
Am J Neurodegener Dis 2012;1(3):292-304 
www.AJND.us /ISSN:2165-591X/AJND1205004

Original Article
Audio representations of multi-channel EEG: a new tool 
for diagnosis of brain disorders

François B Vialatte1,2, Justin Dauwels3, Toshimitsu Musha4, Andrzej Cichocki2

1Laboratoire Sigma, Ecole Supérieur de Physique et Chimie Industrielle de la ville de Paris (ESPCI ParisTech), 10 
rue Vauquelin, 75231 Paris Cedex 05; 2Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science 
Institute, 2-1 Hirosawa, Saitama-Ken, Wako-Shi, 351-0198, Japan; 3School of Electrical & Electronic Engineering 
(EEE), Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798; 4Brain Functions Labora-
tory Inc., KSP Building E211, Sakado, Takatsu Kawasaki -shi, Kanagawa, 213-0012, Japan

Received May 31, 2012; Accepted August 22, 2012; Epub November 15, 2012; Published November 30, 2012

Abstract: Objective: The objective of this paper is to develop audio representations of electroencephalographic 
(EEG) multichannel signals, useful for medical practitioners and neuroscientists. The fundamental question ex-
plored in this paper is whether clinically valuable information contained in the EEG, not available from the conven-
tional graphical EEG representation, might become apparent through audio representations. Methods and Ma-
terials: Music scores are generated from sparse time-frequency maps of EEG signals. Specifically, EEG signals of 
patients with mild cognitive impairment (MCI) and (healthy) control subjects are considered. Statistical differences 
in the audio representations of MCI patients and control subjects are assessed through mathematical complexity 
indexes as well as a perception test; in the latter, participants try to distinguish between audio sequences from MCI 
patients and control subjects. Results: Several characteristics of the audio sequences, including sample entropy, 
number of notes, and synchrony, are significantly different in MCI patients and control subjects (Mann-Whitney p < 
0.01). Moreover, the participants of the perception test were able to accurately classify the audio sequences (89% 
correctly classified). Conclusions: The proposed audio representation of multi-channel EEG signals helps to under-
stand the complex structure of EEG. Promising results were obtained on a clinical EEG data set.
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Introduction

Vision is the most important sense for human 
perception of space. In contrast, sound con-
veys information about time and dynamics. 
Standard visual analysis of data involves 
sophisticated processing and filtering, and 
focuses on certain aspects of the data at the 
expense of others. As an alternative, sonifica-
tion is the presentation of information as non-
speech sound; it allows us to represent the 
dynamics of signals, e.g., electroencephalo-
grams (EEG). Visual analysis and sonification 
may be viewed as complementary approaches 
to explore data.

The objective of this paper is to develop audio 
representations of electroencephalographic 
(EEG) multichannel signals; those representa-

tions are expected to be useful for medical 
practitioners and neuroscientists. The funda-
mental question explored in this paper is 
whether clinically valuable information con-
tained in the EEG, not available from the con-
ventional graphical EEG representation, might 
become apparent through audio representa- 
tions.

In this paper, we propose a system that trans-
forms EEG signals into audio sequences, based 
on sparse time-frequency maps of EEG. The 
system is flexible: one can represent different 
electrodes and different time-frequency dynam-
ics. For instance, we may consider the brain as 
an orchestra, where brain regions would repre-
sent different musical instruments. We would 
perceive every EEG channel simultaneously, 
which enables us to explore the dynamics and 
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synchrony of the signals; such representation 
may lead to new insights about the brain 
signals.

Audio representations of EEG should fulfill three 
conditions: (1) they should contain as much 
information as possible about the EEG; (2) they 
should be meaningful from a neurophysiologi-
cal perspective; (3) they should be easy to inter-
pret, and suitable for multi-channel EEG data.

The first two constraints leads to the question: 
What do we consider as meaningful informa-
tion about EEG signals? Usually, EEG signals 
can be studied through several viewpoints (see 
Figure 1): (1) EEG signal amplitude; (2) EEG sig-
nal oscillatory rhythms (time-frequency study); 
(3) EEG synchronization.

Our viewpoint is rooted in computational intel-
ligence. Artificial intelligence has many sub-
fields, with varying purposes ranging from the 
classical “intelligent machine” projects (the 
Good Old-Fashioned Artificial Intelligence, 
GOFAI of Haugeland [1]) to the design of intelli-
gent programs. Our approach belongs to the 

latter domain – and more specifically, a knowl-
edge engineering approach (see e.g. [2]). 
Knowledge representation and knowledge 
engineering, when investigated at a sub-sym-
bolic level, is generally referred to as computa-
tional intelligence, the most recent offshoot of 
artificial intelligence (see e.g. [3]). We advocate 
here a computational intelligence approach, 
based on the intelligent extraction of relevant 
information from EEG signals at a sub-symbolic 
level. In particular, the representation should 
be sparse and hence easy to parse; it should 
also represent relevant EEG features, such as 
amplitude, time-frequency content, and large-
scale synchronization. In comparison, direct 
playback of the EEG (also termed as ‘audifica-
tion’) would give an inaccurate and convoluted 
representation [4]. In summary, extracting 
meaningful information from EEG is the key 
point of our approach.

Furthermore, the audio representations should 
take the origin of the EEG signals into account, 
specifically, the brain areas the signals are 
recorded from (occipital, temporal, frontal, pari-
etal, etc.). Those areas are not necessarily 

Figure 1. Possible representations of EEG brain dynamics. From the time-domain EEG signal, spectral information 
can be extracted, either in frequency or time-frequency domain. Afterwards, spatial maps are created (cf. plot at 
right hand side). However, such maps typically do not reveal the time-frequency structure (oscillatory patterns); we 
try to address this issue by developing audio representations.
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involved in the same functional processes, and 
need to be represented distinctively. We should 
be able to identify the contribution of each 
electrode.

At last, we should of course be able to interpret 
the audio representations (third condition). 
Therefore, a tractable representation is manda-
tory; the musical scores should be sufficiently 
sparse. Since EEG is typically recorded from 
multiple electrodes (e.g., 8, 16, 32, 64, 128, or 
256 electrodes), it is essential to only repre-
sent the most salient features of the EEG as 
notes. Otherwise, too many notes will be played 
and the audio representation will be a 
cacophony.

So far, several methods for translating EEG into 
audio sequences have been proposed (see [7] 
for a review): spectral mapping sonification, dis-
tance mapping sonification [4], audio alarm for 
a surgical instrument [5], model based sonifica-
tion for analysis of epileptic seizures [6], and 
discrete-frequency transform for brain comput-
er interface [7]. To the best of our knowledge, 
however, none of those sonification approach-
es fulfill the three conditions for satisfactory 
representation of EEG.

In this paper, we develop an EEG sonification 
system that satisfies the three above condi-
tions; we will refer to our system as “bump soni-
fication (BUS)”, since it based on sparse time-
frequency maps of EEG known as “bump 
models” [13] (Section 2).

As an illustration, we apply our EEG sonification 
system to a clinical problem (Section 3). We 
consider EEG signals from elderly patients suf-
fering from mild cognitive impairment (MCI, 
a.k.a. predementia) and from age-matched 
control subjects [8]. All MCI patients in our EEG 
data set developed Alzheimer’s disease within 
a year and a half; the EEG signals were record-
ed in a ‘rest eyes-closed’ condition. We will use 
our BUS method as a diagnostic tool, where we 
try to distinguish MCI patients from age-
matched control subjects based upon the audio 
representation of the EEG. At last, we provide 
concluding remarks and ideas for future 
research (Section 4).

Bump sonification (BUS)

We explain here how we generate audio repre-
sentations from EEG (see Figure 2). Our “bump 
sonification (BUS)” procedure consists of three 

Figure 2. Bump sonification (BUS) system. First, sparse 
time-frequency (TF) maps are extracted from the EEG 
signals; those maps are then converted into music, 
stored as MIDI files. From top to bottom: EEG signal in 
time-domain, wavelet time-frequency representation, 
sparse time-frequency representation (a.k.a. “bump 
model”), and audio representation (music score). The 
EEG signal in this illustration is 2 sec long, and was 
sampled at a frequency of 1 kHz.
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steps: (1) preprocessing, including artifacts 
removal and dimensionality reduction based on 
Blind Source Separation (BSS) and/or 
Independent component analysis (ICA), (2) 
sparse time-frequency representation, (3) gen-
eration of music (“sonification”) from time-fre-
quency maps (cf. Step 2).

We describe the sparse time-frequency repre-
sentation in Section 2.1. Next we discuss 
offline (Section 2.2) and online (Section 2.3) 
sonification.

Bump modeling

The time-frequency (TF) representation (see 
Figure 3, top) is obtained through the complex 
Morlet wavelet transform:

1w t e e2 2s
t i ft
2

t= $A
- r^ ^c ^h hm h

where t is time, f is frequency, st is the time 
deviation, and A is a scalar normalization fac-
tor. This type of wavelet is well suited for time-
frequency (TF) analysis of electrophysiological 
signals [9-11]), because of its symmetrical and 
smooth shape, both in time and frequency 
domains.

The resulting wavelet coefficients cft quantify 
the contribution of wave packets at time t with 

frequency f in the EEG signal. Wavelet coeffi-
cients cft are obtained for all T time steps and 
all F frequency steps.

Next we sparsify the wavelet transform by 
means of bump modeling [12, 13] (see Figure 
3, bottom): we approximate a wavelet TF map 
by a set of elementary parameterized functions 
(“bumps”). Half ellipsoid functions were found 
to be the most suitable bump functions [13]:
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tude of the function.

A bump is fitted to the wavelet time-frequency 
map (within window W) by minimizing the cost 
function C:
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where the summation runs on all pixels within 
the window W, zft are properly normalized wave-
let TF coefficients at time t and frequency f, and 
β(f,t) is the value of the bump function at time t 

Figure 3. Example of bump modeling. The wavelet time-frequency (TF) map (top) is approximated by several param-
eterized functions (right), resulting in a sparse model (bottom) that captures the most prominent TF patterns.
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and frequency f. In the present application, the 
TF coefficients cft where normalized with 
respect to the healthy control subjects as 
follows:
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where Mf is the average of baseline activities 
p
fn  at frequency f for all P control patients p:
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ization scheme, large values represent activity 
that differs significantly from usual activity in 
healthy subjects; in other words, large zft values 
are associated with abnormal brain waves. 
Therefore, the normalized maps zft may help us, 
for instance, to detect brain disorders such as 
MCI and AD.

Bump modeling captures increased EEG activi-
ty in TF domain, compared to baseline EEG in 
healthy subjects. The corresponding wave 
packets (transient oscillations) are associated 

with transient local synchrony of neural assem-
blies [15].

Bump modeling was performed using the ButIF 
toolbox (Vialatte F, Sole-Casals J, Dauwels J, 
Maurice M, Cichocki A. Bump Time Frequency 
Toolbox software, version 1.0., 2008, freely 
available online at http://www.bps.brain.riken.
jp/bumptoolbox/toolbox_home.html.), version 
1.0.

Offline multi-channel sonification

EEG signals are often recorded from multiple 
channels. We translate multi-channel EEG sig-
nals into music scores according to the follow-
ing principle (see Figure 4). Neighboring brain 
areas should be represented by similar notes, 
whereas remote brain areas should be repre-
sented by easily differentiable notes. Therefore, 
we determine the music notes from the follow-
ing bump parameters: (1) Amplitude of the 
bump is converted into velocity of the note (val-
ued between 40 and 127 in MIDI format), which 
indicates how loud the note is played. (2) 
Position of the electrode is encoded in the note 
pitch (C4 note = pitch 60 in MIDI format). We 
use a pentatonic scale (following progressions 
such as 60-63-65-67-70). Nearby electrodes 
are mapped to notes with similar pitch, and 
remote electrodes are mapped to notes with 
substantially different pitch. (3) Location and 

Figure 4. Multi-channel EEG sonification. In this example, 21-channel EEG is considered of length 20 sec and 
filtered between 5 and 25 Hz. The large amount of information is synthesized into a music score; this audio repre-
sentation allows us to explore the signal dynamics and synchrony.
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width of the bump in time is converted into 
onset and duration of the note (in ticks per 
square).

The resulting music score provides an alterna-
tive and useful representation of the EEG 
dynamics. However, there are two issues: (1) if 
the number of electrodes is large (more than 
10), too many notes may be generated, poten-
tially leading to cacophony; (2) if the frequency 
span is wide (e.g., 1-100Hz), the same problem 
may occur.

To avoid cacophony, we propose the following 
solutions: (1) if the number of electrodes is 
large, one may select the most representative 
electrodes. Alternatively, one may consider 
groups of electrodes, corresponding to certain 
brain areas (e.g., frontal and posterior areas). 
(2) if the frequency span is wide, one may divide 
it into frequency sub-bands.

We generate MIDI music by means of the 
Matlab MIDI Toolbox (Eerola T, Toiviainen P. 
MIDI Toolbox: MATLAB Tools for Music Research. 
University of Jyväskylä: Kopijyvä, Jyväskylä, 
Finland, 2004. Electronic version available 
from: http://www.jyu.fi/musica/miditoolbox/).

Online multi-channel sonification

So far we have considered offline sonification. 
Our bump sonification (BUS) procedure needs 

to be simplified for online use: Computing wave-
let transforms and bump modeling is time-con-
suming, and would result in prohibitively large 
delays, which cannot be tolerated in real-time 
applications.

We propose the following fast sparsification 
procedure, as alternative to bump modeling, for 
real-time applications: (1) (offline) We select a 
set of frequency ranges, and determine corre-
sponding thresholds (for z-score calculation, 
see below). (2) (Online) We smoothen the abso-
lute value of the signal. In particular, we con-
volve the absolute value of the signal with a 4 
cycles long Hanning window. Next we scale the 
smoothed curve by computing the z-score (cf. 
(3)), with pre-determined z-score parameters 
(cf. Step 1). A z-score value of zero corresponds 
to baseline, whereas a z-score of 1 corresponds 
to a value that is one standard deviation above 
baseline. We choose 1 as threshold value to 
generate music notes (see Step 3). (3) (Online) 
When the z-score crosses the threshold 1, we 
generate a music note. If the curve does not fall 
below threshold during 8 cycles, we generate a 
second music note. If the curve remains above 
threshold, we keep generating music notes 
every 4 cycles.

The z-score parameters are determined in a 
similar fashion as in the offline method (cf. 
Section 2.2, expressions (3)-(5)). The z-score 

Figure 5. Two examples of real-time sparsification. The chosen frequency range is 6-8 Hz. (Top) Original EEG signal. 
(Second row) Band pass filtered EEG signal (6-8Hz). (Third row) Smoothed and z-score scaled activity in 6-8 Hz 
range; the signal is smoothed by convolving it with a 4 cycles long Hanning window (here: 571 msec). (Bottom row) 
The final sparse representation, used for real-time sonification.
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parameters are now not computed for wavelet 
coefficients but for the smoothed signal 
instead.

The music notes are generated as follows: (1) 
The scaled smoothed curve (z-score) is convert-
ed into velocity of the note (valued between 40 
and 127 in MIDI format), which indicates how 
loud the note is played. (2) Position of the elec-
trode is encoded in the note pitch (C4 note = 
pitch 60 in MIDI format). We use a pentatonic 
scale (following progressions such as 60-63-
65-67-70). Nearby electrodes are mapped to 
notes with similar pitch, and remote electrodes 
are mapped to notes with substantially differ-
ent pitch. (3) When the scaled smoothed curve 
reaches threshold, a music note is triggered. 
While the curve remains above threshold, the 
note is played, for a maximum of 4 cycles; in 
other words, the duration of the note is deter-
mined by how long the curve remains above 
threshold. If the curve does not fall below 
threshold during more than 4 cycles, we keep 
generating music notes every 4 cycles.

This method generates music notes whenever 
the EEG activity is sufficiently strong over a suf-
ficiently long period of time, as illustrated in 
Figure 5; this real-time approach is less precise 
than offline bump-based sonification (cf. 
Section 2.2), yet yields similar results.

Clinical application: diagnosis of MCI

The bump sonification (BUS) procedure has 
already been successfully applied to a brain 
computer interface application [16]. We will 
focus here on a clinical application: We will try 
to distinguish EEG from patients with mild cog-
nitive impairment (MCI) and age-matched con-
trol subjects; specifically, we apply the BUS 
method to generate audio representations of 
the EEG signals, and try to discover significant 
differences between the audio representations 
from MCI patients and control subjects.

In the following, we will first describe our EEG 
data set (Section 2.4.1). Next we explain how 
we applied the BUS method to that data 
(Section 2.4.2). At last, we discuss how we eval-
uated the resulting music scores (Section 
2.4.3).

EEG data

The EEG data used here have been analyzed in 
previous studies concerning early diagnosis of 

AD (see, e.g., [8, 19, 24]). Ag/AgCl electrodes 
(disks of diameter 8mm) were placed on 21 
sites according to 10-20 international system, 
with the reference electrode on the right ear-
lobe. EEG was recorded with Biotop 6R12 (NEC 
San-ei, Tokyo, Japan) at a sampling rate of 
200Hz, with analog bandpass filtering in the 
frequency range 0.5-250Hz and online digital 
bandpass filtering between 4 and 30Hz, using a 
third-order Butterworth filter. We used a com-
mon reference for the data analysis (right ear-
lobe), and did not consider other reference 
schemes (e.g., average or bipolar references).

The subjects comprise two study groups. The 
first consists of 25 patients who had com-
plained of memory problems. These patients 
were diagnosed as suffering from mild cogni-
tive impairment (MCI) when the EEG recordings 
were carried out. Later on, they all developed 
mild AD. The criteria for inclusion into the MCI 
group were a mini mental state exam (MMSE) 
score = 24, though the average score in the 
MCI group was 26 (SD of 1.8). The other group 
is a control set consisting of 56 age-matched, 
healthy subjects who had no memory or other 
cognitive impairments. The average MMSE of 
this control group is 28.5 (SD of 1.6). The ages 
of the two groups are 71.9 ± 10.2 and 71.7 ± 
8.3, respectively. 

All recording sessions were conducted with the 
subjects in an awake but resting state with eyes 
closed; the EEG technicians prevented the sub-

Table 1. Results for sample entropy (Sa), num-
ber of notes (No), and synchronization (Sy). 
Central columns list mean and standard devia-
tion of the measures; right column lists the 
Mann-Whitney p-value (significant differences 
in medians when p < 0.01). Synchronization 
is the most discriminative feature (p-value 
marked in bold) between MCI patients and 
control subjects.

Feature MCI Control M a n n - W h i t n e y 
p-value*

Sa(2, 1) 0.66±0.07 0.72±0.08 0.007
No 73.9±28 50.6±26 0.001
Sy (%) 3.52±1.04 5.10±1.96 4e10-4

*The Mann-Whitney test is restricted to similarly shaped distribu-
tions. However, the standard deviation of Sy is substantially differ-
ent in MCI patients compared to control subjects. Therefore, we 
log-normalize the Sy values before applying the Mann-Whitney test, 
in order to obtain more similar values of standard deviation in both 
subject populations.
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jects from falling asleep (vigilance control). The 
length of the EEG recording is about 5 minutes, 
for each subject. After recording, the EEG data 
has been carefully inspected. Indeed, EEG 
recordings are prone to a variety of artifacts, for 
example due to electronic smog, head move-
ments, and muscular activity. For each patient, 
an EEG expert selected by visual inspection 
one segment of 20s artifact free EEG, blinded 
from the results of the present study. Only 
those subjects were retained in the analysis 
whose EEG recordings contained at least 20s 
of artifact-free data. Based on this require-
ment, the number of subjects in the two groups 
described above was further reduced to 22 and 
38, respectively. From each subject, one arti-
fact-free EEG segment of 20s was analyzed (for 
each of the 21 channels).

Application of BUS method

We apply the offline BUS method (cf. Section 
2.2) to all 60 subjects (22 MCI patients and 38 
control subjects), resulting in one music score 
per subject (60 in total).

In this study, we analyze the EEG exclusively in 
the theta band (3.5-7.5 Hz). There are two rea-
sons for this choice: Earlier studies of AD EEG 
(e.g., [17]) have reported strong effects in the 

theta range; moreover, this frequency band 
contains slow brainwaves, resulting in a rela-
tively small number of music notes and hence a 
simple music score.

As in an earlier study [20], we wish to explore 
the interplay between frontal and parietal brain 
areas. Therefore, we only consider electrodes 
from those areas, i.e., F3, F3, Fz, P3, P4, and 
Pz. We aggregate the time-frequency bumps 
extracted from frontal areas in one group 
(group1 = F3, F3, Fz), and the bumps extracted 
from parietal areas in a second group (group2 
= P3, P4, Pz). We associate low pitches (33, 35 
and 37) to the frontal areas (group 1), and high 
pitches (57, 60 and 63) to the parietal areas 
(group 2), thereby following pentatonic scales.

Paradigm validation

We assess our sonification approach for MCI 
diagnosis by a purely quantitative analysis (sta-
tistical measures) and by a survey with human 
volunteers.

Statistical measures

We consider the following statistical measures: 
sample entropy [19], number of notes, and a 
synchrony measure; we briefly review those 
measures here. The sample entropy is defined 
for a time series of N points. We first define the 
N-m+1 vectors Xm(i)={u(i+k):0≤k≤m-1}, as the 
vectors of m data points from u(i) to u(i+m-1). 
The distance between two such vectors is defi-
ned to be d[Xm(i),Xm(j)]=maxk{Іu(i+k)-u(j+k)
І:0≤k≤m-1} the maximum difference of their 
corresponding scalar components. The sample 
entropy statistic is defined as:
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where N is the number of observations in the 
series. Bm(r) is the probability that two sequenc-
es match for m points:
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m ^ h is (N-m-1)-1 times the number of 
vectors Xm(j) within r of Xm(i). Similarly, Am(r) is 

Figure 6. Synchrony index Sy (in percentage). The 
box plots suggest substantial differences in Sy be-
tween control subjects (left) and MCI patients (right).
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the probability that two sequences match for 
m+1 points:

11A r N m A r1

1

m
i
m

i

N m

= - -

=

-

^ ^ ^ ^h h h h/
where A ri

m ^ h is (N-m-1)-1 times the number of 
vectors Xm+1(j) within r of Xm+1(i). The scalar r is 
the tolerance for accepting matches. In our 
context, N is the total number of notes for the 6 
electrodes. We set m=2 and r=1, and hence 
compute Sa(2,1). Therefore we looked upon 
organization along each different electrodes.

The number of notes is simply the overall num-
ber of notes for the six electrodes.

N N0 =

The synchrony measure is defined as:

Sy N
#V=

where #V is the number of notes for which at 
least one note occurs at a neighboring elec-
trode within 200msec; the latter is the maxi-
mum biologically plausible time window for syn-
chronous activity.

Survey

Our BUS method is designed for human users 
instead of computer analysis. Therefore, a 
purely quantitative analysis (by means of statis-
tical measures) is not sufficient to prove the 
effectiveness of our sonification method; we 
also validate it through a survey with human 
volunteers. Five volunteers are trained during 
10 to 30 minutes to distinguish between audio 
sequences from MCI patients and control sub-
jects (Samples available here: Vialatte F. MIDI 
multi channel EEG sonification of MCI and 
Control subjects, (Fronto-Parietal multichannel 
sonification). Riken BSI, april 2006. http://

Figure 7. Histogram of bump frequencies f in the theta range (3.5-7.5 Hz), for frontal and parietal electrodes. (Left) 
MCI patients. (Right) Control subjects. The most significant difference between MCI patients and control subjects is 
observed in the 6-7.5 Hz range.
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the 6.5-7.5 Hz range. We investigate whether 
the information extracted by bump modeling is 
related to standard EEG statistics, in particular, 
relative Fourier power and coherence. Relative 
Fourier power is computed as the average over 
all 6 electrodes; likewise, coherence is comput-

www.bsp.brain.riken.jp/~fvialat te/data/
Iconip2006_midi/sample.htm). After the train-
ing period, the volunteers listen to a new data-
base of 10 audio sequences (from 5 MCI 
patients and 5 control subjects). We ask the 
volunteers to score those new audio sequenc-

Figure 9. Result of the survey. Scores are shown for the new 
database of 10 audio sequences (5 control subjects and 5 
MCI patients), for a total of 5 volunteers. Overall, 89% of the 
audio files were correctly classified. Interestingly, all the mis-
classifications stem from the same volunteer.

Figure 8. Sonification related measures vs. standard measures. Left: No vs. relative Fourier power (r=0.21, uncor-
rected p=0.11); right: Sy vs. magnitude squared coherence (r=0.31, uncorrected p=0.02). The sonification related 
measures No and Sy do not seem to strongly correlate with the standard EEG measures (relative power and coher-
ence).

es (0: certainly MCI, 5: unsure, and 10: 
certainly healthy). We did not provide any 
further details about the new audio files.

Results

Our results for the statistical measures 
are summarized in Table 1. We applied 
the Mann-Whitney test to investigate 
whether the measures are statistically 
different in MCI patients in comparison to 
healthy control subjects. We observed 
statistically significant differences for all 
three measures; the best result is 
obtained for the synchrony measure Sy. 
Box plots of Sy are shown in Figure 6; 
from that figure, clear differences can be 
seen between MCI patients and control 
subjects: the synchrony is lower in MCI 
patients compared to healthy subjects.

As explained in the introduction, bump 
modeling is a simplified and sparse repre-
sentation of EEG, which contains the 
most prominent components of the EEG 
in time-frequency domain. As we can see 
on Figure 7, significant differences can be 
observed for the bump concentration in 
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ed as the average over all possible pairs of the 
6 electrodes. We consider scatter plots of Sy 
vs. relative Fourier power and No vs. magnitude 
squared coherence (see Figure 8). From that 
figure, it can be seen that No does not seem to 
be correlated with Fourier power, and likewise 
Sy and coherence.

The results for the survey are summarized in 
Figure 9. Remarkably, 4 out of 5 volunteers 
classified all music scores correctly. One of the 
volunteers made a few mistakes, resulting in 
an overall error of 11% (for all 5 volunteers). It is 
noteworthy that this result is for a subset of 10 
subjects; the result for the entire data set (with 
60 subjects) may be worse. Nevertheless, this 
experiment suggests that the music scores 
generated by the BUS procedure capture physi-
ologically relevant features of the EEG. We now 
investigate this statement more rigorously. 
Concretely, we verify whether the scores of the 
volunteers (between 0 and 10) correlate with 
certain EEG statistics (see Figure 10). Such 
analysis should show us whether the volun-
teers perceived specific physiological aspects 
of the EEG, and as a result, were successful in 
labeling the music scores. Figure 10 shows 
that the subjects rating were strongly correlat-
ed with relative Fourier power and coherence. 
From this observation, we conclude that our 
sonification approach seems to adequately rep-
resent relevant aspects of the EEG.

Discussion and conclusion

EEG signals evolve both in time and space, 
often resulting in highly complex patterns. 
Consequently, EEG is often either analyzed by 
simple tools (such as time-and space-averag-
ing and Fourier power), which are often too rudi-
mentary for neuroscience and clinical applica-
tions, see e.g. [22]), or by more complex 

methods, leading to results that are harder to 
visualize and interpret. For example, sparse 
bump models carry meaningful information 
about local and large-scale synchrony, which 
can for instance be quantified by stochastic 
event synchrony (SES) [20, 21]. However, clini-
cians are typically hesitant to draw conclusions 
from statistical measures alone (e.g., SES 
parameters [20, 21]); oftentimes, they prefer to 
follow their intuition and insights in the physiol-
ogy of a patient at hand. In this paper, we devel-
oped an intuitive representation of multi-chan-
nel EEG data. In particular, we presented a 
physiologically inspired method for generating 
music scores from multi-channel EEG.

Audio representations of EEG may reveal oscil-
latory characteristics of the EEG that are less 
obvious from standard visual representations. 
Also, some clinicians and neuroscientists seem 
to find it easier to understand and memorize 
temporal patterns when presented as sound 
compared to visual representations [4]. Our 
method provides an intuitive audio representa-
tion of multi-channel EEG signals in time, fre-
quency, and spatial domain; it may therefore 
prove to be well-suited for investigation of EEG 
dynamics, i.e., not only single-channel EEG 
characteristics (temporal and spectral), but 
also the interplay between EEG channels (e.g., 
long-distance synchronization activities [26]).

Our method was shown to be useful in a clinical 
application, where volunteers were asked to 
discriminate MCI patients from healthy sub-
jects, based only on music scores extracted 
from their EEG. Interestingly, the volunteers 
were able to classify most of the music scores 
correctly; this result seems to suggest that the 
proposed sonification procedure retrieves reli-
able and physiologically relevant information 
from the EEG.

Figure 10. Scatterplot of 
coherence (left) and rela-
tive Fourier power (right) 
vs. survey score (0-10; cf. 
Section 3.3). Coherence 
exhibits significant cor-
relation with the survey 
score (r=0.45, p=0.001), 
whereas Fourier rela-
tive power and the sur-
vey score seem to be 
strongly anti-correlated 
(r=-0.58, p=10-5).
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Moreover, our results for the MCI data are con-
sistent with previous studies; loss of EEG syn-
chrony in MCI and AD patients has been 
observed many times before (see [27] for a 
review), using a large variety of synchrony mea-
sures (e.g., coherence [23], mutual information 
[25] and synchronization likelihood [18, 26]).

Besides clinical applications, one may also use 
real-time sonification in brain computer inter-
faces [17] and other applications in 
neuroengineering.
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