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Abstract: Colorectal cancer (CRC) is one of the most common cancers worldwide. Despite advances in treatment, 
no treatment modality specific for the different CRC phenotypes has been developed. BMI1 has been previously 
reported to play an important role in the regulation of cancer stem cells and cell cycle in CRC. However, the role of 
BMI1 in individualized treatment for CRC is largely unknown. In this study, we found that the apoptotic effect of pacli-
taxel is more profound in BMI1-depleted cells. The apoptotic effect is exerted by promoting caspase-8-independent 
apoptotic pathways after combination with paclitaxel in BMI1 knockdown cells. This effect could be totally recovered 
by pretreatment with caspase inhibitor compared with caspase-8 inhibitor alone. It has been reported that the levels 
of MCL-1 play a role in regulating cell resistance to paclitaxel treatment. Our data indicated that the downregulation 
of MCL-1 through the activation of GSK3beta and JNK is driven by BMI1 depletion. Consistent with in vitro data, a 
synergic anti-growth effect of BMI1 depletion with paclitaxel treatment was shown in vivo. In conclusion, paclitaxel 
has a stronger suppressive effect on tumor growth and proliferation in CRC with low BMI1 expression. Thus, in CRC 
patients, paclitaxel could be specifically indicated for patients with low BMI1 expression.  
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Introduction

Colorectal cancer (CRC) is the third most com-
mon cancer in the United States. Despite im- 
provements in diagnostic and treatment modal-
ities, CRC patients with metastasis still have 
poor survival, with a 5-year survival rate of only 
<20% [1, 2]. Surgery followed by adjuvant che-
motherapy remains the standard treatment for 
patients with locally advanced CRC [3]. Con- 
ventional chemotherapy with 5-fluorouracil (5- 
FU) has been used for several decades; how-
ever, 40% of patients recur and die within 8 
years even after treatment with surgery and 
5-FU-based chemotherapy [4, 5]. Thus, there 
have been efforts to develop more effective 
treatments. Combination treatment with anti-
angiogenic drugs has been suggested to en- 
hance cytotoxicity and overcome chemoresis-

tance by blocking angiogenesis and facilitating 
hypoxic environment [6-8]. 

Regorafenib, a small-molecule multiple kinase 
inhibitor, is widely used as the second-line treat-
ment of metastatic CRC patients, based on 
phase 3 studies showing that it prolongs overall 
survival and progression-free survival [9, 10]. 
However, most patients with CRC develop resis-
tance to these drugs [11, 12]. Several protein 
kinase inhibitors have been developed to block 
specific pathways associated with tumor prolif-
eration and progression. Small-molecule kinase 
inhibitors have been established to be effective 
for the treatment of different malignancies, but 
several factors, including the tumor microenvi-
ronment, drug resistance, and tumor genetics, 
influence their clinical efficacy. Therefore, the 
most appropriate strategy for obtaining the op- 
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timal efficacy of protein kinase inhibitors has 
become an important issue in CRC.

BMI1 is an oncogene that belongs to the poly-
comb group, which functions as a transcription-
al repressor [13]. The BMI1 gene is associated 
with several mechanisms that promote the 
development of hematologic malignancies and 
solid tumors, including tumorigenesis, blocking 
cell senescence, epithelial-mesenchymal tran-
sition, invasion and migration of cancer stem 
cells, and chemoresistance [13-15]. Aberrant 
expression of BMI1 has been detected in CRC, 
breast carcinoma, and hepatocellular carcino-
ma [16-18]. In CRC patients, the lower expres-
sion of BMI1 is associated with longer survival 
and favorable clinical outcome [19]. However, 
although there have been studies on the BMI1 
gene, its implication in clinical practice, particu-
larly treatment, has not been fully explored. 
This study aimed to investigate whether CRC 
sensitivity to protein kinase inhibitors can be 
improved by regulating BMI1 expression. 

Materials and methods 

Cell lines, reagents, and plasmids

HT-29 cells were cultured in Dulbecco’s modi-
fied Eagle’s medium containing 10% fetal 
bovine serum. sh-BMI1 and sh-luciferase (sh-
Luci) plasmids were from the National RNAi 
Core Facility (Academia Sinica, Taiwan). The sh-
BMI1#1, #2, #3 sequence was as follows: 
5’-CAGATTGGATCGGAAAGTAAA-3’; sh-BMI1#4, 
#5, #6 sequence: 5’-ATTGATGCCACAACCATAA- 
TA-3’; sh-Luci sequence: 5’-CTTCGAAATGTCC- 
GTTCGGTT-3’. Anti-BMI1 was purchased from 
Bethyl Laboratories, Inc. Anti-cleaved caspas-
es-3, cleaved caspase-8, Bcl-2, tubulin, and 
actin were purchased from Genetex (San An- 
tonio, TX, USA). UNC0638 was purchased from 
Cayman Chemical (Ann Arbor, MI, USA). 

Quantitative reverse transcriptional PCR 
(RTqPCR) 

Total RNA extraction was conducted using the 
RNeasy mini kit (Qiagen, Valencia, CA), accord-
ing to the manufacturer’s instructions. Equal 
amounts of RNA were used to synthesize the 
first-strand cDNA using the RT2 First Strand Kit 
(Qiagen). Real-time polymerase chain reaction 
(RT-PCR) was performed using SYBR Green  
on an RT-PCR System (Applied Biosystems, 
Foster City, CA). BMI1-forward (5’-GCTGGTT- 
GCCCATTGACAG-3’) and BMI1-reverse (5’-CAC- 

ACACATCAGGTGGGGAT-3’); GAPDH-forward (5’- 
GAGTCAACGGATTTGGTCGT-3’); and GAPDH-
reverse (5’-TGTGGTCATGAGTCCTTCCA-3’) were 
used.

Flow cytometry for cell cycle analysis 

HT-29 cells were transfected with sh-BMI1, har-
vested via trypsinization, and fixed with 70% 
ice-cold ethanol overnight at -20°C. On the fol-
lowing day, the cell pellet was resuspended in 
propidium iodide (PI)-staining buffer (50 μl/ml 
PI, RNAse A, Beckman Coulter, Brea, CA) and 
incubated for 15 min at 37°C for further cell 
cycle analysis. Cell cycle distribution was ana-
lyzed via FACS Calibur (BD Biosciences, San 
Diego, CA) using ModFit software.

Cell viability test 

We used 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diph- 
enyltetrazolium bromide (MTT) assay to assess 
cell viability. We seeded 3000 cells in 96-well 
plates. Cells were treated with indicated drugs 
for 72 h. After inoculation, cells were then incu-
bated with 0.5 mg/ml MTT at 37°C for 2 h. The 
medium was replaced with 100 μl of dimethyl 
sulfoxide per well to dissolve the precipitates. 
Colorimetric analysis using a 96-well micro-
plate reader (BioTek Instruments) was per-
formed at a wavelength of 490 nm. 

Xenograft of tumor-bearing SCID mice

Parental HT-29 and two sh-BMI1 HT-29 cells 
(2.5*106 cells) were suspended in 30 μl of 
Hank’s balanced salt solution and injected sub-
cutaneously into the left hind leg of each 
7-week-old nonobese diabetic/severe com-
bined immunodeficient mouse (SCID). After 2 
weeks, five mice of each set were grouped and 
injected i.p. with 1 mg/kg paclitaxel three times 
weekly. After 3 weeks, mice were sacrificed for 
further analysis. The tumor volume was calcu-
lated using the equation: tumor volume = 
(length × width2)/2. All experiments were per-
formed in accordance with the animal care and 
use guideline of Kaohsiung Medical University 
(Taiwan), and the study was approved number 
by the Animal Care and Use Committee of 
Kaohsiung Medical University. 

Immunohistochemistry 

Mouse tumor samples were cut into 4-μm-thick 
sections, deparaffined in xylene as previously 
described [25], and then stained with anti-
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MCL1 Ab (1:20), anti-p-GSK3beta Ab (1:100), 
anti-γ-H2AX Ab (1:1000), and anti-Ki-67 Ab 
(1:150) following the manufacturer’s protocol. 
Afterward, the samples were incubated for 30 
min at 25°C with secondary antibodies in the 
Envision system (Dako, Denmark). Finally, sec-
tions were counterstained with hematoxylin 
and analyzed under a microscope. 

Statistical analysis

All experiments were performed in triplicate. 
Data are expressed as mean ± SD. Multiple 
comparisons were evaluated using one-way 
analysis of variance, and between-group com-
parisons were conducted using two-tailed 
Student’s t-test.

Results 

BMI1 depletion increases the cytotoxicity of 
paclitaxel in CRC cells

To clarify the role of BMI1 in cellular response 
to protein kinase inhibitors in CRC cell lines,  
we first established stably BMI1-depleted cells 

among HT-29 cells (Figure 1A). Consequently, 
we tested the cytotoxicity of BMI1 inhibition 
with small molecules reported in the Library of 
Pharmacologically Active Compounds, in a cell 
viability assay. We evaluated 143 protein 
kinase inhibitors, including 31 included in ongo-
ing clinical trials. We found that only four pro-
tein kinase inhibitors, namely, paclitaxel, PK- 
C412, VX-702, and imatinib, had an inhibitory 
effect in BMI1-depleted cells (Figure 1B). 
Notably, the BMI1-depleted cells exhibited mo- 
re prominent apoptosis after treatment with 
paclitaxel (Figure 1C). Collectively, the apoptot-
ic effect was more profound in CRC cells with 
low BMI1 expression treated with paclitaxel. 

Combination of paclitaxel and depleted BMI1 
expression promote extrinsic apoptotic signal-
ing pathways and hinder cell survival in CRC 

Caspase cascade plays a vital role in pro-
grammed cell death, which involves several ini-
tiator caspases (e.g., caspase 8) and execu-
tioner caspases (e.g., caspase 9). Caspase-3 is 
a convergence of the intrinsic and extrinsic 

Figure 1. BMI1 knockdown enhances the cytotoxicity of paclitaxel in CRC cells. A. The level of BMI1 protein was 
determined using western blot analysis. B. Cytotoxicity of indicated protein kinase inhibitor to HT-29 cells. Cells were 
treated with protein kinase inhibitor (1 μM PKC412; 10 nM paclitaxel; 10 μM VX-702; 10 μM Imatinib) as indicated 
for 72 hours, and cell viability was determined via the MTT assay. The experiments were repeated three times. 
Between-group comparisons were performed using one-way ANOVA (*, P<0.05). C. Morphology of apoptosis was 
visualized under a light microscope. White arrowheads in the pictures indicate the nuclei of apoptotic cells.
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apoptotic pathways, and its activation leads to 
DNA fragmentation, membrane blebbing, and 
then apoptosis [20]. Therefore, we then investi-
gated whether the levels of caspase change in 
BMI1-depleted cell influence the efficacy of 
paclitaxel. As shown in Figure 2A, the activa-
tion of caspase 3 was more increased in BMI1-
depleted cells after treatment with paclitaxel 
compared with untreated control cells. How- 
ever, there was no profound inhibitory effect in 
other protein kinase inhibitors. To further clarify 
the role of BMI1 in apoptosis, we analyzed the 
cytotoxicity of paclitaxel in parental HT-29 and 
BMI1-depleted HT-29 cells using flow cytome-
try. As shown in Figure 2B, the amount of cells 
in the early and late apoptotic phase was 
increased in two BMI1-depleted cells (sh- 
Luci: 10.87%; sh-BMI1#1: 15.46%; sh-BMI1#2: 
19.59%). These data indicated that BMI1 kn- 
ockdown further enhances the apoptotic effect 
of paclitaxel in CRC. To further clarify these 
findings, we studied the contribution of caspas-
es in paclitaxel-mediated apoptosis of BMI1-
deficient cells. Flow cytometry analysis showed 
that the apoptotic effect could be reversed by 
pretreatment with 50 μM zVAD-fmk, a pan cas-
pase inhibitor, without caspase-8 inhibitor 
(Z-IETD-FMK) alone (Figure 2C). These findings 
imply that, combined with BMI1 deficiency, 
paclitaxel may contribute to caspase 8-inde-
pendent cell death. These results suggested 
that intrinsic apoptotic pathways might play a 
role in paclitaxel-induced apoptosis of BMI1-
depleted cells. 

Paclitaxel inhibits intrinsic apoptotic signaling 
pathways in BMI1-deficient CRC cells

Members of the Bcl-2 family proteins harbor 
similar conserved sequences in Bcl-2 homolo-
gy (BH) domains (BH1-BH4), which have diverse 
functional effects on different member proteins 
[21]. The pro-survival proteins, such as BCL-2, 
BCL-w, Bfl-1/A1, and MCL-1, ensure cell surviv-
al, whereas the pro-apoptotic proteins includ-
ing Bim, Bid, Bad, Bak, and Bax induce cell 
death [22, 23]. MCL-1, a pro-survival protein of 
the Bcl-2 family, has anti-apoptotic capability 
and serves as the main regulator of cell death 
[24]. BCL-2 targets the phosphorylate protein 
kinase Raf-1 and inactivates cell death signal-
ing pathways [25, 26]. As shown in Figure 2, 
paclitaxel main affected intrinsic apoptotic sig-
naling pathways in BMI1-deficient CRC cells. 
Next, we determined whether BMI1 regulates 

the expression of the Bcl-2 family. Here, we 
found no significant change in the amount of 
pro-apoptotic regulators, including Bid, Bad, 
Bak, and Bax, after BMI1 depletion (Figure 3A). 
Considering previous results, the regulatory 
mechanism of BMI1 may be assumed to affect 
the function or stability of pro-survival proteins, 
but not that of pro-apoptotic proteins. Further, 
we found lower MCL-1 and BCL-2 expression 
after BMI1 depletion. Moreover, the pro-surviv-
al proteins MCL-1 was suppressed more pro-
foundly after treatment with paclitaxel in BMI1-
depleted cells (Figure 3B). However, the inhibi-
tory effect was not observed in gene expres-
sion. Eliminating BMI1 did not lead to lower 
mRNA expressions of MCL-1 (Figure 3C). These 
results raise an interesting question of the pro-
tein stability significance of the MCL-1 in BMI1 
deficient cells. To answer this question, we 
used cycloheximide (CHX), a protein synthesis 
inhibitor, to measure the degradation of the 
MCL-1 in BMI1 knockdown cells. As shown in 
Figure 3D, MCL-1 stabilization is affected in 
BMI1 depleted cells for the indicated periods of 
time. Evidences indicated that GSK-3β mediat-
ed phosphorylation of Ser155 and Ser159 on 
MCL-1 in conjunction with Thr163, then destabi-
lized MCL-1, and hindered the anti-apoptotic 
function of MCL-1 [27]. Further, the initial “prim-
ing” phosphorylation of Thr163 mediated by JNK 
(C-Jun N-terminal kinase) was a prerequisite for 
Ser159 phosphorylation [28]. JNK1 also plays a 
role in the regulation of BCL-2. The JNK pathway 
induced phosphorylation and inactivation of 
BCL-2 [29]. Supporting our assumption, we 
found that the phosphorylation form of JNK and 
GSK-3β increased expressions in sh-BMI1 
HT29 cells compared with parental HT-29 cells 
(Figure 3E). Overall, these results indicated 
that BMI1 downregulation induced cell apopto-
sis and impeded cell survival by affecting the 
stability of pro-survival proteins, and the syner-
gically suppressive effect was more profound in 
paclitaxel treatment. 

Inhibition of BMI1 combined with paclitaxel 
treatment retards cell proliferation and tumor 
growth in vivo

To further investigate the role of BMI1 in co- 
lorectal tumor growth in vivo, studies were per-
formed in SCID mice. As shown in Figure 4A 
and 4B, BMI1 knockdown resulted no signifi-
cant difference in tumor size compared with 
that in HT-29 parental cells. In addition, the 
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Figure 2. Paclitaxel has stronger effect on apoptotic signaling pathways in BMI1-deficient cells. A. Protein levels that cleaved caspase-3 and BMI1 were determined 
in cells treated with indicated inhibitors using western blot analysis. B. The percentage of apoptotic cells treated with paclitaxel was detected via dual staining 
with annexin V-FITC and PI in HT-29 cell lines. HT-29 BMI1-deficient (sh-BMI1) cell lines were analyzed via flow cytometry. The experiments were repeated three 
times. Between-group comparisons were performed using one-way ANOVA (*, P<0.05). C. The percentage of apoptotic cells treated with paclitaxel combined with 
caspase-8 inhibitor (Z-IETD-FMK) or pan-caspase inhibitor (zVAD-fmk) was detected via dual staining with Annexin V-FITC and PI in HT-29, and HT-29 BMI1-deficient 
(sh-BMI1) cell lines were analyzed via flow cytometry. The experiments were repeated three times. Between-group comparisons were performed using one-way 
ANOVA (*, P<0.05).
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inhibitory effect in BMI1-depleted CRC cells 
was intensified with paclitaxel treatment. Immuno- 
histochemistry (IHC) staining showed that, 
compared with paclitaxel alone, the combina-
tion of paclitaxel treatment and BMI1 depletion 
better restrained the expression of Ki-67 as a 
cell proliferation marker (Figure 4C). Notably, 
we found decreased MCL-1 expression and 
increased activation of γ-H2AX and p-GSK3be-
ta (Ser9) in BMI1-depleted cells treated with 
paclitaxel. 

Discussion 

Our data indicated that the downregulation of 
MCL-1 through the activation of GSK3beta and 
JNK is driven by BMI1 depletion. Paclitaxel is an 
antitumor agent widely used in different solid 

tumors. It mainly targets microtubules to affect 
its stabilization and induce cell cycle arrest and 
promotes antitumor immunity [30]. Paclitaxel is 
the first-line chemotherapeutic for breast and 
ovarian cancer. Meanwhile, it has unsatisfac-
tory efficacy in CRC and induces drug resis-
tance. Several mechanisms of resistance have 
been reported including mutation of tubulin, 
cellular total antioxidant capacity, and overex-
pression of P-glycoprotein [31-33]. However, 
the kinase inhibitory effect has not been clari-
fied in previous studies. The 70 kDa ribosomal 
S6 kinase (p70S6K) plays a crucial role in cell 
growth and survival. Paclitaxel induces phos-
phorylation of p70S6K at both serine and thre-
onine residues and inactivates this kinase in a 
concentration- and time-dependent manner to 

Figure 3. BMI1 deficiency induces activation of GSK3beta and JNK in modulating the phosphorylation of MCL-1. 
A. Protein levels of Bak, Bad, Bax, BID, and BMI1 in cells treated with paclitaxel, determined using western blot 
analysis. B. Protein levels of MCL-1, BCL-2, and BMI1 in cells treated with paclitaxel, determined using western 
blot analysis. C. Expression of BCL-2 and MCL-1 mRNA in HT-29-sh-Luci, HT-29-sh-BMI1#1 cells, and HT-29-sh-sh-
BMI1#2 cells determined using real-time qPCR. Columns represent the mean results from PCR assays performed in 
triplicate and normalized to GAPDH (*, P<0.05). D. Densitometry was utilized to quantify MCL-1 protein levels after 
normalization with Actin to obtain the percentage of MCL-2 degradation (mean ± SD; n=3). Error bars indicate SD. 
E. Protein levels in HT-29-sh-Luci, HT-29-sh-BMI1#1 cells, and HT-29-sh-sh-BMI1#4 cells analyzed via western blot 
analysis. 
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interfere cell proliferation [34]. To date, protein 
kinase inhibitors still have unsatisfactory effi-
cacy in CRC. Regorafenib, a small-molecule 
multikinase inhibitor, prolonged median overall 
survival by only 1.4 months in patients with 
metastatic CRC; further, some patients devel-
oped hand-foot skin reactions, fatigue, and 
diarrhea [10]. Thus, improving treatment res- 
ponse to protein kinase inhibitors in CRC has 
become a concern in recent years. 

Regulating BMI1 expression has been an 
attractive approach in CRC because BMI1 
expression is correlated with prognosis and 
several mechanisms in genetic modification 
[14, 19]. Previous studies showed that over 
50% of tissues in colon cancer showed higher 
BMI1 expression than the corresponding nor-
mal tissue [19]. Further, BMI1 is a repressive 
transcriptional factor that blocks the binding of 
RNA polymerase and transcriptional factors, 
leading to the regulation of stem cell and epi-
thelial-mesenchymal transition [14]. Regulating 
BMI1 not only manipulates the behavior of can-
cer stem cell but also arrests the cell cycle to 
completely eliminate the tumor [35]. However, 
there is currently no therapeutic agent that 
directly targets the BMI1 gene or protein.

Apoptosis plays a crucial role in carcinogene- 
sis and cancer progression. BMI1 regulates the 
apoptosis of cancer cells [36]. BMI1 knock-

down suppresses cancer cell proliferation and 
colony formation [36, 37] and increases sus-
ceptibility to chemotherapy and radiation thera-
py [38, 39]. The molecular mechanisms of 
BMI1 function have been elucidated in previ-
ous studies. However, the precise regulatory 
mechanisms by which BMI1 influences apopto-
sis are still unclear. In nasopharyngeal cancer, 
BMI1 depletion led to the downregulated ex- 
pression of phospho-AKT and anti-apoptotic 
protein BCL-2 but induced (upregulated) the 
expression of the pro-apoptotic protein Bax 
[40]. In addition, BMI1 also suppressed apopto-
sis by activating NF-κB signaling and angiogen-
esis [41]. BMI1 knockdown promoted Noxa 
expression, which is a pro-apoptotic BH3-only 
member of the Bcl-2 family of proteins [42]. 

In our study, BMI1 depletion activated the 
intrinsic apoptotic signaling pathway in trigger-
ing the activation of caspase 3. BMI1 modulat-
ed the expression of the anti-apoptotic regula-
tors MCL-1 in the anti-apoptotic protein stability 
instead of their gene expressions. However, it 
did not influence pro-apoptotic proteins (i.e., 
BH3-family protein, including Bim, Bid, Bad, 
Bak, and Bax). With respect to protein function, 
the regulation of MCL-1 expression is focused 
on phosphorylation and inactivation of protein 
function. The upstream regulators GSK-3β and 
JNK promote the phosphorylation of anti-apop-

Figure 4. Bmi1 deficiency combined with paclitaxel retards tumor growth in vivo. A. Paclitaxel treatment in BMI1-
deficient cells leads to the reduction of tumor growth. Representative images of HT-29-sh-Luci and HT-29-sh-BMI in 
SCID mice. B. Quantitative analysis of tumor size after injection in designated cells at 30 days. Statistical compari-
sons were conducted using one-way ANOVA (*, P<0.05). C. Representative staining for Ki-67, γ-H2AX, MCL-1, and 
p-GSK3beta in tumors with mock and paclitaxel treatment groups. Original magnification: × 40, scale bar: 10 μm.
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totic regulators [29, 43]. Based on our findings, 
we hypothesized that BMI1 knockdown may 
enhance phosphorylated GSK-3β and JNK 
expression, promoting MCL-1 phosphorylation. 
The phosphorylation of different phosphoresi-
dues in MCL-1 influences protein stability, 
dimerization, and function [43]. The anti-apop-
totic regulators lose their function either via 
degradation or inactivation. 

To clarify the mechanism by which BMI1 is 
involved in the apoptosis pathway, we first com-
pared the extent of apoptosis between four 
groups, namely, the control group, paclitaxel 
alone, paclitaxel plus caspase 8 inhibitor, and 
paclitaxel plus total caspase inhibitor, in both 
HT29 and shBMI1-HT29 cells via flow cytome-
try. We found increased cell death in paclitaxel 
treatment; however, the apoptosis was not 
restored after treatment with paclitaxel plus 
caspase 8 inhibitor. Surprisingly, combining a 
total caspase inhibitor with paclitaxel overcame 
apoptosis, implying that the treatment of pacli-
taxel in sh-BMI1 CRC cells generates intrinsic 
apoptosis. Similar results were found with 
respect to tumor growth assessed via IHC 
staining. 

Interestingly, high BMI1 expression was noted 
in 27.7%-74.5% of CRC patients who had worse 
clinical outcomes and prognosis [19, 44, 45]. 
These in vitro and in vivo findings suggest that 
CRC patients with high BMI1 expression have 
limited sensitivity to apoptosis-inducing treat-
ment and may require BMI1 inhibitors (e.g., 
PT209) to enhance cancer cell vulnerability to 
protein kinase inhibitors. Meanwhile, CRC pa- 
tients with low BMI1 expression who have rela-
tively active intrinsic and extrinsic apoptosis 
pathways would show better response to pa- 
clitaxel.

In conclusion, the results indicate that pacli-
taxel has a stronger suppressive effect on 
tumor growth and proliferation in CRC with low 
BMI1 expression. Specifically, we found a syn-
ergic therapeutic effect between protein kinase 
inhibitors, particularly paclitaxel, and BMI1 
downregulation. This synergic effect not only 
induces intrinsic and extrinsic cell apoptosis 
but also inhibits cancer cell survival in vivo and 
in vitro. Further, BMI1 regulates the intrinsic 
apoptotic pathway by modulating the stability 
of pro-survival proteins MCL-1, instead of pro-
apoptotic proteins. Collectively, these results 

indicate that CRC treatment may be individual-
ized according to BMI1 expression, with pacli-
taxel being specifically indicated for patients 
with low BMI1 expression.
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