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Abstract: Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome 
and is characterized by excessive triglyceride (TG) accumulation in the absence of “significant” alcohol consumption 
and is closely associated with metabolic dysregulation such as obesity, diabetes, hyperlipidemia, and cardiovas-
cular disease. NAFLD is composed of a spectrum of liver pathology ranging from simple steatosis to nonalcoholic 
steatohepatitis (NASH), which has been identified as an important risk factor for the development of hepatocellular 
carcinoma (HCC) and cirrhosis. Long-term high-fat (HF) diet consumption is one of the risk factors of NAFLD and 
feeding HF diet is widely used to produce hepatic steatosis and NASH in experimental animals. In this review, we 
focused on the current application of HF diet mouse model on the study of NAFLD/NASH and HCC.
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Introduction

NAFLD is considered the hepatic manifestation 
of metabolic syndrome [1], affecting up to 20% 
of the population in Western countries, and 
70-80% of obese individuals. Nonalcoholic 
fatty liver disease (NAFLD) is characterized by 
excessive triglyceride (TG) accumulation in the 
absence of “significant” alcohol consumption 
and is closely associated with metabolic dys-
regulation such as obesity, diabetes, hyperlipid-
emia, and cardiovascular disease [2-4]. NAFLD 
is composed of a spectrum of liver pathology 
ranging from simple steatosis to nonalcoholic 
steatohepatitis (NASH), characterized of hepa-
tocyte injury, inflammation, and fibrosis on liver 
biopsy [5]. NASH has been identified as an 
important risk factor for the development of 
hepatocellular carcinoma (HCC) and cirrhosis 
[6-9]. 

The prevalence of NAFLD rises in parallel with 
the growing epidemics of obesity and diabetes. 
However, the causal relationships between 
obesity, diabetes, NASH and liver tumorigene-
sis have not yet been clearly elucidated. Long-

term high-fat (HF) diet consumption is one of 
the risk factors of NAFLD [6-9] but the mecha-
nism is still uncertain. HF diets used in labora-
tory research typically contain about 32 to 60% 
of calories from fat, which reflects the typical 
western diets. Although a human diet of 60 
kcal% fat would be considered extreme, diets 
with 60 kcal% fat are commonly used to induce 
obesity in rodents since animals tend to gain 
more weight and to display the phenotype more 
quickly after a shorter period of time [10]. It is 
generally believed that oxidative stress, mito-
chondrial dysfunction, and increased produc-
tion of proinflammatory cytokines-combined 
with insulin resistance-eventually leads to the 
fatty degeneration in liver [11]. Feeding HF diet 
is widely used to produce hepatic steatosis and 
NASH in experimental animals. Animal models 
of NAFLD/NASH are used not only to elucidate 
the pathogenesis of NAFLD, but also to examine 
therapeutic effects of various agents [12]. 
Animal models of NAFLD include genetic and 
nutritional models. However, to date, there is no 
one model that ideally reflects hepatic histopa-
thology and pathophysiology of human NAFLD. 
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Table 1. High-fat Diet Wildtype Mouse Model for NAFLD and HCC

Species Gender Diet Chemical 
inducers Phenotype Reference

C57BL/6J male 42%-45% HF < 16 weeks N/A Obesity, hepatic steatosis and inflammation [14, 20]

C57BL/6J male 42-45% HF ≥ 16 weeks N/A Obese, liver inflammation and severe hepatic steatosis; liver fibrosis dependent on 
length of the treatment

[14, 20, 23, 
24, 41, 56]

C57BL/6J male maternal 35% HF diet till weaning, postweaning NF diet 
< 16 weeks

N/A Primes steatohepatitis, mitochondrial dysfunction and altered lipogenesis gene 
expression

[30]

C57BL/6J male maternal 45% or 60% HF diet till weaning, postweaning 
45% or 60% HF diet ≥ 16 weeks

N/A Insulin resistance, NASH, significantly fibrosis depending on length of postnatal HF 
diet treatment

[25, 29]

 NMRI male maternal 60% HF diet till weaning, postweaning NF diet 
for 9 months

NA Insulin resistance, hyperleptinemia, hyperuricemia and hepatic steatosis [27]

Neonatal C57BL/6J male 32% HF for 16 weeks STZ at day 2 Developed liver steatosis with diabetes to tumor protrusion in liver [54]

C57BL/6J male 40%-60% HF > 6 mon N/A Aggravated hepatic steatosis, in the liver, part of the mice developed tumor ob-
served on the liver

[14, 33, 35] 

C57BL/6 male 60% HF + oxLDL for 23 weeks N/A Obesity, NASH, liver inflammation [34]

C57BL/6 male 45% HF + high fructose for one year N/A Features of early NASH at 6 months, liver inflammation and bridging fibrosis and 
tumor at 12 month

[41]

C57BL/6 male 60% fat + 10/20% EtOH for 42 weeks DEN HCC developed in DEN + HF nice, EtOH-feeding did not did not impact HCC inci-
dence or tumor size.

[49, 50]

C57BL/6J male 60% HF + APO10LA supplementation DEN Reduce the HF diet-promoted tumor multiplicity and volume [51]

Table 2. Highfat-Diet Transgenic Mouse Model for NAFLD and HCC

Species Gender Diet Chemical 
inducers Phenotype Reference

Adiponectin KO mice male 60% HF diet for 48 weeks N/A Observe pericellular fibrosis around central veins [36]
MC4R-KO male 60% HF diet for one year N/A Liver inflammation, pericellular fibrosis, well-differentiated 

HCC after 1 year.
[37]

MPO deficient mice male HC-diet containing 0.2% cholesterol and 21% butter for 8 weeks N/A Attenuates the development of NASH and diminishes 
adipose tissue inflammation

[38]

Nrf2-null mice male 45% HF diet for 24 weeks N/A Better insulin sensitivity more severe NASH, with cirrhosis [39]
Irs1 KO mice male HF diet for more than 1 year (60 wks) N/A Severe insulin resistance but mild NASH and liver tu-

mourigenesis
[42]

Irs1 KO mice male 32% HF diet for one year DEN Ameliorated liver function and decreased tumor incidence [55]
MC4R-KO mice male 60% HF diet for one year N/A Obesity, insulin resistance, dyslipidemia, well-differentiat-

ed HCC
[37]
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In this review, we focused on the current appli-
cation of HF diet mouse model to the study of 
NAFLD/NASH and HCC (summarize in Tables 1 
and 2).

Mouse models and HF diet induced NAFLD/
NASH 

One good reason to use the HF diet induced 
NAFLD rodent model is that HF diets can induce 
obesity, insulin resistance, fasting hyperglyce-
mia, dyslipidemia, and altered adipokine pro-
file, which are commonly observed in NAFLD 
patients [13, 14]. Outcomes of the HF-diet on 
NAFLD are varied depending on the degrees of 
steatosis, inflammation and fibrosis, which 
might depend on the rodent strain, the fat con-
tent of the diet, the composition of the dietary 
fat, and the duration of treatment [12, 15]. 

Although there has been no standardized diet 
reported for the study of NAFLD, it is widely 
accepted that the type and amount of fat, as 
well as total daily caloric intake are very impor-
tant. So far, the highest amount of fat which 
has been applied to a rodent model is 71% of 
energy from fat (11% carbohydrate and 18% 
protein), and the fat source includes corn, olive, 
and safflower oils [16]. After a three-week expo-
sure to this diet, rats developed panlobular ste-
atosis and displayed abnormal mitochondria 
and mononuclear inflammation, accompanied 
by increased gene expression of TNF-α and 
CYP2E1, compared to control rats fed with the 
standard Lieber-DeCarli diet (35% fat, 47% car-
bohydrates, and 18% protein) [16]. In another 
study, HF emulsion diet composed of 77% of its 
energy from fat, 14% from total milk powder, 
and 9% from carbohydrates treatment on male 
Sprague-Dawley rats for 6 weeks was able to 
induce hyperlipoidemia, hyperinsulinemia, hy- 
perglycemia and insulin resistance. Moreover, 
morphological evaluation revealed that rats 
developed hepatic steatosis, inflammation and 
mitochondrial lesions [17]. 

NAFLD/NASH researchers have been using the 
C57BL/6J mice model not only because they 
are genetically easily manipulated, but also 
because they are predisposed to develop insu-
lin resistance quickly by means of diet [18-22]. 
Pan et al have treated these mice with a HF diet 
containing 42% fat for 24 weeks and observed 
increase hepatic inflammation marked by inc- 

reased expression of pro-inflammatory cyto-
kines such as TNFα, MCP-1, IL-6, and IL-18, and 
higher ratio of M1 to M2 gene expression [23]. 

Since many rodent models fail to replicate both 
metabolic syndrome (MetS) and NASH, Mells et 
al developed a mouse model of NASH and MetS 
using a solid diet containing 0.2% cholesterol, 
45% calories from fat, and 30% of fat in the 
form of partially hydrogenated vegetable oil, 
combined with high-fructose corn syrup equiva-
lent in water. After a 16-week treatment, these 
mice developed fibrosis and significantly incre- 
ased serum leptin, IL-6, and liver α-SMA expres-
sion [24].

It is recently reported that maternal HF-diet 
causes liver dysfunction in male offspring mice 
[25-30]. In the model, pregnant mice were fed 
with a HF diet (45% kcal fat, 20% kcal protein, 
35% kcal carbohydrate) or a standard chow diet 
(21% kcal fat, 17% kcal protein, 63% kcal car-
bohydrate) until weaning. At 30 weeks, off-
spring male mice developed NAFLD by histo-
logical analysis, and Kleiner proposed these 
mice develop insulin resistance [25]. A similar 
study applied an AIN-93G modified for HF (35%) 
content, 14-week-old offspring showed NAFAD 
with increased c-Jun N-terminal kinases (JNK), I 
kappa B kinase phosphorylation, PEPCK expre- 
ssion in the liver [30].

HF diet and liver fibrosis

Although simple steatosis alone is relatively 
benign, the presence of steatohepatitis greatly 
increases the risk of progression to cirrhosis [9, 
31]. If not properly treated, progression of 
NASH leads to fibrosis and cirrhosis, as well as 
hepatocellular carcinoma in humans over many 
years [6, 7, 32]. Various animal models have 
established that exclusive, long-term (e.g. 
12-weeks) HF diets produced NAFLD/NASH, 
insulin resistance, and obesity in mice; howev-
er, HF diets may not induce liver fibrosis until 
after more than one year of treatment. In one 
study, wildtype mice were fed with a high-cho-
lesterol (HC) diet (15% milk fat, 1.5% choles-
terol and 0.1% cholic acid, w/w) for 25 or 55 
weeks. At week 25, these mice exhibited hyper-
cholesterolaemia, and developed hepatic ste-
atosis and gallstones. Till week 55, all of the 
mice treated with HC diet developed mild fibro-
sis in the liver [33]. In another study, aggravat-
ed hepatic steatosis, fibrosis, and lipid metabo-
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lism were observed as early as week 21 when 
wildtype mice were fed with a high-fat diet 
(HFD) combined with oxidized low-density lipo-
proteins (oxLDL) [34]. These results suggest 
that fat composition of the diet might be more 
critical to induce liver fibrosis than the fat con-
tent of the diet. Different genetic backgrounds 
do not seem to differentially affect the outcome 
of HF diet induced liver fibrosis: when the 
C57BL/6 (BL6) and 129/SVJ mice were fed 
with HF high-sucrose diet [fat 35%, sucrose 
40%, total carbohydrate 9% (other than 
sucrose) and protein 16%] for 6 months, both 
strains developed patchy sinusoidal fibrosis, 
but neither developed bridging fibrosis [35].

Although HF diet alone is seldom used in the 
study of liver fibrosis, it is quite often applied in 
genetically manipulated mice to investigate the 
important roles of key regulatory proteins in the 
progression of steatohepatitis, since a HF diet 
is regarded to positively relate with the progres-
sion of NASH to fibrosis. Adiponectin knockout 
(KO) mice were fed a HF diet containing 60% 
calories from fat for 24 and 48 weeks. At 48 
weeks, pericellular fibrosis around central veins 
was observed in KO mice on the HF diet but not 
in wildtype mice on the HF diet [36]. In another 
study, melanocortin 4 receptor-deficient mice 
(MC4R-KO) fed with HF diet containing 60% 
calories from fat for 20 weeks displayed inflam-
matory cell infiltration, hepatocyte ballooning, 
and pericellular fibrosis in the liver [37]. To 
investigate how myeloperoxidase (MPO) con-
tributes to the development and progression of 
NASH, LDLR-/-; MPO-/- mice were generated by 
adoptively transferring bone marrow cells of 
MPO-/- to LDLR-/- mice. MPO deficient mice had 
less hepatic cholesterol accumulation, inflam-
mation, and potentially fibrosis in response to 
an HC-diet containing 0.2% cholesterol and 
21% butter for 8-weeks [38]. Interestingly, mice 
lacking the transcription factor NF-E2 p45-relat-
ed factor 2 (Nrf2) exhibited better insulin sensi-
tivity when fed a HF diet (45% fat) for 24 weeks 
than wildtype mice. However, they developed 
more severe NASH with cirrhosis [39, 40]. This 
result suggested the molecular mechanisms 
underlying the progression of NASH are inde-
pendent of insulin resistance and involve mito-
chondrial oxidative stress as well as disruption 
of metabolic enzymes.  

HF diet and tumorigenesis

It is widely accepted that NAFLD is a risk-factor 
for HCC. Therefore, it is of great significance to 

understand the association between HF diets 
and HCC. The effect of long-term HF diets lead-
ing to the development of NASH and liver 
tumorigenesis has been tested in in the 
American Lifestyle-Induced Obesity Syndrome 
(ALIOS) model [41]. These mice developed fea-
tures of early nonalcoholic steatohepatitis at 6 
months and features of more advanced nonal-
coholic steatohepatitis at 12 months, including 
liver inflammation and bridging fibrosis. After 
one year on a HF diet, hepatocellular neo-
plasms were observed in 6 of 10 ALIOS mice. In 
another study, C57BL/6J male mice were fed 
on the HF diet composed of 22% saturated 
fatty acids (12.6% palmitic acid, 7.5% stearic 
acid) and 77% unsaturated fatty acids (64.3% 
oleic acid, 10.2% linoleic acid) [42]. After 60 
weeks on the HF diet, all of the mice exhibited 
typical features of NASH, and 54% of the mice 
developed tumors observed on the liver sur-
face; however, fully developed cirrhosis was 
rarely seen in this model. Although it is report-
ed that hepatocellular carcinoma occurs at a 
rate of 1% to 4% per year after cirrhosis is 
established [6, 7, 32, 43], hepatocellular carci-
nomas (HCCs) without cirrhosis is not unusual 
in either humans or mice [44-46]. This result 
suggests that liver cirrhosis may not be a pre-
requisite for the development of liver tumori-
genesis, especially in the presence of NASH. 
Consistently, a comparison study using males 
of two inbred strains of mice investigating the 
long-term effects of HF diet on liver tumorigen-
esis suggested a strain-diet interaction during 
development of HCCs [47]. The study reported 
that C57BL/6J but not A/J males were suscep-
tible to NASH and HCC, and it showed involve-
ment of Myc and NFκB signaling pathways in 
the HCC development. 

Various studies have been focused on elucidat-
ing the association between HF diets and the 
progression of NASH and the initiation of HCC. 
However, the findings are not very consistent. 
Duan et al. has investigated the how a HF diet 
that contains 2% cholesterol and 10% lard oil 
affected the hepatocarcinogenesis induced by 
administration of diethylnitrosamine (DEN) 
[48]. It is interesting that this HF diet attenuat-
ed DEN-related malnutrition and fibrosis pro-
gression, in comparison with the control diet 
from week 10 to week 14: mice fed with HF diet 
developed well-differentiated HCC, and the 
number as well as size of tumors was much 
lower. In another study, DEN induced HCC for-
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mation was observed in 89% of mice fed with 
HF diet (60% fat) for 37 weeks, while HCC for-
mation was only found in 60% of mice fed with 
a control diet (10% fat) [49]. Surprisingly, EtOH-
feeding (10% in drinking water) for 7 weeks did 
not show adjunctive impact on HCC incidence 
or tumor size, which is contradictory to another 
mouse model fed with a HF diet (60% fat) in 
which hepatic tumor formation was initiated by 
intrahepatic Hepa1-6 cell inoculation [50]. 
APO10LA supplementation (10 mg/kg diet) for 
24 weeks was reported to significantly reduce 
the DEN-induced and HF diet-promoted tumor 
multiplicity and volume [51]. 

Several cohort studies have shown that diabe-
tes mellitus and insulin resistance are risk fac-
tors of HCC [6-9, 32, 52, 53]. However, how 
diabetes and insulin resistance contribute to 
HCC development remains unknown. Neonatal 
male C57BL/6J mice were exposed to low-dose 
streptozotocin (STZ) by a single subcutaneous 
injection and were fed on HF diet [54]. These 
mice developed liver steatosis with diabetes 
following one week of feeding HFD to them, and 
they displayed tumor protrusion in their livers at 
20 weeks. However, male mice treated with 
STZ alone showed diabetes but never devel-
oped HCC. This result suggests that a HFD pro-
motes diabetic populations to accelerate the 
development of HCC. It is possible that pro-
longed HFD, rather than the presence of diabe-
tes or insulin resistance, contributes to the pro-
gression of hepatic steatosis. As evidence, Irs1 
KO mice subjected to an HFD for 60 weeks 
were dramatically protected against NASH and 
liver tumourigenesis despite the presence of 
severe insulin resistance, in comparison to the 
wildtype mice [42]. Consistent with this report, 
Irs1 KO mice exposed to the HF diet and DEN 
showed ameliorated liver function and 
decreased tumor incidence versus wildtype 
mice [55], suggesting an important role of Irs1 
in hepatic tumorigenesis. Similarly, the MC4R-
KO mice, with phenotypes of obesity, insulin 
resistance, and dyslipidemia, developed well-
differentiated HCC after being fed a HFD for 1 
year [37]. 

Summary

These studies demonstrated that HF diets are 
very critical in inducing the NAFLD/NASH and in 
promoting the progression of HCC. Mouse mod-

els of HF diets are widely used in the research 
of NAFLD, are associated with liver diseases, 
and are valuable tools in understanding the 
molecular mechanisms and the pathophysio-
logical processes involved in NAFLD and its 
development from NASH to HCC. To better 
understand and reflect the histopathology and 
pathophysiology of human NAFLD/NASH and 
HCC, it will be important to determine the most 
effective mouse models and the best experi-
mental designs for the specific aims of this 
research. For example, when studying the 
effects of a drug, nutraceutical, or gene muta-
tion on NAFLD, a HFD with 30% to 40% fat 
might be preferred because a very high fat con-
tent, such as 60% HFD, might leads to a more 
severe phenotype with is difficult to prevent or 
reverse. For another example, a transgenic 
model combined with HFD, or a HFD model 
combined with carcinogen treatment is more 
common used to induce robust HCC phenotype 
that is independent of the age effect, although 
more than 1 year HFD is also able to induce 
HCC. 

Future studies using HFD mouse models will 
obtain valuable knowledge about NAFLD and 
HCC, which will eventually lead to effective 
treatment strategies for these diseases. 
Genetically engineered mouse models and 
transplant models combined with HFD are cer-
tainly an essential tool to increase our under-
standing of HFD-related NAFLD and HCC and to 
represent a valuable source for mechanism-
based therapy development.
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