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binding with a PD-1 receptor on activated T 
cells. To determine whether 2-DG affects cell-
surface PD-L1 expression levels, we treated 
IFN-γ-pretreated BT549 cells with 2-DG and 
tunicamycin. Cell-surface PD-L1 expression 
was assessed using an APC-conjugated PD-L1 
antibody, and cells were analyzed with FACS. 
The cell-surface PD-L1 expression level was 
significantly reduced after treatment with 2-DG 
and tunicamycin (Figure 1F). To investigate the 
functional significance of PD-L1’s downregula-
tion by 2-DG, we assessed whether 2-DG alters 
the interaction between PD-1 and PD-L1 and 
found that 2-DG significantly reduced PD-1 
binding levels in BT549 cells (Figure 1F). Toge- 
ther, these results suggest that 2-DG downreg-
ulates the glycosylation of both endogenous 
and cytokine-induced PD-L1. 

2-DG deglycosylates PARPi-induced PD-L1 
protein 

Our western blot analysis revealed that PARPi 
consistently enhanced PD-L1 expression in 

MDA-MB-231 and BT549 cells which were  
consistent with our previous result [17]. To vali-
date whether 2-DG reduces the PARPi-induced 
upregulation of PD-L1, we treated MDA-MB-231 
and BT549 cells with 2-DG and/or PARP inhibi-
tors. 2-DG significantly reduced not only PARPi-
induced PD-L1 expression but also the basal 
level of PD-L1 (Figure 2A, 2B). Similarly, the 
cell-surface PD-L1 expression levels were sig-
nificantly decreased after 2-DG treatment. As a 
result, 2-DG also reduced the binding of PD-1 to 
PD-L1 on the cell surface (Figure 2C). Together, 
these results indicate that 2-DG deglycosylates 
PARPi-induced PD-L1 protein in TNBC.

2-DG downregulates PD-L1-PD-1 interaction 
and decreases PD-L1 translocation and stabi-
lization

Because 2-DG suppressed cell-surface PD-L1 
expression levels, we next sought to determine 
whether 2-DG affects PD-L1 stability. Time-
lapse images showed that 2-DG significantly 
reduced the amount of PD-1 protein bound to 

Figure 3. 2-DG decreases PD-L1 translocation and stabilization. A. Left, The quantitative binding of PD-1 Fc pro-
tein on PD-L1-overexpressing MDA-MB-231 cells was assessed at the indicated times. Cells were treated with 10 
mmol/L 2-DG, 1 µgml-1 tunicamycin (TM), or 10 µmol/L olaparib. Right, Images of PD1 Fc protein on PD-L1-over-
expressing MDA-MB-231 cells from 0 to 72 hours. B. Western blot analysis of PD-L1 protein expression in PD-L1-
overexpressing MDA-MB-231 cells and MDA-MB-231-4NQ cells treated with 2 mmol/L 2-DG IR800. C. Western blot 
analysis of PD-L1 protein expression in PD-L1-overexpressing MDA-MB-231 cells. Cells were treated with 20 mM 
cycloheximide (CHX) with or without 2 mmol/L 2-DG at the indicated times. The intensity of PD-L1 protein expression 
was quantified using a densitometer. *P<0.05. D. Confocal microscopy image showing HSP90B1 and PD-L1 expres-
sion in PD-L1-overexpressing MDA-MB-231 cells after treatment with 2-DG. Scale bar, 20 mm.
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Figure 4. 2-DG enhances T-cell killing efficiency. A. PBMCs were co-cultured with MDA-MB-231 cells at a 15:1 
ratio for 48 hours and treated with 2 mmol/L 2-DG and/or 10 µmol/L olaparib. Left, the cells were stained with 
crystal violet. Right, the percentages of live MDA-MB-231 cells co-cultured with activated PBMCs (normalized to 
MDA-MB-231 cells cultured without PBMCs) at 48 hours. *P<0.05. B. MDA-MB-231 cells were cultured as those 
shown as in panel and cells were then treated with 2 mmol/L 2-DG and/or 10 nmol/L talazoparib. Left, the cells 
were stained with crystal violet. Right, the percentage of live MDA-MB-231 cells co-cultured with activated PBMCs 
(normalized to those cultured without PBMCs) at 48 hours. *P<0.05. C. MDA-MB-231 cells expressing nuclear red 
fluorescent protein (RFP) seeded in the 96-well plate were first treated as those shown in panel a. Left, representa-
tive merged images showing red fluorescent (nuclear-restricted RFP) and green fluorescent (caspase-3/7 substrate) 
objects. Images were captured using an IncuCyte Zoom microscope. Right, The number of live cells (red fluorescent 
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cell-surface PD-L1 continuously (Figure 3A). 
2-DG, as a glucose analog, was incorporated 
into the PD-L1 glycosylation process (Figure 
3B). In the presence of the protein synthesis 
inhibitor cycloheximide, the turnover rate of 
PD-L1 with the treatment of 2-DG was faster 
than that in the control group (Figure 3C). In 
addition, 2-DG trapped PD-L1 inside the endo-
plasmic reticulum (Figure 3D). These results 
suggest that 2-DG reduces cell-surface PD-L1 
expression levels by reducing the normal glyco-
sylation of PD-L1. 

2-DG re-sensitizes PARPi-treated cancer cells 
to T-cell killing

To understand the functional significance of  
the downregulation of PD-L1 by 2-DG, we per-
formed a T-cell-mediated killing assay by co-
culturing activated human PBMCs with MDA-
MB-231 cells treated with 2-DG and/or PAPRi 
with olaparib or talazoparib. To find the 2-DG 
concentration that does not significantly affect 
cell growth, we tested several 2-DG concentra-
tions with or without PARPi with 10 µM olaparib 
or 10 nM talazoparib; we used 2 mM 2-DG as 
our final concentration (Figure S1A-C). PARPi-
treated cells were strongly resistant to activat-
ed T-cell killing, which is consistent with the 
findings of our previous study [17]. 2-DG sensi-
tized the PARPi-treated cells to T-cell killing, 
and the combination treatment group (2-DG+ 
PARPi) had the best killing efficiency (Figure 
4A-D). These results indicate that 2-DG re-sen-
sitizes PARPi-treated MDA-MB-231 cells to acti-
vated T-cell killing. 

Discussion

Although the metabolic effects of 2-DG have 
been well studied, the role of 2-DG in cancer-
associated immunity is still largely unknown. 
The results of our study demonstrate that 2-DG 
reduces cell-surface PD-L1 expression primari-
ly through the deglycosylation of PD-L1, which 
resensitized cancer cells to T-cell-mediated 
cytotoxicity. These data provide a strong ratio-
nale for using 2-DG in combination with PARP 
inhibitors that upregulate PD-L1 in TNBC.

2-DG is most frequently used to inhibit glucose 
metabolism. 2-DG is phosphorylated by hexoki-
nase, resulting in the depletion of intracellular 
ATP and the induction of autophagy [18]. How- 
ever, 2-DG’s high dose requirement as a single 
agent (65-100 mg/kg body weight) [19, 20] lim-
its its application in the clinic. Several recent 
studies have reported that 2-DG enhances the 
anticancer effects of other drugs in prostate, 
lung, and breast cancer [21-24]. Because glu-
cose is also a key source of polysaccharide 
compositions on glycoproteins, the energy-
independent function of glucose for glycopro-
teins in tumor progression is of interest. By 
depleting the cell of available glucose, 2-DG 
also inhibits protein glycosylation, trapping pro-
teins in the endoplasmic reticulum and trigger-
ing the unfolded protein response, which can 
induce apoptosis [25, 26]. 2-DG is a glucose 
analog that can be incorporated into cells via 
glucose transporters. In our study, we found 
that 2-DG could be incorporated into the glyco-
protein (Figure 3A), which might change the gly-
cosylation structure and thereby affect various 
biological functions related to glycoproteins. 

Our previous study showed that, although gly-
cosylation is involved in many co-inhibitory  
signaling interactions, co-stimulatory signaling 
does not require glycosylation [12]. 2-DG might 
change the glycan structure of the inhibitory 
interaction proteins. Thus, 2-DG might have a 
more substantial effect on relieving the immu-
nosuppressive status of tumors by 1) restrict-
ing the energy for cancer cell metabolism, 2) 
deglycosylating PD-L1 for degradation, and 3) 
disrupting PD-L1-PD-1 interaction. Therefore, 
combination 2-DG could re-sensitize the drugs 
that induce PD-L1 expression, which might play 
an important role in the resistance.

Previous studies showed that immune check-
point blockade has promise for the treatment 
of TNBC. However, antibodies targeting PD-1 or 
PD-L1 did not elicit a satisfactory response rate 
[27-29] and offered a survival benefit no better 
than that achieved with traditional treatment in 
patients with metastatic TNBC. Only a minority 
of patients benefit from the therapy, and the 

objects) at 6 hours interval were counted and normalized to that at the zero time point. *P<0.05. D. MDA-MB-231 
cells expressing nuclear RFP were first treated as those shown in panel b were. Left, Representative merged images 
showing red fluorescent (nuclear-restricted RFP) and green fluorescent (caspase-3/7 substrate) objects. Images 
were captured using an IncuCyte ZOOM microscope. Right, the number of live cells (red fluorescent objects) were 
counted at 6 hours interval were counted and normalized to that at the zero time point. *P<0.05.
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predictive biomarkers for patient selection are 
not clear. Improving the response rates, the 
durability of response and overall survival re- 
main challenges in practice. Combination strat-
egies with potential synergistic treatment, pri-
marily with chemotherapy, radiotherapy, target-
ed therapies, as well as other immune thera-
pies, to improve overall response rate and OS 
are actively studied in various clinical trials  
[30-34]. Our previous study showed that combi-
nation therapy with gefitinib and an anti-PD-1 
antibody could enhance the treatment result 
[10].

In this study, we found that 2-DG reduced the 
PD-L1 expression on the cell surface, which 
induce PD-L1 trapped inside the endoplasmic 
reticulum. We demonstrated that 2-DG revers-
es the PARPi-induced upregulation of PD-L1 by 
deglycosylating PD-L1 in TNBC. Our results pro-
vide a strong scientific base for investigating 
the combination of 2-DG and PARPi in TNBC 
further.
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Figure S1. Identifying the 2-DG concentration that does not significantly affect cell growth. A. MDA-MB-231 cells 
were treated with 1, 5, 10, 20, or 50 mmol/L 2-DG for 48 hours. Left, the cells were stained with crystal violet. 
Right, the percentage of live cells observed at 48 hours (normalized to the control group). B. MDA-MB-231 cells were 
treated with 10 µmol/L olaparib and/or 1, 2, 5, or 10 mmol/L 2-DG for 48 hours. Left, the cells were stained with 
crystal violet. Right, The percentage of live cells at 48 hours (normalized to the control group). C. MDA-MB-231 cells 
were treated with 10 nmol/L talazoparib and/or 1, 2, 5, or 10 mmol/L 2-DG for 48 hours. Left, cells were stained 
with crystal violet. Right, The percentage of live cells at 48 hours (normalized to the control group).


