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The role of microRNAs in gastric cancer 
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Abstract: Gastric cancer is the fourth most common type of cancer and the second deadliest worldwide; however, 
the underlying mechanisms of gastric cancer development and progression have not been clearly defined. Recent 
studies have found that microRNAs (miRNAs), small, non-coding RNA molecules that inhibit translation of mRNAs 
by binding to their 3’-untranslated region, play a large role in the formation and progression of gastric cancer. There 
are many families of miRNAs within cells that can be either over- or under-expressed during the development of 
stomach cancer which target many different mRNA transcripts. These miRNAs are now being studied and explored 
as potential novel detection and therapeutic strategies for gastric cancer patients. This review will briefly discuss the 
recent research showing the important roles of microRNAs in gastric cancer.  
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Introduction

Gastric cancer

Gastric cancer is the fourth most prevalent can-
cer in the world and is the second most lethal 
cancer worldwide [1]. Gastric cancers are dis-
eases in which cancerous cells form in the 
innermost lining of the stomach (mucosa), and 
are typically adenocarcinomas which are dis-
eases that begin in cells that produce mucus 
and other fluids [2]. It can be difficult to diag-
nose stomach cancer until at the advanced 
stages of the disease are expressed because 
the symptoms tend to be indistinguishable from 
other gastrointestinal problems. However, if the 
cancer or its precursor is identified early, there 
are several ways for doctors to treat or prevent 
it. Upper endoscopies, biopsies, computerized 
tomography (CT), positron emission tomogra-
phy (PET), and magnetic resonance imaging 
(MRI) scans, X-Rays, and blood tests are all 
common diagnostic tests for physicians to use 
[3-5].

One of the most common causes of stomach 
cancer is a Helicobacter pylori infection [6], 
which typically stems from a type of inflamma-
tion called atrophic gastritis. This bacterium 
carries out several chemical reactions that con-

vert food to chemicals toxic to the human body, 
which in turn may cause mutations to the DNA 
of the stomach cells. Recently, scientists have 
been working with animal models, which are 
induced with stomach cancer either chemically 
or via infection by Helicobacter pylori to gain 
more insight on gastric cancer. It has been 
found that H. pylori are not usually the cause of 
stomach cancers, but a catalyst in the develop-
ment of adenocarcinomas, atrophic gastritis, 
and intestinal metaplasia [7, 8]. This bacterium 
has also been found to cause several molecular 
level events in human epithelial cells such as 
non-specific cellular apoptosis, mutations in 
gene expression, malfunctions in transduction 
pathways, and oxidative stress [8]. Their ability 
to produce these responses in the human body 
is partly due to their numerous virulence factors 
that evolve quickly [9]. In a different study, 
researchers found early inactivation of the p53 
tumor suppressor gene and activation of the 
c-met gene to be indicative of stomach cancer 
as well [10]. While H. pylori is one of the stron-
gest indicators and promoters of stomach can-
cer, lifestyle habits can be connected to gastric 
cancers as well.

Stomach cancer can be extremely aggressive 
and can metastasize quickly. It has been found 
that pre- and postoperative radiation treat-
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ments are beneficial to the patients with gastric 
cancer. However, these treatments can be 
harmful to all the other organs that surround 
the stomach in such close proximity [11]. 
Several methods for more precise targeting of 
tumors have been proposed such as 3-dimen-
sional and intensity-modulated radiation thera-
pies, which tend to be more personalized to 
each patient [12]. While there is a lack of infor-
mation on the prognostic factors for gastric 
cancer, as well as a lack of understanding of 
the different genes that are involved in the gas-
tric tumorigenesis [13], different treatment 
methods may be recommended depending on 
the stage of cancer. Physicians are now looking 
into miRNA functions in gastric cancer as 
potential diagnostic tools. MicroRNAs have 
been found to behave in abnormal ways in gas-
tric cancer, sometimes being upregulated and 
sometimes being downregulated, which can 
pose more challenge for researchers. This 
review is intended to give more insight into 
miRNA functions in gastric cancer and future 
research that needs to be conducted in this 
field. 

MicroRNA biogenesis and function

MicroRNAs (miRNAs) are small (~20-22 nucleo-
tides), single-stranded RNA molecules that do 
not code for proteins that were discovered in 
1993 [14, 15] and have been recently shown to 
be dysregulated in cancer [16]. They are tran-
scribed from miRNA genes by RNA polymerase 
II and III to form what are called primary miR-
NAs, or pri-miRNAs, which an enzyme called 
Drosha then cleaves to create precursor miR-
NAs, or pre-miRNAs [17]. This pre-miRNA, which 
is a hairpin structure, is cleaved once trans-
ported into the cytoplasm to create a miRNA 
duplex, aided by another protein called Dicer. 
This duplex contains the final, mature miRNA 
[17, 18]. The duplex will break down and the 
mature miRNA goes on to dictate cellular 
events. The less stable strand from the miRNA 
duplex is typically added to another protein, 
RISC (miRNA Induced Silencing Complex), 
whose formation is induced by Dicer, where it 
can have other effects on the target gene in 
terms of its protein expression [19]. These 
effects are most often seen when one strand of 
the miRNA binds to the 3’-untranslated region 
(UTR) of the mRNA target sequence [20]. This 
creation of a double-stranded RNA molecule 
leads to translational repression.

Short-interfering RNAs (siRNAs) are double-
stranded and a perfect match for their mRNA 
target sequences. In contrast, miRNAs are sin-
gle-stranded and are an imperfect match to 
their target sequences, causing bulges in the 
resulting structure [21]. This implies that miR-
NAs inhibit translation whereas siRNAs only 
destabilize the molecule through cleavage. 
When gene expression profiles are used to 
compare cancerous and normal tissues, it has 
been found that miRNAs and also mRNAs are 
deregulated [22]. This information maybe used 
to infer that tumorigenesis comes from a 
change within the miRNome, the collection of 
miRNAs in the genome, as opposed to a change 
in a single miRNA that regulates a protein-
encoding gene. In addition, it has been found 
that certain miRNAs are deregulated more 
often than others, which suggests they play a 
large role in tumorigenesis [23]. In the begin-
nings of miRNA research, miRNAs were believed 
to have similar effects on gene expression (i.e. 
negative regulation of target mRNA) [24], but 
research has shown that miRNAs can either 
repress or activate, depending on the condi-
tions of the cell [25]. It is believed that microR-
NAs do not function by themselves, but in what 
are called effector complexes. These are ribo-
nucleoproteins that interact with the miRNA 
(miRNPs) [26]. The miRNPs are able to gather 
enzymes and factors that can cleave mRNA 
and degrade the enzymes that further process 
mRNA [27]. On the other hand, miRNAs can 
positively regulate gene expression. This upreg-
ulation is specific to the target RNA sequence 
and associated with the factors gathered by 
the miRNP [28]. 

In the past, oncogenes and tumor-suppressor 
genes were thought of as the main genetic indi-
cators of cancer. Recently, however, miRNAs 
have been added to that group [29]. When miR-
NAs are involved in cancer, they are called 
oncomirs [30]. It has been reported that 50% of 
genes encoded by miRNAs are located at cer-
tain sites called fragile sites where chromo-
somal rearrangements associated with cancer 
often occur [31]. Yet, in most cancers, miRNAs 
are seemingly deregulated. This can be caused 
by transcriptional deregulation, epigenetic 
alterations such as DNA methylation, mutation, 
and DNA copy abnormalities as well as prob-
lems in miRNA biogenesis pathways (Figure 1). 
It is assumed that these different mechanisms 
can either work alone or together in order to 
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deregulate miRNAs [32]. It has also been 
hypothesized that miRNAs work in a protein 
cascade throughout certain cancer-specific 
protein coding genes. This could potentially 
change the transcriptional outcome or function 
of other tumor-suppressor (protein coding) 
genes. Certain families of miRNAs regulate cell-
cycle and cell-cycle exit (senescence) in addi-
tion to cell differentiation and proliferation and, 
if mutated, can cause abnormalities in the cells 
[33].

In addition to this, if there is a mutation in any 
given miRNA of a somatic cell, this could lead to 
tumorigenesis, but if present in germ-line cells, 
this could be a precursor to cancer [34]. Data 
suggests that miRNAs are involved in the devel-
opment of solid tumors as well as aiding their 
function by controlling these protein-coding 
genes. Many miRNAs seem to enforce their 
expression through upregulation across differ-
ent cancers, suggesting that there are some 
common mechanisms between these different 

has been proposed that overexpression of this 
region causes the miRNA cluster to carry out an 
oncogenic role [40]. There is a biological tumor 
suppressor pathway, which involves the trans-
forming growth factor β (TGFβ). Inactivating 
TGFβ is one of the key steps in the development 
of tumors [41]. TGFβ effector signals are 
impaired when miR-106b-25 is overexpressed 
in gastric cancer [42]. Gastric tumors that con-
tain elevated levels of miR-106b-25 precursors 
show different expressions of each mature 
miRNA in the family, which implies farther  
levels of posttranscriptional regulation. This 
means that numerous changes happen during 
tumorigenesis besides loss of transcriptional 
control, which means that the gastric tumors 
will acquire one, two, or all three of the mature 
miRNAs [41]. In addition, overexpression of 
miR-106b-25 does not only impair the TGFβ sig-
naling, but it also provides an additional mech-
anism of escape from apoptosis by blocking the 
translation of a gene called BCL-2-like protein 
11 (BIM), a proapoptotic gene [43]. 

Figure 1. Biogenesis of microRNA. This figure demonstrates the synthesis 
of microRNAs within the cell. MiRNAs are transcribed by RNA polymerase 
III in the nucleus, starting as pri-miRNAs. This pri-miRNA is then modified 
by Drosha and DGCR8 proteins into pre-miRNA. This then forms a complex 
with exportin-5 and RAN-GTP which facilitates exportation into the cytosol. 
The pre-miRNA is cleaved by Dicer and this forms an miRNA duplex, where 
one strand of the the miRNA is degraded, and the other, more mature strand 
is combined with the RNA-induced silencing complex (RISC). This complex 
can then bind to the 3’-UTR of the target mRNA which leads to degradation, 
inhibition of translation, or direct cleavage of the mRNA. This will lead to 
decreased protein expression.

types of cancers [35], but 
downregulation of miRNAs 
also occurs [36]. 

MicroRNAs and gastric can-
cer

MiRNAs function as onco-
genes and tumor-suppressor 
genes in gastric cancer 

One of the most notable fami-
lies of miRNAs in gastric can-
cer is called miR-106b-25 [37] 
that consists of three miRNAs: 
miR-25, miR-93, and miR-
106b [38]. This cluster of miR-
NAs was found to be the most 
over-expressed in human gas-
tric cancer cells in their study. 
This cluster is located on 
intron 13 of Mcm17 on chro-
mosome 7. Mcm17 is impor-
tant in the transition between 
the Growth 1 (G1) phase and 
the Synthesis (S) phase of 
DNA replication, which allows 
for the appropriate amount of 
replication forks to be pro-
duced on the DNA [39]. This 
ensures that the DNA is not 
replicated more than once. It 
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Another study focused on the miR-17-92 clus-
ter, which includes miR-17, miR-18a, miR-19a, 
miR-20a, miR-19b-1 and miR-92, and together 
may potentially act as an oncogene [44]. 
Conversely, miR-20a alone has been found to 
act like a tumor suppressor gene, reducing 
E2F1 (a type of transcription factor that is 
important in regulation of the cell cycle in the 
E2F family) levels [45]. This miRNA binds to the 
3’-UTR and regulates translation of certain 
transcription factors in the E2F family. In can-
cerous gastric tissue, the levels of both miR-17-
92 and E2F1 are elevated, which indicates a 
possible negative feedback loop between miR-
17-92 and the E2F family [46]. 

Certain families of miRNAs can regulate pro-
teins to perform a variety of functions that can 
alter other cell functions by acting as tumor-
suppressor genes in gastric cancer. For exam-
ple, the let-7 miRNA family negatively regulates 
HMGA2, a protein that can control transcription 
by changing chromatin structure [47, 48]. This 
protein is thought to be involved in cell prolifer-
ation, as it is found in high concentrations in 
human embryo development, but not in human 
adults. This is opposite for let-7, as it is gener-
ally undetectable in the embryonic stages of 
development, but increases after mature tis-
sues have differentiated [49]. Overexpression 
of this HMGA2 mRNA, which can be used as a 
prognostic factor on its own, leads to much 
higher cell growth which can in turn lead to the 
formation of tumors. The let-7 miRNA family 
negatively regulates this protein because it 
directly cleaves the mRNA [50, 51]. It has been 
found that the let-7 miRNA family tends to act 
as a tumor suppressor by targeting oncogenes 
like HMGA2 and RAS [50], as well as their 
release into the extracellular environment caus-
ing a decrease in anti-tumor-forming effects. 
Because of their role in cell proliferation, it is 
believed that the let-7 miRNA family plays an 
important part in the formation of tumors and 
metastasis [52]. Despite this, heightened 
HMGA2 expression in gastric cancer is corre-
lated with higher tumor invasiveness and a 
poorer prognosis. High HMGA2 expression is a 
prognostic factor for patients, and the let-7 
miRNA family negatively regulates this protein 
in gastric cancer [53]. 

MiRNAs as modulators of gastric cancer thera-
peutics

Using miRNAs as possible therapeutic agents 
for many types of cancer including gastric can-

cer has been widely considered among many 
researchers. One recent study used a plasmid 
vector with a certain type of miRNA (miR-516a-
3p) in combination with a delivery reagent 
called atelocollagen [54]. When this mixture 
was inoculated into nude mice, the researchers 
found that this vector allowed for the overex-
pression of certain proteins made by primary 
44As3-tumors, which are common in scirrhous 
gastric cancer (gastric cancer that involves 
rapid cancer cell take-over, proliferation, and 
stromal fibrosis) [55].

In addition to being proficient biomarkers for 
gastric cancer, a study done by researchers 
showed that overexpressing miRNAs such as 
miR-200c and downregulating miR-21 increas-
es chemotherapeutic sensitivity to a cancer 
drug called Cisplatin [56]. Also, miR-23a has 
been found to lessen the effects of paclitaxel (a 
cancer drug that inhibits mitosis-induced cell 
death). This mechanism, however, is incredibly 
sensitive as miRNA can affect multiple target 
sequences; further studies are being pursued 
in order to perfect these protocols [57-59]. 

In the SGC-7901 cell line, it has been found 
that miRNAs 15b and 16 are downregulated, 
and alterations of their expression have led to 
changes in response from chemotherapeutic 
drugs [60]. B-cell lymphoma 2 (BCL2), a protein 
in the outer membrane of the mitochondria that 
blocks apoptosis, is directly regulated by miR-
15b and miR-16 [61]. This in turn controls 
whether cells are more susceptible to chemo-
therapy-induced apoptosis. This is promising 
for the future of chemotherapeutic drugs in 
regards to forming multidrug resistance, or 
MDR. MiR-15b and miR-16, like all miRNAs, 
regulate multiple genes and have large impacts 
on the genome, so this may be a better strategy 
than developing a drug to target single proteins 
[62, 63]. 

Many scientists also suggest that miRNAs 
which are overexpressed be silenced, while 
those miRNAs that are under-expressed should 
be replaced in cancer treatment. For example, 
a study has found that miR-100 is a highly vari-
able miRNA being overexpressed or underex-
pressed depending on the cancer [64]. In gas-
tric cancer, miR-100 is underexpressed, and its 
overexpression led to lower amounts of growth 
in tumors [65]. In addition to the potential 
methods of therapy mentioned earlier, differen-
tiation therapy has been a promising area of 
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study. This is a method by which drugs induce 
cancer cells to differentiate using molecules 
that are expressed in the affected tissue [66]. 
This method does not kill all proliferating cells 
like chemotherapy, but affects solely cancer 
cells. However, miR-100 is shown to change the 
sensitivity of tumors to chemotherapy [67].

Unfortunately, as mentioned earlier, properly 
diagnosing patients with gastric cancer can be 
difficult, as there are not many non-invasive 
diagnostic tests. However, a study was done in 
order to identify whether the serum miRNAs 
were different in patients who were already 
diagnosed with gastric cancer versus healthy 
patients [68]. Fortunately, it was found that 19 
serum miRNAs were significantly upregulated 
in patients with gastric cancer, but not in 
healthy patients. Five of these 19 are now used 
as biomarkers for detection of gastric cancer, 
and assays using these biomarkers can give 
telling results about tumor progression in 
patients with gastric cancer.

While researchers are learning more each day 
about miRNAs, there is still much to be discov-
ered. A group of scientists found three miRNAs, 
miR-451, miR-199a-3p, and miR-195, which 
may serve as potential markers in gastric can-
cer, differentiating patients with good versus 
bad prognoses [69]. Their study indicated that 
an increased level of miR-451 correlated with a 
lower chance of survival. Conflictingly, they 
mention two other studies that show a 
decreased level of miR-451 leading to a worse 
prognosis in gastric cancer patients. This dis-
crepancy confirms that work still needs to be 
done in this field of cancer biology. The 
researchers do state that this could be due to 
the fact that many miRNAs, such as miR-451, 
have multiple unrelated mechanisms [70, 71]. 

The future of miRNAs research in gastric can-
cer 

One of the biggest advantages of using miRNA 
for therapeutic reasons would be because it 
can target multiple genes involved in a similar 
pathway [72]. The researchers argue that by 
targeting miRNAs that inhibit the normal func-
tion of the cell cycle, they are able to knock 
these proteins out to restore the regular, func-
tioning cell cycle. 

In order to make miRNAs more successful in 
the realm of cancer therapeutics, scientists are 
discovering ways to modify synthetic miRNAs 

for easier transfer to host cells in vivo. It has 
been found that miRNAs are prone to nuclease 
degradation [73] and their processing machin-
ery tends to be insufficient [74] which lowers 
their bioavailability. By altering certain struc-
tural elements such as the 2’-OH ribose or 
phosphate backbone of synthetic miRNAs, sci-
entists have found that this makes them less 
likely to succumb to nuclease degradation. 
After these modifications, the miRNAs can be 
packaged in viral vectors, nanoparticles, or 
vectors containing tandem repeats of miRNAs 
(antisense sponges). These methods of deliv-
ery have their downsides as well, including host 
inflammatory responses, mutations of proto-
oncogenes, cytotoxicity, and high cost [75]. In 
addition, there is a theory that delivering miRNA 
mimics in vivo for therapeutic reasons runs the 
risk of abnormal accumulation of miRNAs in the 
cells, which could overwhelm RISC and cause 
major issues with the functions of normal miR-
NAs [76]. One of the biggest challenges for 
delivering miRNAs into tumor tissues is due to 
the fact that there is inefficient penetration of 
the miRNA (or miRNA mimic) into the tumor [77] 
because the tumor’s leaky structure leads to 
inadequate blood perfusion [78]. Another major 
challenge is that miRNAs are typically unstable 
and are degraded by nucleases in the blood 
when inserted into the body [79]. In addition to 
these challenges, scientists also face the prob-
lems of toxicity (as mentioned above), low 
uptake of miRNAs into cancer tissue [77], and 
off-target effects of miRNA delivery [80]. 

Overall, gastric cancer has proven to be a highly 
skilled and elusive killer, avoiding detection by 
doctors and in some cases the patients them-
selves. However, with a lot of the recent infor-
mation on miRNAs, there is evidence of prom-
ise in the future of gastric cancer prevention, 
prognoses, and therapeutics. There is still 
much work to be done in this field, but progress 
is being made daily to understand how miRNAs 
work and how this can be applied to prevention 
of gastric cancer.
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