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Abstract: The discovery of causative genetic mutations in affected family members has historically dominated our 
understanding of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), fronto-
temporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Nevertheless, most cases of neurodegenerative 
disease are not explained by Mendelian inheritance of known genetic variants, but instead are thought to have a 
complex etiology with numerous genetic and environmental factors contributing to susceptibility. Although unbiased 
genome-wide association studies (GWAS) have identified novel associations to neurodegenerative diseases, most 
of these hits explain only modest fractions of disease heritability. In addition, despite the substantial overlap of clini-
cal and pathologic features among major neurodegenerative diseases, surprisingly few GWAS-implicated variants 
appear to exhibit cross-disease association. These realities suggest limitations of the focus on individual genetic 
variants and create challenges for the development of diagnostic and therapeutic strategies, which traditionally 
target an isolated molecule or mechanistic step. Recently, GWAS of complex diseases and traits have focused less 
on individual susceptibility variants and instead have emphasized the biological pathways and networks revealed 
by genetic associations. This new paradigm draws on the hypothesis that fundamental disease processes may be 
influenced on a personalized basis by a combination of variants – some common and others rare, some protective 
and others deleterious – in key genes and pathways. Here, we review and synthesize the major pathways implicated 
in neurodegeneration, focusing on GWAS from the most prevalent neurodegenerative disorders, AD and PD. Using 
literature mining, we also discover a novel regulatory network that is enriched with AD- and PD-associated genes 
and centered on the SP1 and AP-1 (Jun/Fos) transcription factors. Overall, this pathway- and network-driven model 
highlights several potential shared mechanisms in AD and PD that will inform future studies of these and other 
neurodegenerative disorders. These insights also suggest that biomarker and treatment strategies may require 
simultaneous targeting of multiple components, including some specific to disease stage, in order to assess and 
modulate neurodegeneration. Pathways and networks will provide ideal vehicles for integrating relevant findings 
from GWAS and other modalities to enhance clinical translation.
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Introduction

Several common themes have driven prevailing 
notions about neurodegenerative diseases and 
their underlying etiology. Pathologically, a fre-
quent characteristic of these diseases is the 
accumulation and aggregation of abnormal or 
misfolded proteins, as with amyloid-β (Aβ) in 

Alzheimer’s disease (AD) [1, 2], α-synuclein in 
Parkinson’s disease (PD) [3], huntingtin protein 
in Huntington’s disease (HD) [4], and transac-
tive response DNA-binding protein 43 (TDP-43) 
in frontotemporal dementia (FTD) and amyo-
trophic lateral sclerosis (ALS) [5]. The discovery 
of genetic mutations causing rare, early onset, 
familial forms of these diseases, as with the 
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APP (amyloid precursor protein) gene in AD [6] 
and the SNCA (α-synuclein) gene in PD [7], fur-
ther focused attention on mechanisms directly 
connected to disease pathology. However, 
most cases of AD, PD, and other neurodegen-
erative diseases cannot be explained by simple 
Mendelian inheritance of genetic mutations in 
isolated disease-specific pathways. These late 
onset, sporadic forms of disease are thought 
instead to have a complex etiology, with sus-
ceptibility influenced by lifestyle and environ-
mental factors in addition to as-yet-uncharac-
terized variants in numerous genes [8-12].

The development of methods for unbiased 
investigation of the genome initially promised 
to address this knowledge gap. Although analy-
ses of neurodegenerative diseases represent a 
substantial fraction of the more than 1500 
published genome-wide association studies 
(GWAS) [13], several limitations of this approach 
have emerged. Most GWAS-implicated com-
mon single nucleotide polymorphisms (SNPs) 
display modest individual effects on disease 
risk and together leave substantial heritability 
unexplained [11]. For example, although up to 
60-80% of AD risk is estimated to derive from 
genetic factors [14], known genes including the 
uniquely large effect of APOE (apolipoprotein E) 
account for just half of this genetic variance 
[15]. In addition, while major psychiatric disor-
ders have displayed genetic overlap through 
GWAS [16], similarly robust cross-disorder SNP 
associations have not been reported for neuro-
degenerative diseases, a surprising finding 
given their vast overlap of clinical and patho-
logical features. As a result, there has been sig-
nificant interest in the development of alterna-
tive perspectives and analytical strategies to 
better understand the genetic architecture 
underlying neurodegeneration [17, 18].

Recently, biological pathways and networks 
have become focal points for harnessing GWAS 
data [19, 20]. Numerous studies have demon-
strated that genes functioning in the same 
pathway can collectively influence susceptibili-
ty to neurodegenerative diseases and traits, 
even when constituent SNPs do not individually 
exhibit significant association [21-28]. Path- 
ways occupied by top GWAS “hits” can also 
highlight additional genes with more modest 
effects on disease risk but which may provide 
better targets for biomarker and drug develop-
ment [29, 30]. Further, GWAS-implicated path-

ways and networks provide mechanistic hypoth-
eses which can guide confirmatory testing in 
independent human study datasets, cell lines, 
and animal models. The ability to prioritize 
pathways of interest may be particularly impor-
tant for approaches with high computational 
demand. These include whole genome sequ- 
encing (WGS) studies, which offer enhanced 
power to detect rare SNPs and copy number 
and other structural variants [31], studies of 
disease endophenotypes such as brain imag-
ing [32, 33] or cerebrospinal fluid (CSF) bio-
markers [34, 35], and studies of molecular 
interactions and epistasis [36-38], among oth- 
er approaches.

We propose that pathways and networks pro-
vide an ideal framework for integrating known 
neurodegenerative mechanisms and nominat-
ing new targets. Here, we review the major 
pathways influencing neurodegeneration, foc- 
using on shared processes implicated by GWAS 
of the most prevalent neurodegenerative disor-
ders, AD and PD [39]. As part of a conceptual 
model (Figure 1), we discuss these pathways 
within broader, biologically driven groups repre-
senting intracellular mechanisms, influences 
from the local tissue environment and systemic 
circulation, and broader factors related to neu-
rodevelopment and aging. We also perform net-
work analysis of top AD- and PD-associated 
genes to discover additional novel functional 
relationships among multiple candidate genes 
and pathways.

Intracellular mechanisms

Apoptosis

Although definitions vary, apoptosis is generally 
understood as a programmed cell death pro-
cess involving caspase activation, maintenance 
of organelle integrity, and a lack of cell swelling 
[40]. Aberrant regulation of apoptosis is one 
proposed explanation for the striking loss of 
hippocampal and cortical neurons in AD and 
midbrain dopaminergic neurons in PD [41]. In 
cultured neurons, Aβ deposition is a direct 
inducer of apoptosis [42], and early onset 
AD-associated mutations in the Aβ processing 
genes APP, PSEN1 (presenilin-1), and PSEN2 
(presenilin-2) can promote apoptosis [43-45]. 
The largest known genetic risk factor for late-
onset AD, the APOE ε4 allele [46], may also be 
related to apoptosis through interactions with 
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Aβ [47]. Interestingly, a recent protein interac-
tion network analysis identified PDCD4 (pro-
grammed cell death 4), which is up-regulated in 
AD brains and whose expressed protein inter-
acts with ApoE and presenilin-2, as a potential 
regulator of neuronal death in AD that may 
bridge genetic risk factors for early- and late-
onset disease [48].

Several major AD GWAS-implicated genes [49-
51] also have putative roles in apoptosis. CLU 
(clusterin) is proposed to interact with BCL-2 
protein family members to regulate apoptosis 
[52, 53], and neuroimaging studies suggest 
CLU-associated brain atrophy may be particu-
larly evident in early stages of disease [54]. 
Another BCL-2 interacting gene, HRK (harakiri) 
[55], was identified in a large GWAS meta-anal-
ysis of magnetic resonance imaging (MRI) hip-
pocampal volume, a key AD endophenotype 
[56]. Sequence homology and functional stud-
ies also indicate that ABCA7 (ATP-binding cas-
sette transporter A7) is required for efficient 
clearance of apoptotic cells [57]. These diverse 
roles suggest that AD-associated genetic varia-
tion may have pleiotropic influences on apop-
totic mechanisms.

In human PD brains, molecular markers of 
apoptosis are abundant in the substantia nigra 
[58], which contains mostly dopaminergic neu-
rons and is the primary site of atrophy and 
pathology in the disease [39]. The hallmark 
pathological feature of PD is the presence of 
intracellular inclusions known as Lewy bodies, 
which are mainly composed of insoluble aggre-
gates of α-synuclein [3]. SNCA is associated 
with both early- and late-onset PD [7, 59] and 
accumulation of α-synuclein in cultured dopa-
minergic neurons results in apoptosis [60]. 
Other PD-related genes with potential roles in 
apoptosis include LRRK2 (leucine-rich repeat 
kinase 2) [61, 62], MAPT (microtubule-associat-
ed protein tau) [63], and PARK2 (parkinson pro-
tein 2, E3 ubiquitin protein ligase) [64].

Development of anti-apoptotic and other neuro-
protective drugs for AD and PD is still in early 
stages and may ultimately require targeting of 
multiple genes and sub-pathways [65, 66]. 
Such therapies will also need to address the 
evolving understanding of epidemiologic and 
mechanistic relationships between neurode-
generation and cancer, particularly since many 
cancers are marked by down-regulation of 

Figure 1. Conceptual model of candidate pathways contributing to neurodegeneration. Candidate pathways influ-
encing the balance of neuronal survival and degeneration are displayed within broader functional groups based 
on their major site or mode of action (intracellular mechanisms, local tissue environment influences, systemic 
influences, and mechanisms related to neurodevelopment and aging). The pathways and overarching functional 
groups in this model are highly related and can have overlapping or interacting components which can collectively 
modulate neurodegenerative processes.



Pathways to neurodegeneration in AD and PD

148 Am J Neurodegener Dis 2013;2(3):145-175

apoptosis in contrast to the up-regulation seen 
in neurodegeneration [67, 68]. Nevertheless, 
the heavy footprint of apoptotic functions 
among known AD and PD risk loci is encourag-
ing for this direction of study.

Autophagy

Autophagy is a highly regulated mechanism for 
degradation of unnecessary or dysfunctional 
cellular components [4]. Controlled activation 
of autophagy may provide a strategy for clear-
ance of long-lived, aggregated, or dysfunctional 
proteins which contribute to neurodegenera-
tion [40]. In human brains, autophagy is tran-
scriptionally down-regulated during normal 
aging but is up-regulated in AD, suggesting a 
possible attempted compensatory response to 
Aβ accumulation [69]. In mice, deletion of 
PD-related LRRK2 yields impaired autophagy 
and augmented accumulation of α-synuclein 
[62]. Variants in GBA (glucosidase-β, acid) are 
also associated with PD [59, 70], and the accu-
mulation of α-synuclein in mutant GBA cell 
lines can be reversed with administration of the 
autophagy inducer rapamycin [71].

An important caveat of these findings is that 
other potentially related outcome measures 
may be relevant for interpretation. For example, 
increased levels of apoptotic effectors such as 
caspase-3 have been detected after pharma-
cologic inhibition of autophagy in an AD mouse 
model [72]. Whether this represents possible 
cross-talk between autophagy and apoptosis to 
respond to cellular stress or indicates that 
autophagy itself is an alternate mechanism for 
programmed cell death remains controversial 
[40, 73]. Genetic analyses for epistasis (gene-
gene interactions) within and between these 
pathways may provide alternative strategies for 
addressing these issues. Nevertheless, the 
potential for complex relationships between 
autophagic and other pathways involved in pro-
tein stress and response suggest that in vivo 
modulation of autophagy as a therapy for neu-
rodegeneration may require fine-tuning to 
broader genetic and environmental profiles 
[69, 74].

Mitochondrial dysfunction

Mitochondria are primarily tasked with cellular 
energy production through catabolism of sug-
ars, fats, and proteins. The underlying mecha-

nisms for these processes are well-known to 
yield metabolites with the potential to promote 
neurodegenerative oxidative stress and DNA 
damage [75]. However, mitochondria also play 
important roles in other functions that can 
modulate neurodegeneration, such as apopto-
sis and endocytosis, and several key AD- and 
PD-related proteins are localized to mitochon-
dria or the interface between mitochondria and 
the endoplasmic reticulum [40, 76]. The inter-
section of multiple pathways with mitochondri-
al function makes this organelle an important 
target for strategies to combat neurodege- 
neration.

In AD, the APOE ε4 allele is thought to cause 
mitochondrial dysfunction through altering the 
interaction capabilities of its encoded protein’s 
lipid- and receptor-binding regions [77]. Genes 
involved in actin pathways, such as CD2AP 
(CD2-associated protein), may directly impact 
mitochondrial fission, fusion, and transport 
along axons due to the dynamic actin remodel-
ing and stabilization required for these pro-
cesses [78]. Impairment of mitochondrial fis-
sion, fusion, and axonal transport can promote 
abnormal hyperphosphorylation of MAPT 
(microtubule-associated protein tau), leading to 
the accumulation of dysfunctional mitochon-
dria and the induction of apoptosis due to poor 
cellular energetics [79-81]. Components of the 
mitochondrial membrane are also important for 
normal functioning through regulation of molec-
ular flux. For example, the AD risk genes 
TOMM40 (translocase of outer mitochondrial 
membrane 40 homolog) and TSPO (transloca-
tor protein of outer membrane, 18 kDa) are 
essential for mitochondrial import of proteins 
and cholesterol, respectively [82, 83].

In PD models, SNCA overexpression leads to 
the excess α-synuclein associating with the 
mitochondrial membrane and inducing cyto-
chrome c release and oxidative stress [84]. Two 
other genes associated with both early- and 
late-onset PD, PARK2 and PINK1 (PTEN-
induced putative kinase 1) [85], code for pro-
teins that regulate axonal transport of healthy 
mitochondria and autophagy of old or dysfunc-
tional mitochondria (also known as mitophagy) 
[86, 87]. Another cause of early-onset PD, 
PARK7 (parkinson protein 7; also known as 
DJ1), appears to work in concert with PARK2 
and PINK1 as a sensor of oxidative stress and 
a regulator of mitophagy [84, 88].
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Interestingly, two compounds used to create 
experimental models of PD exert their toxic 
effects in mitochondria. Exposure to MPTP 
(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) 
was initially proposed as an environmental 
cause of PD [89]. Since this discovery, injection 
of MPTP has been used to generate numerous 
cellular and animal models for PD [90]. In the 
brain, the MAO-B (monoamine oxidase B) 
enzyme converts MPTP into MPP+ (1-methyl-
4-phenylpyridinium), which interferes with com-
plex I of the mitochondrial electron transport 
chain to fatally deplete ATP levels and cause 
neuronal death [90]. The pesticide rotenone is 
also used to generate PD experimental models 
and similarly interferes with electron transport 
chain function [91].

The extensive involvement of mitochondrial 
stressors and protectors in AD and PD also sug-
gests that changes in mitochondrial DNA might 
be additional markers of disease. Increased 
levels of mutations in mitochondrial DNA have 
been identified in both diseases [92]. However, 
it is not yet clear whether these mutations 
affect specific functions or overall mitochondri-
al health, and it additionally remains to be dis-
covered if specific mitochondrial DNA variants 
are involved in early-stage disease pathogene-
sis or if mutations simply provide a measure of 
ongoing mitochondrial disturbances.

Oxidative DNA damage and repair

Oxidative stress refers to an imbalance 
between levels of toxic reactive oxygen species 
(ROS) and the activity of mechanisms – such as 
the glutathione system and DNA repair path-
ways – to detoxify ROS to less reactive interme-
diates or to reverse ROS-induced cellular dam-
age [93]. Mitochondria are the major cellular 
source of ROS, and therefore dysfunction of 
mitochondrial components is a significant con-
tributor to oxidative stress and its downstream 
effects on the structures of DNA, proteins, and 
lipids. For example, oxidative damage to 
α-synuclein can change the protein’s targeting 
sequence to affect its cellular localization and 
can promote its aggregation [84], and similar 
mechanisms initiated by oxidative stress have 
been proposed to affect Aβ as well as other 
proteins implicated in age-related and neurode-
generative changes [94]. As a result, there is 
significant interest in whether genetic variation 

that modulates oxidative stress and its res- 
ponses might affect susceptibility to neurode- 
generation.

The PD-associated genes PARK2, PARK7, and 
PINK1 may represent one molecular axis con-
tributing to disease risk through regulation of 
oxidative stress. For example, PARK7 knock-
down is known to yield hypersensitivity to oxi-
dative stress in mouse and fly brains [95], while 
the administration of ROS scavengers and the 
overexpression of PINK1 and PARK2 have been 
shown to rescue the effects of PARK7 loss [96]. 
In AD, disease-associated variants in CLU may 
inhibit the normal role of clusterin as a protec-
tive factor against oxidative stress have been 
proposed to inhibit the normal role of clusterin 
as a sensor and chaperone of ROS [97]. 
Variants in GSTO2 (glutathione S-transferase 
omega-2), which codes for a subunit of glutathi-
one transferase, have also been associated 
with decreased levels of glutathione which 
increase levels of ROS as well as AD suscepti-
bility [98]. Two other genes related to oxidative 
stress have been identified in large studies of 
AD-related endophenotypes, including the 
associations of MTFR1 (mitochondrial fission 
regulator 1) with cognitive decline [99] and 
MSRB3 (methionine sulfoxide reductase B3) 
with hippocampal volume [56].

Oxidative stress and DNA damage repair path-
ways have also been proposed as points of 
overlap that might explain the decreased inci-
dence of cancer in individuals with AD or PD 
other [67, 100-102]. It is possible that increased 
levels of oxidative stress which predispose to 
neurodegeneration may also harm precancer-
ous cells which would otherwise proceed to 
unlimited replication. Other mechanisms, such 
as alternative splicing of genes involved in oxi-
dative metabolism and DNA repair, may also 
contribute to age- and neurodegenerative dis-
ease-associated changes in the brain [103] 
that oppose the development of cancer. 
Additional study at the population and molecu-
lar levels will be needed to clarify these poten-
tial mechanisms.

Ubiquitin-proteasome system

The ubiquitin-proteasome system is responsi-
ble for targeted degradation of misfolded, 
aggregated, or otherwise abnormal proteins. 
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The first step in activating this pathway involves 
ubiquitin labeling of a protein to direct it to 
cylindrical proteasomes in the nucleus, endo-
plasmic reticulum, and other compartments, 
which recognize ubiquitin-labeled proteins and 
contain protease enzymes for protein degrada-
tion. In contrast to autophagy, which can also 
degrade proteins in addition to whole organ-
elles, ubiquitin-mediated proteasomal degra-
dation is thought to be highly selective [104].

For AD, PD, and other neurodegenerative dis-
eases marked by accumulation and aggrega-
tion of specific abnormal proteins, ubiquitin-
proteasome pathways represent natural candi-
dates for modulating pathology. Ubiquitin-
positive inclusions in neurons and glial cells are 
also frequently identified in AD, PD, HD, FTD, 
and other neurodegenerative disorders and 
may be a sequelae of dysfunction in protea-
somal pathways due to variation in genes 
including GRN (progranulin) and MAPT among 
others [105]. Early stages of AD additionally 
exhibit altered expression of ubiquitin-protea-
some pathway genes in astrocytes, which sup-
port neuronal function and help maintain 
homeostasis in the brain [106]. More broadly, 
ubiquitin-mediated protein degradation may be 
neuroprotective in modest quantities but may 
stimulate bulk autophagy or BCL-2-dependent 
apoptosis at overwhelming or chronic levels [3, 
107, 108].

Interestingly, activation of PD risk genes with 
direct roles in ubiquitin-proteasome pathways 
may have beneficial effects in multiple neuro-
degenerative diseases. For example, UCHL1 
(ubiquitin thiolesterase) activation was sug-
gested to reverse AD-associated changes in 
neuronal dendrite structure through signaling 
of pathways related to cognition [109, 110]. In 
addition, PARK2 overexpression is proposed to 
promote clearance of Aβ in AD cell culture mod-
els [111], modulate functional levels of SYT11 
(synaptotagmin) and other regulators of neuro-
transmission [112], and increase lifespan and 
reduce levels of damaged proteins and mito-
chondria in aging fly brains [113]. These find-
ings corroborate the potential protective effect 
of ubiquitin-mediated degradation in combat-
ing neurodegeneration and highlight the over-
lapping molecular systems involved in autopha-
gy, mitochondrial regulation, and the ubiquitin-
proteasome system.

Local tissue environment

Cell adhesion

Cell adhesion involves the binding of a cell to 
another cell or to an extracellular surface. In 
healthy brains, cell adhesion pathways are 
important for maintenance of synaptic contacts 
and blood-brain barrier integrity as well as effi-
cient neurotransmission and intracellular sig-
naling [114]. Altered expression of cell adhe-
sion genes is a consistent finding in AD and PD 
[115-118]. In particular, APOE ε4 may promote 
neurodegeneration through sequestering tar-
gets of RELN (reelin), a protease which signals 
through APOER2 (apolipoprotein E, receptor 2) 
and NMDA receptors to enhance synaptic 
strength and plasticity [119, 120]. Depletion of 
reelin levels in key AD brain regions is thought 
to be an early event in the disease [121]. 
Genetic variation in RELN is also associated 
with AD pathology in cognitively normal older 
individuals [122], reinforcing the potential role 
of cell adhesion as an early driver of neurode-
generative changes.

Several studies propose relationships between 
the Aβ and cell adhesion pathways, including 
the cleavage of the key synaptic adhesion mol-
ecule N-cadherin by presenilin-1 and -2 [123] 
as well as the interaction of NCAM140 (neuro-
nal cell adhesion molecule 140) with APP to 
regulate neuronal outgrowth [124]. Recent 
GWAS of imaging endophenotypes have also 
identified suggestive associations of cell adhe-
sion genes, including ITGA1 (integrin-α1) and 
ITGA6 (integrin-α6) with florbetapir positron 
emission tomography (PET) cerebral Aβ burden 
[125] and CDH8 (cadherin 8, type 2) with hip-
pocampal volume [126].

In addition, pathway analyses have discovered 
collective effects on risk among cell adhesion 
genes in AD and PD. An innovative study inte-
grating PD case-control GWAS and genome-
wide expression data for nearly 3500 individu-
als found enrichment of association for numer-
ous adhesion pathways, including four of the 
top five results (axon guidance, focal adhesion, 
cell adhesion molecules, adherens junction) 
[127]. In AD, cell adhesion pathways have also 
displayed enrichment of association using 
case-control GWAS [128] and quantitative trait 
GWAS of episodic memory impairment [23]. 
Although cell adhesion genes and pathways are 
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often large and therefore carry risks of false 
positive associations [19, 129], the similarity of 
findings across these three methodologically 
diverse studies is striking and provides further 
support of the hypothesis that adhesion mech-
anisms can contribute to neurodegeneration.

Endocytosis

The process known as endocytosis, where 
extracellular molecules are engulfed into mem-
brane-bound vesicles for internalization, is 
important for gathering nutrients, facilitating 
molecular interactions and protein degradation 
in a protected environment, and recycling 
ligands and receptors [130]. Several AD- and 
PD-associated genes have central roles in 
endocytic pathways. For example, APOE is 
required for microglia to degrade Aβ following 
endocytosis, and APOE allelic variation affects 
the efficiency of this degradation in animal 
models [131]. SORL1 (sortilin 1), whose asso-
ciations to AD were recently confirmed using 
exome sequencing [132] and GWAS meta-anal-
ysis [133], directs APP to endocytic pathways 
for recycling and is crucial in preventing the 
sorting of APP to alternative pathways which 
generate Aβ [134, 135]. In PD, LRRK2 similarly 
regulates the recycling and/or degradation of 
α-synuclein [136, 137] and is a key influence 
on the endocytic formation of synaptic vesicles 
containing neurotransmitters [138].

Promising strategies for therapeutic targeting 
of endocytic pathways in AD have recently 
emerged. In an AD mouse model, the retinoid 
acid receptor (RXR) agonist bexarotene was 
found to transcriptionally induce APOE to 
enhance clearance of Aβ and the reversal of 
cognitive deficits [139]. The yeast homolog of 
PICALM (phosphatidylinositol binding clathrin 
assembly protein) is also proposed to be an Aβ 
toxicity modifier [140]. Thus far, these new find-
ings and their therapeutic implications have not 
yet been replicated or validated in other 
systems.

Targeting of endocytic pathways may also be a 
viable approach to combat PD. The PD-asso- 
ciated gene GAK (cyclin G associated kinase) 
[59] is a key mediator of endocytic vesicle traf-
ficking by regulating interactions with adaptor 
proteins and later driving disassembly of the 
vesicle clathrin coat [141]. In cell culture, under-
expression of GAK through knockdown or 

PD-related mutations accentuates α-synuclein 
load and toxicity [142]. The closely related gene 
AAK1 (AP-2 associated kinase 1) [143] has also 
been associated through GWAS with age of PD 
onset [144]. The prevalence of disease risk 
genes and potential drug targets in endocytic 
pathways is likely to spur continued interest in 
the coming years.

Neurotransmission

Neurotransmitters are endogenous substanc-
es used to relay signals across a synapse. 
Although overshadowed in recent years by pro-
teinopathy-related theories, initial hypotheses 
about AD and PD focused on disease-associat-
ed neurotransmitter deficits. The selective loss 
of brain acetylcholine-signaling neurons under-
stood to be crucial for learning and memory 
drove the hypothesis that AD manifested from 
a cholinergic deficit [145]. Similarly, the loss of 
dopaminergic neurons from the substantia 
nigra understood to be important for motor 
functioning led to the hypothesis that dysfunc-
tion of dopaminergic neurotransmission was a 
primary cause of PD [146, 147]. As a result, 
modulation of cholinergic or dopaminergic neu-
rotransmission forms the basis of several sym- 
ptomatic therapies for AD and PD [148, 149].

Genetic and molecular studies support a role 
for neurotransmitter mechanisms in neurode-
generative disease. Pathways related to calci-
um signaling, which are important for presynap-
tic neurotransmitter release and postsynaptic 
signal transduction involving cyclic AMP (cAMP), 
protein kinase A (PKA), and cAMP response ele-
ment binding protein (CREB), have displayed 
association to AD and PD [23, 127, 128, 150, 
151]. The gene COMT (catechol-O-methyltrans-
ferase) encodes an enzyme that degrades 
dopamine and other catecholamine neu-
rotransmitters, and COMT variants have been 
associated with dopamine levels in early PD 
[152] and may contribute to cognitive and psy-
chiatric deficits in AD through interactions with 
estrogen [153, 154]. Further, in addition to its 
effects on mitochondria, MPP+ gains entry to 
cells via the dopamine transporter and inhibits 
synthesis of dopamine and other catechol-
amines [155, 156]. Variation in multiple genes 
also contributes to elevated glutamate levels in 
multiple sclerosis (MS), which is classically 
marked by demyelination and neuroinflamma-
tion [157].
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Cholinesterase inhibitors, which attempt to 
increase active levels of acetylcholine in the 
synaptic cleft by inhibiting the enzymes that 
degrade acetylcholine, are a first line symptom-
atic therapy for AD [158]. An initial imaging 
study in humans identified a correlation bet- 
ween plasma activity of acetylcholinesterase 
and brain Aβ levels [159]. Recently, a larger 
study of 555 individuals discovered a genome-
wide significant association of variants at the 
BCHE (butyrylcholinesterase) locus with brain 
Aβ levels [160]. Butyrylcholinesterase is 
enriched in senile Aβ plaques [161] and several 
additional lines of evidence point to potential 
mechanistic connections among BCHE, APOE, 
and Aβ [162-165]. Further, some have suggest-
ed that cholinesterase inhibitors which prefer-
entially target butyrylcholinesterase may have 
disease-modifying effects in AD [166, 167]. 
Future work to understand the genetic relation-
ships between the cholinergic and Aβ pathways 
and their impact on response to drug treat-
ments will be important to improve risk stratifi-
cation and therapeutic targeting.

Prions and transmissible factors

Prion protein is a membrane-associated, prote-
ase-sensitive glycoprotein that is typically 
enriched in lipid rafts consisting of tightly 
packed signaling and trafficking molecules 
[168]. As with other misfolded proteins, mis-
folded prion protein is normally susceptible to 
proteasome-mediated and other forms of pro-
tein degradation. However, accumulation of 
misfolded prion protein through inhibition of 
protein degradation pathways has been pro-
posed to lead to the formation of protease-
resistant, aggregated, infectious (i.e., transmis-
sible) particles which can be released to neigh-
boring cells and promote misfolded protein 
states in those cells [169]. This mechanism is 
thought to underlie the development of fa- 
tal degenerative transmissible spongiform 
encephalopathies such as Creutzfeld-Jakob 
disease (CJD), and more controversially has 
been proposed as a unifying factor promoting 
neurodegeneration across multiple neurode-
generative diseases including AD, PD, and ALS 
[170].

So far, genetic association tests of this hypoth-
esis have been mixed, with some studies iden-
tifying moderate associations of PRNP (prion 
protein) variants with neurodegenerative dis-

eases [171-173] and other studies not finding 
associations [174, 175]. Recent GWAS of CJD 
have also implicated other genes, suggesting 
that larger pathways related to protein confor-
mational states and prions may be active in 
neurodegeneration [176-178]. More broadly, a 
better understanding of the forces contributing 
to protein conformation and susceptibility to 
aggregation and transmissibility would be a 
crucial for unlocking novel diagnostic and ther-
apeutic approaches for neurodegenerative dis-
eases [179]. Genetic variation affecting several 
related pathways, including translational mach- 
inery, endoplasmic reticulum function, chaper-
one-mediated folding assistance and transpor-
tation, and secondary, tertiary, and quaternary 
protein structural interactions, might represent 
plausible candidates for association testing to 
clarify these mechanisms.

Systemic environment

Inflammation and immune dysfunction

Published literature on AD and PD includes 
robust evidence of disturbances in inflamma-
tion and immune pathways. Increased levels of 
pro-inflammatory cytokines are common find-
ings in blood, cerebrospinal fluid (CSF), and 
post-mortem brain tissue in both diseases 
[180-183], and non-steroidal anti-inflammatory 
drugs have been proposed to have protective 
effects [184, 185]. Active debate has endured 
on whether inflammation and immune dysregu-
lation are contributors to neurodegeneration or 
are instead secondary to ongoing cell death. In 
particular, a fundamental question remains 
outstanding in neurodegenerative disorders: is 
inflammation deleterious, protective, or dis-
ease stage-dependent?

Studies of microglia, the resident immune sys-
tem macrophages in the brain and CSF, provide 
some clues for resolving these issues. Post-
mortem tissue analyses as well as newer in 
vivo PET imaging methods have identified an 
abundance of activated microglia in AD and PD 
brains [186]. Both Aβ and α-synuclein are 
known to activate microglia, stimulating the 
release of inflammatory cytokines and activa-
tion of inflammation-mediating enzymes such 
as matrix metalloproteinases (MMPs) [186-
188]. Activated microglia also express NLRP3 
(nucleotide-binding domain and leucine-rich 
repeat family, pyrin domain containing 3), a 
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component of larger structures known as 
inflammasomes which promote several inflam-
matory processes including the maturation of 
IL-1β (interleukin 1, beta) [189]. In animal mod-
els, IL-1β exacerbates AD and PD progression 
[190, 191], and the protective effect of NLRP3 
knockout in AD mice likely reflects these under-
lying mechanisms [192].

Nevertheless, the role of microglia and their 
secreted products may not be unidirectional. 
For example, activated microglia are also 
unique among central nervous system cells in 
expressing CX3CR1 (chemokine receptor 1), a 
receptor for the cell survival promoting chemo-
kine known as fractalkine [193]. In PD and ALS 
mouse models, CX3CR1 knockout resulted in 
more extensive neuronal loss [194], suggesting 
that augmentation of signaling through this 
microglial product may be required for therapy. 
In addition, microglia may have divergent roles 
across the course of neurodegenerative dis-
eases. Whereas activation of microglia to stim-
ulate phagocytosis of aggregated disease-
related proteins may be protective during early 
disease stages [195, 196], chronic activation 
of microglia may enhance production of differ-
ent cytokines which impair phagocytosis and 
other cell survival-related processes [197].

Genetic associations in inflammation- and 
immune-related pathways may have similar 
implications. Variants in IL1B (interleukin 1, 
beta) and TNFA (tumor necrosis factor, alpha) 
have been associated with AD and PD and may 
contribute to altered cytokine levels and inflam-
matory signaling [198, 199]. Meanwhile, 
AD-associated variants in CLU [97] and TREM2 
(triggering receptor expressed on myeloid cells 
2) [200-203] may impair the normal anti-inflam-
matory functions of these genes. TREM2 is pre-
dominately expressed on microglia, and recent 
expression analyses of post-mortem AD human 
and mouse brain tissue identified perturba-
tions of networks regulated by the TREM2 
ligand TYROBP (protein tyrosine kinase binding 
protein) and enriched with genes functioning in 
phagocytosis [204], highlighting the potential 
importance of microglia and their expressed 
products in modulating neurodegenerative 
processes.

Other genes appear to bridge inflammation and 
innate immune responses. For example, the 
PD- and Crohn’s disease-associated gene 

LRRK2 both mediates microglial-induced 
inflammation [205, 206] and is a target of IFN-γ 
(interferon gamma), suggesting an additional 
role in the immune response to pathogens 
[207]. Similarly, the AD-associated gene CR1 
(complement component receptor 1) [49, 208-
212] encodes a receptor which may regulate 
both inflammatory processes as well as classi-
cal complement pathways of innate immunity 
to eliminate synaptic connections [213]. The 
common involvement of inflammation and 
immune mechanisms is not limited to AD and 
PD and appears to extend to ALS [214], MS 
[27], FTD [215], and psychiatric disorders 
[216].

These findings suggest that fulfilling the prom-
ise of therapies targeting these pathways in 
neurodegenerative disease might be quite 
complex [183, 217-219]. Appropriate modula-
tion of inflammatory and immune mechanisms 
may require combinatorial regulation of multi-
ple factors, with some being activated and oth-
ers deactivated depending on disease stage 
and an individual’s genetic profile.

Lipid, metabolic, and endocrine factors

Recent epidemiological and molecular studies 
are converging to support the hypothesis that 
loss of lipid homeostasis can prominently con-
tribute to neurodegeneration. Findings that ath-
erosclerosis and other cardiovascular diseases 
are impacted by APOE ε4 and can increase the 
risk of AD [220] are complemented by studies 
suggesting that statin use to lower circulating 
cholesterol may modestly reduce the risk of AD 
and PD [221, 222]. Importantly, neuronal mem-
branes contain substantial amounts of choles-
terol and other lipids, and disturbances in lipid 
pathways have been frequently proposed to 
impact synaptic signaling and neuronal plastic-
ity and degeneration [223-226].

As the major lipoprotein of the brain, ApoE 
transports key lipids and associated proteins to 
cells for uptake via receptor-mediated endocy-
tosis [220]. The degree of lipidation in ApoE is 
an important factor in maintaining lipid homeo-
stasis and in mediating interactions with Aβ 
which can promote its endocytic clearance, 
and APOE allelic variants may affect both pro-
cesses [227]. Strikingly, two other AD GWAS-
implicated genes have primary roles in lipid 
homeostasis: CLU represents the second major 
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lipoprotein of the brain (also known as apolipo-
protein J) [6, 228] and ABCA7 codes for a 
microglia-enriched trans-membrane cholester-
ol and phospholipid transporter [229, 230]. 
Among PD-related genes, both PARK2 and 
LRRK2 code for proteins which regulate cellular 
uptake of lipid-rich structures [231-233].

Recently, lipidomics analyses of the complete 
profile of lipids and their metabolites in tissue 
samples have provided initial unbiased views 
of lipid pathway disturbances in AD and PD 
[225, 234, 235]. In PD, this approach identified 
changes in lipid metabolism in human primary 
visual cortex, a region that does not exhibit sig-
nificant Lewy body pathology but may be impor-
tant for visual symptoms in PD [235]. These 
large-scale findings reinforce the concept that 
lipid pathways are highly complex and include 
numerous components with the potential for 
local and remote impacts on inflammation, oxi-
dative stress, vascular, and other pathways. As 
a result, drugs targeting lipid pathways, includ-
ing supplementary administration of endoge-
nous compounds [236], would be expected to 
have pleiotropic effects in the context of neuro-
degenerative disease which may require modu-
lation based on the functional status of other 
pathways in an individual [237].

Among metabolic disorders, a particularly inter-
esting relationship is apparent between diabe-
tes and AD. The presence of type 2 diabetes 
doubles the risk of AD [238] and metabolic dys-
regulation, including loss of insulin signaling 
through the PI3 kinase and AKT, occurs in the 
brain in early AD [239]. In addition, models of 
insulin resistance or deficiency result in cere-
bral Aβ buildup while models of Aβ toxicity lead 
to decreased insulin signaling [240]. As a result, 
diabetes and AD may share several drug tar-
gets, including insulin and IGF (insulin-like 
growth factor) stimulation [241, 242], inflam-
mation [243], BCHE [160, 244, 245], and GSK3 
(glycogen synthase kinase 3) [246].

Vascular changes

Vascular pathology, including increases in ves-
sel wall stiffness, changes in endothelial cell 
adhesion and metabolism, and dysfunction of 
the blood-brain barrier, can promote neurode-
generation through yielding chronic, low perfu-
sion [247]. Presence of the APOE ε4 allele is a 
well-known risk factor for dyslipidemia, athero-

sclerosis, and coronary heart disease [100, 
248], suggesting that part of the impact of 
APOE on AD may be mediated through vascular 
mechanisms. Pathological changes to the 
blood-brain barrier have also been identified in 
AD and PD through histological and molecular 
analyses and may explain the proposed mod-
est protective effect of caffeine intake in these 
diseases [249-251].

Vascular smooth muscle pathways have dis-
played genetic associations with AD imaging 
phenotypes [252], and the AD-associated gene 
CR1 was also found to increase the risk of cere-
bral amyloid angiopathy, a leading cause of 
intracerebral hemorrhage in older individuals 
[253]. Although other vascular-related genes 
such as VEGF (vascular endothelial growth fac-
tor) have displayed mostly mixed results in 
association tests for AD and PD [254, 255], 
additional studies will be important to deter-
mine the effects of in situ genetic risk factors 
on vascular functioning and brain plasticity 
[256], relationships of vascular pathways to 
other mechanisms of neurodegeneration [257], 
and the impact of lifestyle measures such as 
healthy diet and exercise on disease onset and 
progression. Comparisons of genetic and envi-
ronmental risk factors for AD and PD with those 
impacting vascular dementia will also illumi-
nate common and discordant features of their 
underlying pathophysiology [258].

Neurodevelopment and biological aging

Epigenetic changes

Epigenetic factors provide mechanisms for 
genetic control that do not involve modifica-
tions to an individual’s DNA sequence [259]. 
These heritable changes, including RNA-
associated silencing and methylation or acety-
lation of DNA or histones, can dynamically 
respond to environmental stimuli [260] and 
also appear to increase in frequency with aging 
[261]. Several AD- and PD-related genes are 
regulators or targets of epigenetic mecha-
nisms. For example, nuclear α-synuclein accu-
mulation inhibits histone acetylation and pro-
motes apoptosis in cell culture [262]. While 
PD-related SNCA mutations potentiate this 
effect, inhibition of SIRT2 (sirtuin 2) deacety-
lase activity may reverse SNCA-induced toxicity 
[263]. Similarly, inhibition of HDAC2 (histone 
deacetylase 2) facilitates expression of genes 
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related to learning and memory and reverses 
AD symptoms in mice [264]. Epigenetic path-
ways may also impact Aβ pathology: in mice, 
SIRT1 (sirtuin 1) deacetylase activity promotes 
the alternative cleavage of APP by ADAM10 
(α-secretase) to decrease formation of Aβ 
[265]. In addition, nucleotide repeat expan-
sions in C9orf72 (chromosome 9 open reading 
frame 72), which are a major cause of familial 
FTD, ALS, and related neurodegenerative disor-
ders [266], may exert their pathologic effects 
via mechanisms related to RNA-mediated sile- 
ncing or unconventional translation [267, 268].

Human epigenome-wide studies have not yet 
been reported for AD or PD. In analyses of can-
didate genes related to neuroinflammation and 
synaptic functioning, changes in methylation of 
CpG islands in the promoters of BDNF (brain-
derived neurotrophic factor), COX2 (cyclooxy-
genase-2), CREB (cyclic AMP response element 
binding protein), and NFKB (nuclear factor 
kappa B) were identified in human post-mor-
tem AD frontal cortex [269]. Epigenome-wide 
studies might discover novel loci contributing to 
AD and PD and would be particularly informa-
tive for early stages of the disease spectrum, 
where targeted therapies would likely be most 
effective, and to capture dynamic changes in 
epigenetic markers longitudinally.

Neurotrophic factors

Neurotrophic factors (neurotrophins) are 
secreted growth factors that promote the 
development, functioning, and survival of neu-
rons through regulation of gene transcription. 
Neurotrophins typically affect transcription 
through binding receptors at neuron terminals 
to stimulate second messenger signaling cas-
cades or to promote their internalization and 
direct transport along the axon to the nucleus 
[270]. Diminished signaling and axonal trans-
port of BDNF and NGF (nerve growth factor) 
have been identified in post-mortem AD brain 
tissue [271], and variants in BDNF have been 
associated with CSF Aβ levels in AD [272], age 
of onset in familial PD [273], and age-related 
changes in brain structure and cognitive func-
tion in individuals without frank disease [274], 
suggesting a primary role for neurotrophin sig-
naling in susceptibility to neurodegeneration.

Novel treatment approaches for augmenting 
neurotrophin signaling appear promising for 

enhancing neuronal survival and functioning to 
combat degenerative changes. For example, 
exogenous administration of BDNF was obser- 
ved to rescue stress hormone-induced AD-like 
memory impairment in rats through activation 
of several memory-related signaling pathways 
[275]. In addition, SNPs in the dopaminergic 
neurotrophin gene CDNF (cerebral dopamine 
neurotrophic factor) have been associated with 
PD risk [276], and the highly related gene GDNF 
(glial cell derived neurotrophic factor) is also 
being explored as a potential therapeutic target 
for PD [277, 278]. It should be noted that neuro-
trophins can be expressed in non-neuronal tis-
sue and may have roles in promoting or inhibit-
ing cancer at those sites [279, 280] which will 
require further evaluation in the context of 
potential neurotrophin-related treatment strat-
egies for neurodegenerative disease.

Telomeres

Telomeres are DNA sequences at the ends of 
chromosomes that provide protection against 
the loss of more proximal genetic material dur-
ing DNA replication in mitosis [281]. In germ-
line and some somatic cells, the enzyme telom-
erase is responsible for maintaining telomere 
length and structure. However, most adult 
somatic cells do not express telomerase and as 
a result gradually lose telomere length and 
structure with each cycle of mitosis. While reac-
tivation of telomerase contributes to many 
types of cancer by maintaining a limitless prolif-
erative ability for tumor cells, excessively short 
telomere length in aging cells is proposed to 
signal for senescence and apoptosis [281, 
282].

Although shortened telomere length in periph-
eral white blood cells has been associated with 
dementia and mortality in older adults, even 
after adjusting for APOE genotype [283], the 
relationship between telomere length in neu-
rons and neurodegeneration is not yet clear. In 
one study, neuronal telomere shortening 
induced microglial proliferation (microgliosis) in 
aging mice but reduced microgliosis and Aβ 
pathology while improving memory and learn-
ing in AD mice [284]. Changes in telomere 
length have not been widely observed in periph-
eral white blood cells or in the brain in PD or 
ALS but will likely receive continued scrutiny 
[285-287]. In particular, several genetic influ-
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ences on telomere length have been identified 
which may provide novel candidates for study 
in relation to neurodegenerative disease. 
Variants in TERC (telomerase RNA component), 
which codes for a component of telomerase, 
have been associated with telomere length in 
several human study samples [288, 289], as 
have genes related to DNA and histone methyl-
ation [290]. In addition, telomere pathways 
have exhibited enrichment of genetic associa-
tion to human longevity in a large cohort study 
[291]. These preliminary findings suggest that 
neurodegenerative diseases may be amenable 
to therapies targeting mechanisms of cellular 
and biological aging more broadly [282, 292].

Network analysis of top AD- and PD-
associated genes

To complement the pathway-driven approach, 
we performed network analysis to identify addi-
tional functional relationships between top AD- 
and PD-associated genes. While pathways are 
defined by overarching goals and the mechanis-
tic steps involved, networks can display other 
types of relationships which may cut across 
multiple pathways or may indicate novel path-
ways which have not yet been characterized 
[19].

Due to the numerous pathways implicated in 
AD and PD and the pleiotropic effects of many 
key disease-associated genes, we hypothe-
sized that regulatory relationships among these 
genes might impact multiple pathways. To 
explore this hypothesis, we performed tran-
scription factor network analysis using the 
MetaCore software (GeneGo, Inc.). This 
approach incorporates knowledge from pub-
lished literature to relate an input list of genes 
to known transcription factors and proximal tar-
gets such as ligand-receptor interactions. As 
input, we used the top 10 genes from the 
AlzGene (APOE, BIN1, CLU, ABCA7, CR1, 
PICALM, MS4A6A, CD33, MS4A4E, CD2AP) 
[293] and PDGene (MAPT, SNCA, GBA, LRRK2, 
PM20D1, GAK, MCCC1, STK39, BST1, GPNMB) 
[294] databases in addition to a small number 
of genes (APP, PSEN1, PSEN2, DJ1, HIP1R, 
PARK2, SYT11, UCHL) implicated in both 
Mendelian and sporadic forms of AD or PD.

A network was identified which displays rela-
tionships among 31 factors, including 19 of the 
28 input genes (Figure 2). The probability of the 

software algorithm generating a network with 
this level of interconnectedness by random 
selection of input genes was exceedingly small 
(p = 1.14 x 10-54). Strikingly, numerous genes in 
the network exhibit co-regulation by the SP1 
(specificity protein 1) and AP-1 (activating pro-
tein 1) transcription factors. SP1 has been pre-
viously noted to regulate the expression of mul-
tiple AD-related genes [23, 295]. Elevated lev-
els of SP1 have been identified in AD human 
brains and mouse models [296, 297] and may 
be induced by inflammation and oxidative 
stress [296, 298]. The AP-1 transcription factor 
is composed of heterodimers of several pro-
teins, including those encoded by the FOS and 
JUN proto-oncogenes [299]. AP-1 is an impor-
tant regulator of dopaminergic signaling path-
ways [300, 301] as well as numerous genes 
related to autophagy and lysosomal function 
[302]. Interestingly, animal models indicate 
that inhibition of SP1 may be neuroprotective in 
AD [297] and inhibition of AP-1 may be neuro-
protective in PD [303]. The connections among 
SP1, AP-1, and AD- and PD-associated genes 
suggest that coordinate modulation of these 
transcription factors may be a viable strategy 
for combating neurodegeneration.

This transcriptional network also includes sev-
eral additional genes of interest which were not 
in the initial input list. For example, EGR1 (early 
growth response 1) encodes a zinc-finger tran-
scription factor that is important for synaptic 
plasticity [304] and cognitive performance 
[305] and whose up-regulation in AD brains 
may promote phosphorylation of tau [306]. The 
transcription factor encoded by HMGB1 (high-
mobility group protein 1) can also directly bind 
aggregated α-synuclein [307], regulate phago-
cytosis of Aβ [308, 309], and promote inflam-
mation when secreted by activated microglia or 
necrotic neurons [310, 311]. Interactions 
between HIV-1 TAT (transactivator of transcrip-
tion) and genes involved in AD and PD may be 
involved in HIV-associated cognitive impair-
ment and Aβ pathology [312, 313]. Other genes 
of interest in this regulatory network include 
MMP9 (matrix metalloproteinase 9) which is 
involved in synaptic plasticity and Aβ degrada-
tion [314], IRF3 and IRF7 (interferon regulatory 
factors 3 and 7) which regulate interferon-
mediated inflammation and immune responses 
[315-318], and LRP1 (low density lipoprotein 
receptor-related protein 1) which may affect 
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several neurodegeneration pathways including 
lipid metabolism, Aβ endocytosis, and inflam-
mation [319-322].

It should be noted that this analysis is not com-
prehensive or unbiased. Complementary strat-
egies, including the use of alternative criteria 
for selection or statistical weighting of input 
genes as well as other schema for defining net-
work connections, might highlight different 
relationships. Nevertheless, this regulatory net-
work generates hypotheses for further investi-
gation and reflects, at the transcriptional level, 
many of the same pathways implicated by 
genetic studies of AD and PD. More broadly, a 
better understanding of altered transcriptional 
regulation patterns through whole genome 
expression arrays and whole transcriptome 
sequencing (RNA-seq) would augment GWAS 
findings in neurodegenerative disease and 
would provide functional information to con-
nect genetic associations with their biochemi-
cal outcomes.

Conclusions and future prospects

Through a detailed review of GWAS, we identi-
fied numerous pathways common to AD and PD 
which nominate promising new targets for fur-
ther study as well as biomarker and drug devel-
opment. These findings build on established 
notions of complex disease etiology, with mul-
tiple processes presumed to influence neuro-
degeneration and clinical outcomes in AD, PD, 
and related disorders. They also advance the 
understanding of mechanisms likely to be cru-
cial in maintaining brain structure and function 
during normal aging, in contrast to changes 
seen in AD and PD. These insights suggest that 
collaborative efforts to leverage genetic and 
biomarker data in AD, PD, and related disorders 
would likely provide major stimuli for develop-
ing unified treatment approaches to combat 
neurodegeneration.

For neurodegenerative and other complex dis-
eases, accounting for the substantial heritabil-

Figure 2. Regulatory network centered on the SP1 and AP-1 transcription factors is enriched with top AD and PD 
genes. Meta-analytic genetic association data from public databases and supplementary manual curation was 
used to generate a list of 13 AD genes and 15 PD genes. Network analysis was performed using MetaCore (GeneGo, 
Inc.) to relate these input genes to known transcription factors and proximal targets based on published findings. 
A highly interconnected network including 9 AD genes (labeled in blue), 10 PD genes (labeled in red), and 13 ad-
ditional genes (labeled in black) was identified. Many of the input AD and PD genes exhibit co-regulation by the SP1 
and AP-1 transcription factors. Other genes of interest were also related to input AD and PD genes and represent a 
variety of candidate pathways in neurodegeneration.
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ity that is not explained by individual GWAS-
implicated variants is an ongoing challenge [11, 
323]. The pathways and networks identified 
here provide several routes for addressing this 
limitation. For example, pathway analysis of 
GWAS data relies on high quality pathway defi-
nitions, and for some biological realms, expert 
and updated manual curation of pathways can 
be superior to public databases and enhance 
statistical power for these analyses [19, 20]. 
Pathways implicated by common SNPs from 
GWAS also provide a knowledge-driven frame-
work for targeting initial studies with WGS data, 
which is better suited for detection of rare SNPs 
and copy number and other structural variants 
but is computationally demanding to store and 
analyze [31]. Finally, interactions among known 
variants and lifestyle, environmental, and epi-
genetic factors may impact susceptibility [324], 
and pathways and networks understood to be 
involved in pathogenesis may be more likely to 
contain these interactions [36, 38].

Diagnosis and treatment strategies for neuro-
degenerative diseases may also need to evolve 
to reflect a complex genetic architecture involv-

ing multiple pathways. One possibility is that a 
combination of clinical biomarkers – such as 
genotype, blood and CSF analyte, brain imag-
ing, cognitive assessment, and medical history 
data – might be required in order to detect the 
effects of multiple pathways. Since the func-
tions of many disease pathways may be dis-
ease stage-specific, high blood levels of a par-
ticular cytokine might have different implica-
tions for risk stratification depending on geno-
type, brain structure, and other measures. 
Similarly, therapeutic and preventative strate-
gies for neurodegenerative disease may benefit 
from drug combinations based on the cocktail 
approaches used for HIV infection and some 
cancers. It is possible that efficacy, and there-
fore the choice of particular drugs to include in 
the cocktail, may depend on an individual’s pro-
file of biomarkers and key genetic variants – 
some of which may be protective and others 
deleterious – in targeted pathways. The devel-
opment of advanced statistical models for 
analysis of large, multimodal datasets will help 
to explore these potentially new paradigms that 
may facilitate a personalized medicine for neu-
rodegenerative diseases.

Figure 3. Biological pathways and networks: a hub for convergent omics. Numerous large scale omics approaches 
are being used to study complex neurodegenerative diseases and endophenotypes in human tissue and animal and 
other model systems. Unlike individual genes and other isolated molecules, which may not be present in all model 
systems and may have differential sensitivity for detection with various study designs, pathways and networks are 
well-conserved and can be evaluated for convergence across diverse methodological approaches. Integration of 
findings to identify pathways and networks with consistent relationships to disease is likely to enhance the develop-
ment of diagnostic biomarkers and treatment and prevention strategies.
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More broadly, pathways and networks can 
serve as vehicles for integrating findings from 
diverse studies of neurodegeneration. There 
are many active strategies for large scale omics 
analysis of neurodegenerative disease (Figure 
3), and findings that converge across these 
multiple study designs can provide confirmato-
ry evidence that is crucial for efficient clinical 
translation. Isolated genes and molecules can 
be challenging to evaluate for convergence 
since they may not be represented in all data 
modalities or experimental model systems. In 
contrast, pathways and networks can incorpo-
rate data from multiple biological levels (e.g., 
genes, transcripts, proteins, and metabolites, 
among others) and may be more likely to be 
evolutionarily conserved [325]. For example, 
recent pathway-based studies integrating 
GWAS and gene expression data have demon-
strated enhanced power, reproducibility, and 
connections of top findings to hypothesized dis-
ease processes [127, 326, 327]. The utility of 
these studies will increase as present limita-
tions of pathway-based approaches are 
addressed, including how to incorporate asso-
ciations from intergenic regions and from genes 
without known functions. A pathway-based 
framework also emphasizes that the discovery 
of a strongly associated genetic variant repre-
sents a foundation to study functionally related 
genes, since other components in the pathway 
may yield better targets for biomarker and drug 
development [29, 30, 328]. These advantages 
will be vital in harnessing the wealth of existing 
data on neurodegenerative disease to develop 
an integrated understanding of its mechanisms 
and formulate optimal clinical guidelines.
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