIT) and/or PD1 (αPD1) and/or Tim3 (αTim3) or isotype control mAbs (IgG), prior to evaluating intracellular  
cytokine production of A2/WT1 235-243 tet+ CD8+ T cells in response to the cognate peptide. B. Fold changes 
of the frequencies of IFN-γ-, TNF- and IL-2-producing A2/WT1 235-243 tet+ CD8+ T cells after a 6-day in vitro sti- 
mulation with cognate peptide and the indicated mAb (n = 10). Each data-point represents the proportion of WT1-
specific CTLs for each patient. Data shown are representative of two independent experiments performed in dupli-
cate.
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both anti-TIGIT and anti-Tim3 mAbs. The triple 
blockade further amplified the proportions of 
WT1-specific CTLs that secreted IL-2, but not 
IFN-γ and TNF-α, resulting in a 3.0-fold, 1.7-
fold, and 2.2-fold change in the proportions of 
IL-2-, IFN-γ-, and TNF-α-producing WT1-specific 
CD8+ T cells, respectively, as compared to all 
other experimental conditions including TIGIT/
PD1 blockade. Notably, the effects of TIGIT, 
PD1, and Tim3 inhibitions were observed only 
upon exposure to WT1 peptide, but not in 
response to an irrelevant peptide (data not 
shown).

TIGIT inhibition promoted the proportions of 
proliferating and total WT1-specific CD8+ T 
cells and synergizes with PD1 and Tim3 inhibi-
tions

Finally, we assessed the effects of TIGIT, PD1, 
and Tim3 pathway inhibition on the growth of 
vaccine-induced WT1-specific CTLs in vitro. 
CFSE-labeled PBMCs isolated from eight GC 
patients after DC immunization were incubated 
for 6 days with WT1235-243 peptide in the 
presence of blocking mAbs against TIGIT and/
or PD1 and/or Tim3 or IgG control antibodies. 
After 6 days, cells were restimulated (6 hours) 
with WT1 or HIV peptide, before evaluating the 
proportions of proliferating (CSFElo) and total 
A2/WT1235-243 tet+ CTLs. We observed that 
TIGIT inhibition promoted the proportions of 
CFSElo and total A2/WT1235-243 tet+ CTLs as 
compared to stimulation with IgG control an- 
tibodies, resulting in a 1.7-fold and 1.6-fold 
change in the proportions of CFSElo and to- 
tal A2/WT1235-243 tet+ CTLs, respectively 
(Figure 5). In contrast to TIGIT blockade alone, 
TIGIT and PD1 inhibition further augmented the 
proportions of CFSElo and total A2/WT1235-
243 tet+ CTLs as compared to TIGIT blockade 
alone or PD1 blockade alone, resulting in a 2.7-
fold and 1.7-fold change in the proportions of 
CFSElo and total A2/WT1235-243 tet+ CD8+ T 
cells, respectively. In addition, the triple TIGIT/
PD1/Tim3 inhibitions further promoted the pro-
portions of CFSElo and total A2/WT1235-243 
tet+ CD8+ T cells as compared to TIGIT/PD1 or 
TIGIT/Tim3 blockade. This data suggested that 
there was a synergistic effect of TIGIT, PD1 and 
Tim3 blockades on DC vaccination-induced 
WT1-specific CTLs expansion, resulting in the 
greatest rise in the proportions of CFSElo and 
total A2/WT1235-243 tet+ CTLs (3.0-fold and 

2.0-fold respectively) as compared to other 
groups (Figure 5). No noteworthy proliferation 
of WT1-specific CTLs was observed upon expo-
sure to an irrelevant peptide with or without 
inhibition (data not shown).

Side effects and clinical outcome

Of the 10 patients, 3 received one round of DC 
vaccination, while 7 received more than one 
course. All treatment-emergent adverse events 
(TEAEs) are shown in Table 2. We observed no 
Grade 3 or higher toxicity. Neither complete 
response nor partial response was observed. 
Moreover, patients with stable disease had bet-
ter survival outcomes as compared to patients 
with advanced disease (P < 0.05, Table 1).

Discussion

In the present study, we report a novel subset 
of dysfunctional WT1-specific CTLs in stage  
III/IV gastric cancer patients. We found that  
the majority of WT1-specific CTLs in PBMCs 
from patients who received DC vaccination-
based immunotherapy targeting WT1 co-ex- 
pressed TIGIT, PD1, and Tim3; moreover, TIGIT+ 
PD1+Tim3+WT1-specific CTLs were the most 
dysfunctional subset among the circulating 
WT1-specific CTLs. Our findings are consistent 
with the recent report that found higher TIGIT 
expression by CD8+ TILs in human solid tumors, 
including gastric, lung, breast, colon, uterine, 
melanoma and renal cancers, and TIGIT was 
frequently co-expressed with PD1 in CD8+ TILs 
in human NSCLC and colon cancer samples 
[24].

Furthermore, we demonstrated that TIGIT+ 
PD1+Tim3+ and TIGIT+PD1+Tim3-WT1-specific 
CTLs represented two distinct dysfunctional 
subsets of tumor antigen-specific CTLs primed 
by DC vaccination, suggesting that there is a 
graded loss in T cell function in response to DC 
vaccination in patients with advanced gastric 
cancer. These findings increase our under-
standing of molecular mechanisms that drive T 
cell exhaustion in gastric cancer patients and 
provide potential targets to revert T cell anergy 
in cancer [31, 32].

Substantial evidence suggests that factors 
mediating TIGIT upregulation in response to 
tumor antigen-specific dysfunctional T cells 
may differ from factors that regulate PD1 and 
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Figure 5. TIGIT inhibition synergizes with PD1 and Tim3 blockade to increase the proportions of proliferating and total WT1-specific CD8+ T cells. A. Dot plots from 
one representative gastric cancer patients showing the percentages of CFSElo A2/WT1 235-243 tet+ CTLs among total CD8+ T cells. CFSE-labeled PBMCs from 
gastric cancer patients were incubated for 6 days with WT1 235-243 peptide and blocking mAbs against TIGIT (αTIGIT) and/or PD1 (αPD1) and/or Tim3 (αTim3) 
or isotype control mAbs (IgG). B. Fold changes of the proportions of CFSElo and total A2/WT1 235-243 tet+ CD8+ T cells after a 6-day IVS with cognate peptide and 
the indicated mAbs (n = 10). Each data-point represents the proportion of WT1-specific CTLs for each patient. Data shown are representative of two independent 
experiments performed in duplicate. 
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Tim3 expression [12, 17, 23]. For example, a 
previous study found that tumor antigen-specif-
ic CD8+ T cells promoted TIGIT expression after 
24 hours of in vitro stimulation with antigen, 
while PD1 upregulation occurred after 96 ho- 
urs of stimulation [6]. In the present study,  
we did not observe significant upregulation of 
TIGIT expression TIGIT+PD1+Tim3- and TIGIT+ 
PD1+Tim3+WT1-specific CTLs, suggesting that 
TIGIT expression may not be correlated with the 
severity of T cell dysfunction in patients with 
advanced GC. Moreover, WT1-specific CTLs 
upregulated PD1 and Tim3 expression, but not 
TIGIT, upon prolonged stimulation. This data 
suggests that upregulation of TIGIT by dysfunc-
tional WT1-specific CTLs occurs earlier in the T 
cell activation process, with no further impact 
seen during chronic stimulation.

Adaptive T cell immune responses to tumors 
are influenced by high antigen load and the 
immunosuppressive TME. Therefore, with con-
stant antigen exposure in the TME, it is reason-
able to postulate that subsets of tumor anti- 
gen-specific T cells lose their effector function 
through exhaustion from high antigen load and 
anergy due to suboptimal priming. Previously,  
a report found that NY-ESO-1-specific CD8+ T 
cells did not respond to PD1 blockade, thus 
PD1 inhibition failed to restore tumor-specific 
CD8+ T cell dysfunction [8]. Similarly, we ob- 
served that PD1 inhibition alone did not rever- 
se WT1-specific T cell dysfunction. There are 
several suppositions that might explain the  
failure of PD1 inhibition to revert the T dysfunc-
tion experienced by PD1+ exhausted T cells. 
First, tumor-specific exhausted T cells express 
varying levels of PD1, and PD1high T cell subsets 
appear to be less responsive to PD1 blockade 
than PD1int/low CD8+ T cells [8, 33]. Consistent 
with this observation, we found higher PD1 
expression in the partially dysfunctional TI- 
GIT+PD1+Tim3-WT1-specific CTL subset than 
on TIGIT-PD1+Tim3- subset, but were still lower 
than the most dysfunctional TIGIT+PD1+Tim3+ 
subset. Second, exhausted T cells upregulate 
multiple inhibitory receptors, including PD1, 
CTLA-4, Tim3 and LAG-3 [5, 34]. The co-expres-

to enhance vaccine-induced tumor antigen-
specific CTL responses. Such a strategy might 
improve the clinical outcomes for patients with 
advanced cancer [35]. Consistent with these 
observations, we observed that most DC vac-
cine-induced WT1-specific CTLs detected ex 
vivo upregulated PD1 and TIGIT expression, 
and a marginal proportion also upregulated 
Tim3. The levels of TIGIT, PD1, and Tim3 expres-
sion by vaccination-induced WT1-specific CTLs 
after DC vaccination inversely correlated with 
their function and expansion. Moreover, TIGIT 
blockade, in combination with PD1 and Tim3 
inhibition further augmented the proportions of 
IL-2-producing, proliferating and total WT1-
specific CD8+ T cells among total CD8+ T cells.

In summary, our data demonstrated that DC 
vaccination stimulated WT1-specific CTLs with 
enhanced IFN-γ production, cytotoxicity, and 
lytic capacities that promote TIGIT and PD1. We 
also show that TIGIT and PD1 regulated the 
growth of DC vaccination-induced CTLs after 
WT1-specific DC vaccination. We further dem-
onstrated that TIGIT and PD1 blockades en- 
hanced the growth and function of vaccine-
induced CTLs. Importantly, TIGIT blockade syn-
ergizes with PD1 and Tim3 blockade to enhance 
WT1-specific CD8+ T cell growth and function. 
Our findings support the hypothesis of targeting 
of TIGIT, PD1, and Tim3 pathways to revert 
tumor-induced T cell dysfunction and promote 
antitumor CD8+ T cell responses in patients 
with advanced GC. Potentially, these patients 
might respond favorably to the combination of 
these inhibitory receptors with DC vaccination-
based immunotherapy.
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