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Abstract: The aim of this study was to develop and validate a new non-invasive artificial intelligence (AI) model 
based on preoperative computed tomography (CT) data to predict the presence of liver metastasis (LM) in colon 
cancer (CC). A total of forty-eight eligible CC patients were enrolled, including twenty-four patients with LM and 
twenty-four patients without LM. Six clinical factors and one hundred and fifty-two tumor image features extracted 
from CT data were utilized to develop three models: clinical, radiomics, and hybrid (a combination of clinical and 
radiomics features) using support vector machines with 5-fold cross-validation. The performance of each model 
was evaluated in terms of accuracy, specificity, sensitivity, and area under the curve (AUC). For the radiomics model, 
a total of four image features utilized to construct the model resulting in an accuracy of 83.87% for training and 
79.50% for validation. The clinical model that employed two selected clinical variables had an accuracy of 69.82% 
and 69.50% for training and validation, respectively. The hybrid model that combined relevant image features and 
clinical variables improved accuracy of both training (90.63%) and validation (85.50%) sets. In terms of AUC, hybrid 
(0.96; 0.87) and radiomics models (0.91; 0.85) demonstrated a significant improvement compared with the clinical 
model (0.71; 0.69), and the hybrid model had the best prediction performance. In conclusion, the AI model devel-
oped using preoperative conventional CT data can accurately predict LM in CC patients without additional proce-
dures. Furthermore, combining image features with clinical characteristics greatly improved the model’s prediction 
performance. We have thus generated a promising tool that allows guidance and individualized surveillance of CC 
patients with high risks of LM. 
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Introduction

Colon cancer (CC) is one of the leading cause of 
cancer-related deaths worldwide [1]. Even 
though the prognosis is generally favorable for 
early-stage CC patients with radical resection, 
the treatment performance of metastatic CC is 
disappointing, with a 5-year survival rate of only 
13% [2]. Liver metastasis (LM) is the most com-
mon form of distant metastases in CC patients. 
Approximately 15-20% of the patients have 
synchronous LM at the time of the diagnosis, 
and the 5-year cumulative metachronous LM 
rate was 3.7% for TNM stage I tumors, 13.3% 
for stage II, and 30.4% for stage III [3]. Besides, 

LM is a well-known indicator of poor prognosis 
for cancer patients and is also one of the most 
challenging issues encountered during the 
treatment of CC [4]. Therefore, early identifica-
tion of high-risk LM patients is crucial for the 
development of effective treatment plans and 
improving the clinical outcomes.

Non-invasive approaches, including computed 
tomography (CT), magnetic resonance imaging 
(MRI), and positron emission tomography (PET), 
are widely used for preoperative clinical evalua-
tion of LM; however, the diagnostic accuracies 
of these imaging techniques are not satisfacto-
ry [5-7]. Therefore, the utilization of clinicopath-
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ological features to predict LM is currently very 
popular [8, 9]. Chuang et al. previously showed 
that depth of tumor invasion, lymph node 
metastasis, and vascular invasion were inde-
pendent factors for LM on univariate analysis 
[10]. However, these indicators are only avail-
able after a radical resection procedure. 
Therefore, new non-invasive, low-cost, and 
accurate approaches for the preoperative pre-
diction of LM in CC patients are still being 
investigated.

Radiomics is a new field that produces high-
throughput data from quantitative images and 
clinical data to improve the precision of disease 
diagnosis and prognosis using multi-modality 
imaging techniques [11-13]. Leveraging analy-
sis of non-invasive data to support the process 
of clinical decision, radiomics was widely used 
in clinical studies especially in the evaluation of 
cancer stage and prediction of prognosis [14-
16]. Our previous study demonstrated that CT- 
based image features can be helpful for pre-
dicting the metastatic status of the nodes and 
the stage of the CC [17]. Furthermore, some 
studies have used the image analysis approach 
to identify the association between tumor tis-
sue and distant metastases in different malig-
nancies [18-20]. Specifically, Chen et al. show- 
ed that a CT-based radiomics model demon-
strated good performance in the prediction of 
brain metastasis (BM) in lung cancer patients 
[21]. Other studies also reported that radiomics 
signature has the potential for predicting LM in 
rectal and esophagogastric cancer [22-24].

This retrospective study was approved by the 
ethics committee of the Affiliated Hospital of 
Qingdao University. A total of 620 consecutive 
CC patients were received radical colectomy 
with lymph node dissection between October 
2015 and July 2018. The clinicopathological 
and radiological databases were retrospective-
ly reviewed. The patients with LM inclusion cri-
teria were as follows: (a) patients with CC diag-
nosis on pathology, (b) patients with no history 
of previous or coexisting other malignancies, (c) 
patients who underwent preoperative enhanc- 
ed CT for local CC staging and for LM diagnosis, 
and (d) patients with metastatic CC who under-
went synchronous resection of primary tumor 
and LM. The exclusion criteria is as follows: (a) 
patients who underwent treatment (radiothe- 
rapy, chemotherapy or chemoradiotherapy) be- 
fore the baseline CT examination, (b) poor 
image quality that is unqualified for image anal-
ysis, and (c) patients with LM who did not 
receive synchronous resection of the primary 
tumor and LM. The twenty-four patients with 
LM who received simultaneous resection of pri-
mary tumor and metastases were enrolled in 
the LM group; in order to match the study, 
another twenty-four patients without LM who 
underwent radical colectomy and lymph node 
dissection were selected as the non-LM gro- 
up. Finally, a total of forty-eight consecutive 
patients were incorporated into our study. The 
clinical characteristics of the patients for each 
experiment were presented in Table 1. Our 
study framework steps are demonstrated in 
Figure 1.

Table 1. Clinical characteristics of the forty-eight CC patients with 
and without LM
Characteristics LM (n = 24) Non-LM (n = 24) P
Age, years (Mean ± SD) 63.33±11.21 59.71±13.86 0.197
Gender, n (%) 1
    Male 15 (62.50) 15 (62.50)
    Female 9 (37.50) 9 (37.50)
Tumor site, n (%) 0.057
    Right 14 (58.33) 20 (83.33)
    Left 10 (41.67) 4 (16.67)
Histologic grade, n (%) 0.383
    Moderately differentiated 15 (62.50) 12 (50.00)
    Poorly differentiated 9 (37.50) 12 (50.00)
Tumor diameter, cm (Mean ± SD) 7.97±3.12 7.31±1.55 0.385
Note: n, number; LM, liver metastasis; SD, standard deviation; tumor size was mea-
sured at the thickest part of the colon lesion vertical to the bowel wall on the cross-
sectional image; P value was derived from the univariable association analyses 
between each characteristic, P < 0.05 was considered statistically significant.

Although the prediction of  
LM has been briefly studied 
for several diseases, the role 
of image features in predict-
ing the presence of LM in CC 
patients still remains unclear. 
Therefore, the aim of this 
study is to investigate differ-
ent CT algorithms and imag-
ing sequences for prediction 
of LM in CC patients. Furth- 
ermore, we will evaluate the 
predictive performance of 
artificial intelligence (AI) mod-
els for diagnosis of LM in CC 
patients. 

Materials and methods

Patients 
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CT image acquisition

All patients underwent contrast-enhanced ab- 
dominal and pelvic CT using a two 64-detector 
row spiral CT system (Discovery 750 HD, GE 
Medical System, USA or Volume Ultra, GE 
Medical Systems, USA). CT scan was performed 
65 s after intravenous injection of 100 ml iopro-
mide (Uitravist-300; Bayer Schering Pharma, 
Berlin Germany) at 3 ml/s for enhancement. 
Scanning parameters were as follows: 120 kv; 
160 mAs; 0.6 s rotation time and an imaging 
matrix of 512×512. Portal venous phase imag-
es at 1.0 mm thickness were retrieved for 
radiomics analysis. 

Tumor segmentation and feature extraction

Two radiologists with more than 10 years of 
experience in abdominal radiology interpreta-
tion examined all the slices of CT data to find 
the slice with the maximum tumor diameter. 
Later, tumor regions were outlined by the first 
radiologist using open-source software (ITK-
SNAP) [25], and the second radiologist validat-
ed the drawn region of interest (ROI) for the 
tumor tissue (Figure 2).

The CT image characteristics were obtained 
using six feature extraction methods (first-order 
statistic, FoS; co-occurrence matrix, CoM; run-

length matrix, RLM; local binary patterns, LBP; 
fractal analysis, FA; and tumor structure, TS) 
and three transformations (gradients, GD; his-
togram of oriented gradients, HoG; and wavelet 
transform, WT) with in-house implemented 
scripts in Matlab® (MathWorks, MA) [17, 26]. Six 
first-order statistical features were calculated 
from gray-level pixel intensity histogram to cap-
ture a summary of the intensity distribution of 
the lesions without considering spatial posi-
tioning. To measure joint probabilities of pixels 
with different intensities, we generated co-
occurrence matrix in four directions (0°, 90°, 
180°, 270°) and extracted six features by aver-
aging each co-occurrence matrix after merging 
spatial direction features as averaging. The 
run-length matrix were computed to character-
ize coarseness of the textures using gray-level 
intensity runs and calculate seven features 
from the run-length matrix. LBP technique ana-
lyzes the image texture by comparing the asso-
ciation between neighboring pixels in a region 
and generates a histogram for this relationship. 
In our study, we computed 10 LBP features of 
tumor tissues. The complexity of the texture 
structure in CT image were reflected by measur-
ing the fractal dimension. Besides, gradient 
image was generated to describe coarseness 
or fineness of the structures leveraging inten-
sity variation in specific directions. A total of 

Figure 1. The workflow of the study. The collection of the clinical characteristics of the patients and segmentation 
of tumor regions on CT data (A). Obtaining clinical factors and extraction of CT image features (B). Building three AI 
models-clinical, radiomics, and hybrid (combination of clinical and radiomics features) - for prediction of liver me-
tastasis (C). The evaluation of performances of the generated models in terms of accuracy, sensitivity, specificity, 
and area under the curve (D).

Figure 2. The CT images with identified tumor regions. An example of manual segmentation of primary tumor (green 
regions) and liver metastasis (red regions) on colon cancer CT images.
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nineteen features were calculated from gradi-
ent images employing statistics (FoS) and tex-
ture (CoM and RLM) methods. In additon, six 
additional features were obtained from gradi-
ent histograms that were generated with the 
HoG approach by clustering gradients into nine 
directional groups. To extract spatial character-
istics of the texture, we calculated wavelet 
detail images utilizing Daubechies function 
resulting in four sub-images. We calculated sta-
tistical (FoS) and textural features (GLCM and 
GLRM) in addition to power, variance, and aver-
age signal magnitudes of the wavelet images.

Following the extraction of 152 image features 
from preoperative conventional CT data, we 
standardized the features using the z-score 
normalization approach for stable convergence 
while optimizing the hyperparameters (kernel 
parameter and penalty) of the generated classi-
fiers. In order to identify the relevancy and 
space dimensionality of image features, we 
employed the RELIEFF algorithm which deter-
mined the ranking of the features by analyzing 
the differences among nearest-neighbor pairs 
[27]. 

Classifier model building

In order to evaluate the prediction accuracy of 
radiomics features and clinical variables, we 
assessed the importance of the variables indi-
vidually to build three separate AI models 
(radiomics, clinical, and hybrid) using a kernel-
based support vector machines (SVM) method 
with 5-fold cross-validation. Using the SVM 
technique, the separating hyperplane was gen-
erated by optimizing the minimal distance 

and validation sets after combining groups of 
five experiments are presented in Table 2.

For the clinical model, we obtained the demo-
graphics (age and gender) and tumor-related 
(location and histological status) characteris-
tics from patient records after the removal of 
personal identifiers. Besides, tumor size were 
measured in the longest and shortest diameter 
using CT data. To determine how clinical vari-
ables correlate with tumor characteristics, we 
examined all the features in an exhaustive 
search approach evaluating the average perfor-
mance of the AI models for training and valida-
tion sets in terms of accuracy and area under 
the receiver operating curve (AUC). The clinical 
model was generated using the variable set 
that demonstrated the best performance. 

For the radiomics model, we included six fea-
tures with the highest rankings identified by  
the RELIEEF algorithm [27]. Using the same 
approach as the developing clinical model, the 
set of features that reflect the biological chang-
es of metastasis were identified. Afterwards, 
the selected clinical and CT image features 
were further analyzed by generating a hybrid 
model that combined clinical and imaging vari-
ables with the best performance using the 
exhaustive search approach.

Performance evaluation and statistical analy-
sis

For performance evaluation of the three mod-
els, we utilized accuracy, sensitivity, specificity, 
and receiver operating characteristic (ROC) 
curves for training and validation. In the 5-fold 

Table 2. The distribution of the patient characteristics in 
5-fold cross-validation

Characteristics
Training cohort Validation cohort 
LM Non-LM LM Non-LM

Gender
    Male 60/75 60/75 15/75 15/75
    Female 36/45 36/45 9/45 9/45
Tumor site
    Left 40/50 17/21 10/50 4/21
    Right 56/70 79/99 14/70 20/99
Histologic grade
    Moderately differentiated 56/70 52/65 14/70 13/65
    Poorly differentiated 40/50 44/55 10/50 11/55
Note: LM, liver metastasis.

between separating plane and clos-
est samples. During SVM optimiza-
tion, sequential minimal optimization 
method was utilized by mapping 
image features to high dimensional 
space with radial basis function ker-
nels that lead to a non-linear classifi-
cation of the samples. Prior to the 
development of the models, the data 
was randomly separated into five 
groups (four were used for training 
and the remaining for validation of 
the model). The process was repeat-
ed five times with different clusters 
used for training and validation to 
better evaluate the models. The dis-
tribution of the patients in training 
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Figure 3. The correlation and ranking of the selected features. A and B demonstrate the cross-correlation and ranking of the image features used for radiomics 
model; C and D show the cross-correlation and ranking of the clinical factors used for the clinical model; E and F present cross-correlation and ranking of the fea-
tures used for the hybrid model.
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cross-validation approach, the performance 
metrics of generated models were calculated 
by averaging them over the five experiments. 
While selecting the potential model paramet- 
ers and feature sets, the generated models 
were sorted according to the accuracy and  
AUC by validation sets as removing the models 
that generate a difference more than 7% accu-
racy between training and validation. To com-
pare the superiority of the generated models 
(radiomics, clinical and hybrid), multiple Stu- 
dent’s t-test using AUC values obtained from 
five experiments for each model were per-
formed. P < 0.05 was considered statistically 
significant.

For patient demographic information, Stude- 
nt’s t-test for continuous variables and Chi-
square test were performed to evaluate rela-
tionships for categorical factors. We also pre-
sented continuous variables as mean ± stan-
dard deviation. 

Results

Clinical characteristics of patients

A total of forty-eight CC patients were incorpo-
rated into our research including twenty-four 
patients with LM and twenty-four patients with-
out LM. There were no statistically significant 
difference in clinical characteristics between 
patients with LM and without LM.

Feature selection

The radiomics model was constructed with four 
features (entropy, energy, and homogeneity of 
the vertical wavelet image and low gray level 
run emphasis of raw image) following detailed 
assessment of top-ranked features in terms of 
accuracy and AUC measures of the validation. 
In Figure 3A, we visualized the correlation 
between the features and showed the ranking 
of the features in Figure 3B. For the clinical 
model, six features were evaluated for accura-
cy and AUC in the validation sets, and the final 
model was generated using the two features 
(tumor site and diameter of tumor tissue) show-
ing the best performance. The correlation of 
the clinical features are shown in Figure 3C, 
and the ranking of the features is presented in 
Figure 3D. For the hybrid model, a total of six 
features selected via clinical and radiomics 
models were evaluated. Afterward, the final 

model was generated with four selected fea-
tures (heterogeneity, entropy, and energy of 
vertical wavelet image and diameter of tumor). 
Figure 3E shows the correlation values among 
the features for the hybrid model; the rankings 
of the selected features are presented in Figure 
3F.

Evaluation of the models for predicting liver 
metastasis

In the present study, we generated three AI 
models to predict the presence of LMs: clinical, 
radiomics and hybrid. For each model, all com-
binations of the features were evaluated in an 
exhaustive search procedure to identify signifi-
cant variables that allowed prediction of LM 
and also evaluated the performance of the gen-
erated models in terms of accuracy and AUC 
measurements (Figure 4).

The clinical model was generated upon assess-
ment of all the combinations of the variables 
while analyzing the performance of the candi-
date models. The behavior of the model was 
described in terms of accuracy and AUC met-
rics for the clinical model (Figure 4A and 4D). 
Upon evaluation of the results, the final clinical 
model generated with three features demon-
strated an accuracy of 69.82% for training and 
69.50% for validation. The model specificity 
was 83.31% for training and 83.14% for valida-
tion, while the sensitivity was 56.36% for train-
ing and 62.00% for the validation. Besides, the 
average AUC values were 0.71 for training and 
0.69 for the validation. Figure 5A shows the 
ROC curve of the training model for each of five 
validation sets with a visualization of mean ± 
standard deviation. 

For the radiomics model, all the subsets of the 
six features were extensively evaluated to iden-
tify the relevant features that reflect the exis-
tence of LMs. In Figure 4B and 4E, the perfor-
mances of the generated models with respect 
to a varying number of features were demon-
strated. The results showed that the radiomics 
model with four features generated the high- 
est performances for training and validation 
sets. Therefore, the model was constructed 
with four features presenting an accuracy of 
83.87% for training and 79.50% for validation 
that increased the accuracy almost 10% com-
pared to the clinical model. In addition, the 
specificity of the model was 96.59% for training 
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and 86.48% for validation while the sensitivity 
of the model was 75.28% for training and 
78.86% for the validation. Besides, the AUC val-
ues of the model were 0.91 for training and 
0.85 for the validation (Figure 5B).

For the hybrid model, six features selected for 
clinical and radiomics models were analyzed 
with an assessment of all the classifiers with 
respect to increasing number of features. The 
accuracy and AUC of the classifiers are shown 

Figure 4. The performance evaluation of the generated models with respect to a number of features. A and D de-
scribe the accuracy and AUC in the clinical model; B and E show the performances of the radiomics models; C and 
F demonstrate the accuracy and the AUC in the hybrid model.

Figure 5. ROC curves of the final SVM classifiers for generated models with mean and standard deviation (A-C). As 
(D) reflect the comparison of the ROC curves for the generated models, (E, F) evaluate the difference between the 
models for training and validation, respectively. (* represents an improvement of the model was statistically signifi-
cant than clinical model and ** demonstrates the statistical difference compared to clinical and radiomics models).
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in Figure 4C and 4F. After evaluation of the per-
formances of the training and validation sets, 
the hybrid model were constructed with four 
features which improved the prediction accu-
racy with an average of 6% (a total of 90.63% 
for training and 85.50% for validation) com-
pared to radiomics model. The hybrid model 
demonstrated specificity of 95.41% for training 
and 94.29% for validation while the sensitivity 
of the model was 86.04% for training and 
79.33% for the validation. Besides, the AUC 
value of this model was 0.96 for training and 
0.87 for the validation. The ROC curve of the 
five training sets was shown in the form of 
mean ± standard deviation in Figure 5C.

After generating the final classifiers for the 
models, we evaluated the prediction perfor-
mances in terms of average AUC measures of 
the models (Figure 5D). The radiomics model 
demonstrated a statistically significant im- 
provement (P < 0.001) compared to the clinical 
model (Figure 5E). In addition, hybrid model 
presented a significant improvement compared 
to clinical (P < 0.001) and radiomics models (P 
= 0.002) for the training set. Although statisti-
cal significance was not observed in AUC mea-
surements for the validation data (except 
among hybrid and clinical model, P = 0.041), 
prediction performance was improved by com-
bining the key features from radiomics and 
clinical models (Figure 5F).

Discussion

In the present study, we developed three AI 
models to estimate the individual risks of the 
LM in CC patients using clinical characteristics 
and preoperative CT images features: clinical, 
radiomics, and hybrid models. We further eval-
uated the predictive accuracy of these models 
to detect high-risk patients with LM. Our results 
revealed that the hybrid model (85.50%) 
showed the best discriminative ability to detect 
high-risk patients with LM compared with the 
radiomics (79.50%) and clinical models 
(69.50%). Therefore, a non-invasive model can 
be developed as an individualized visual tool 
for detecting LM and helping clinicians select 
appropriate surveillance and intervention plans 
for CC patients with high risks of LM.

The liver is the most common site for distant 
metastases of CC, and up to 70% of all CC 
patients may develop LM eventually [28]. 

Furthermore, LM is the leading cause of death 
and also a key point in the treatment of cancer 
patients. Currently, hepatic resection is consid-
ered to be the only treatment that can provide 
long-term survival in CC [29]. The patients with 
resectable primary tumor and LM have a bett- 
er 5-year survival rate compared to patients 
with palliative treatment (50% vs 5%) [30]. With 
the continuous improvement of hepatectomy 
technique and perioperative care, complication 
and mortality rate have dropped dramatically. 
Meanwhile, simultaneous resection of the pri-
mary tumor and LM is recommended in clinical 
practice of CC patients for optimal outcomes 
[31]. Unfortunately, only about 25% of CC 
patients can undergo simultaneous hepatic 
resection [32]. In this study, 13.2% (82/620) of 
patients have synchronous LM, and only 24 
(29.3%) of these patients received simultane-
ous resection of the primary tumor and LM. 
These patients had no complications after sur-
gery and were discharged smoothly. Therefore, 
screening for high-risk factors and early detec-
tion of LM will provide opportunities for surgical 
resection and improve the prognosis of CC 
patients.

The depth of tumor invasion and lymph node 
metastasis are two components of the TNM 
system which are considered to be high-risk 
factors for the development of LM [33]. 
Carcinoembryonic antigen (CEA) level was also 
recognized as an independent factor for LM of 
CC [34]. Chuang et al. demonstrated that pre-
operative serum CEA level, depth of tumor inva-
sion, lymph node metastasis, and vascular 
invasion were independent factors that corre-
late with LM by investigating 1,099 CC cases 
over a 7-year follow up [10]. Although these 
clinicopathologic factors have a good predic-
tive performance of LM in CC, these factors are 
only available after invasive procedures. In our 
study, we attempted to establish a clinical 
model using non-invasive preoperative factors, 
including age, gender, tumor site, and histologic 
grade to predict LM in CC patients. However, 
the accuracy and sensitivity were only 69.82% 
and 56.36% respectively, and the prediction 
performance of the clinical model was not 
satisfactory.

CT, MRI, and PET-CT are common imaging 
examinations which can be helpful in the diag-
nosis of LM in CC preoperatively. However, the 
sensitivity and accuracy of their diagnosis are 
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not as perfect as we expected. According to the 
meta-analysis with 20-year study, the detection 
sensitivity of LM in CT, MRI, and PET were 
74.4%, 80.3%, and 81.4%, respectively [35]. 
With the rapid development of radiomics in 
recent years, many studies have used radiomics 
signature extracted from images to predict dis-
tant metastases in different cancers [18, 20, 
36]. Shu et al. reported that MRI-based image 
features can provide non-invasive information 
to predict the risk of synchronous and meta-
chronous LM in rectal cancer patients with  
satisfactory results [22, 23]. CT scans are  
routinely performed preoperatively in CC pa- 
tients for assessment and have higher poten-
tial to extract more significant and useful image 
features [12, 37]. Therefore, in this study, we 
generated a radiomics model using quantita-
tive image features extracted from CT of CC 
patients with a prediction accuracy of 79.50%, 
which corresponded with an average increase 
of 10% compared to the clinical model. Fur- 
thermore, we combined clinical and image fea-
tures following the analyses and obtained a 
much better predictive outcome (85.50%). The 
results proved that the generated hybrid model 
may serve as an accurate and reliable detec-
tion tool for LM in CC patients. 

The present study also has some limitations. 
First, this investigation is based on a single 
institutional retrospective analysis with small-
sample study. Further investigations including 
multi-institutional prospective studies will ex- 
pand patient cohorts and improve generaliza-
tion of the outcome. Second, image features 
were extracted from the venous phase of multi-
phase enhancement sequences; arterial phase 
and delayed phase image features should be 
further investigated. Finally, our study lacked 
postoperative follow-up data, hence we could 
not investigate the relationship between mod-
els and survival outcomes of the patients. 
Despite these limitations, we hope that our 
result will contribute to accurate prediction of 
the LM in CC patients.

In conclusion, we established a new prediction 
model based on CT image that can successfully 
and accurately predict the presence of LM in 
CC patients. Furthermore, combining image 
features with clinical characteristics greatly 
improved the model’s prediction performance. 
This AI model may serve as a promising tool for 
individualized surveillance of CC patients with 
high risks of LM and also provide the basis for 

clinicians to improve treatment decisions for 
these patients. 
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