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Abstract: Neurosurgical evidences show that the aging process is initiated between 25 to 30 years of age, in the ar-
cuate nucleus of the hypothalamus. Likewise, experimental and neurosurgical findings indicate that the progressive 
ischemia in the arcuate nucleus and adjacent nuclei are responsibles at the onset of obesity and, type 2 diabetes 
mellitus in adults, and essential arterial hypertension (EAH). On the contrary, an omental transplantation on the 
optic chiasma, carotid bifurcation and anterior perforated space can provoke rejuvenation, gradual loss of body 
weight, decrease or normalization of hyperglycemia and normalization of EAH; all of them, due to revascularization 
of the hypothalamic nuclei. Besides, our surgical method have best advantages than the bariatric surgery, against 
obesity and type 2 diabetes mellitus.
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Introduction

To date, almost all researchers conclude that 
several challenging diseases such as aging, 
obesity and type 2 diabetes mellitus (DM) in 
adults and, essential arterial hypertension 
(EAH); all of them are of etiology unknown. 
However, based on neurosurgical experiences 
[1-5], my colleagues and I believe that these 
diseases have ischemic origin in the hypothala-
mus, because its revascularization by means of 
an omental transplantation on the optic chias-
ma, carotid bifurcation and anterior perforated 
space, it can provoke rejuvenation [1], weight 
loss [2], decrease of the circulating levels of 
blood glucose [4, 6] and normalization of EAH 
[7].

Thereby, in this review article I will analyze the 
involved hypothalamic structures in the patho-
genesis of these diseases, especially anatomi-
cal and pathological findings at the circle of 
Willis observed during an omental transplanta-
tion at the chiasmatic región.

Hypothalamus and its normal vascularization

A diencephalic structure, the hypothalamus 
(constituted by about 11 major nuclei), has a 

mean height of 10-mm and a mean anteropos-
terior diameter of 15-mm, and weight about 
4-gr in the average adult human Brain [8, 9]. It 
is a neuroendocrine structure very vascularized 
by anterior perforating arteries and a fenestrat-
ed capillaries network [10-16]. On the other 
hand, the hypothalamus has many neural con-
nections of afferent fibers (retino-hypothalamic, 
fronto-hypothalamic, spino-hypothalamic and 
tegment-hypothalamic) and, afferent and effer-
ent fibers with the amygdala (through the stria 
terminalis and ventral amygdalofugal path-
ways), septal area, hippocampus (through the 
fornix, the hippocampal formation exerts an 
excitatory function, especially on the arcuate 
nucleus and ventromedial nuclei, VMN), mid-
brain (through the dorsal longitudinal fasciculus 
and mammilo-tegmental tracts) and spinal cord 
(spino-hypothalamic tracts, through somato-
sensory fibers that provides input necessary for 
orgasm, and hypothalamic-spinal tracts,which 
projects to the dorsal motor nuclei of the vagus 
(DMNV) and finally, to preganglionic sympathet-
ic and parasympathetic neurons in the spi- 
nal intermediolateral cell column [6, 17-23]. 
Besides the fornix, VMN receives numerous 
fibers from the amygdala through the stria 
terminalis.
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Normally the mediobasal portion of the hypo-
thalamus obtains its blood supply from three 
origins [10, 12, 13, 15, 16, 24, 25]. 1) Superior 
hypophyseal arteries (SHAs) originated from 
the ophthalmic segments of the supraclinoid 
carotids in the 95% of cases, it are a group of 
one to five small branches (average diameter, 
0.22-mm) that terminate on the pituitary stalk 
and gland, optic chiasma and nerves, and in 
the floor of the third ventricle; 2) Infundibular or 
premammillaary arteries are also a group of 
arteries arose from the proximal third of the 
posterior communicating arteries (PCoAs) and 
are distributed in the infundibulum. Some of 
these infundibular arteries are originated from 

the median eminence and arcuate nucleus is 
by means of fenestrated capillaries [11-14].

A small part of the hypothalamus located in the 
mediobasal portion and on either side of the 
third ventricle and just above the median emi-
nence, it correspond to the producing hypotha-
lamic nuclei (lowermost portion of the VMN, 
arcuate nucleus and both tuber  cinereum) of 
growth hormone-releasing hormone (GHRH). 
The arcuate nucleus (Figure 1) is constituted by 
small cells such as dopamine (A12 cell group), 
luteinizing hormone-releasing hormone (LHRH), 
GHRH, neuropeptide Y (NPY), vasoactive intes-
tinal peptide (VIP), ghrelin neural, Agouti-related 

Figure 1. Mediobasal portion of the hypothalamus and its vascularization by 
arterioles and small arteries, showing to the arcuate nucleus. F, fornix. VMN, 
ventromedial nuclei. DMN, dorsomedial nuclei. LHA, lateral hypothalamic 
áreas. TC, tuber cinereum. OT, optic tract. BDNF, brain-derived neurotrophic 
factor. GHS, growth hormone secretagogues. Adapted from reference [27].

SHAs and by contrast, in the 
5% of cases, the SHAs are aris-
ing from the PCoAs and finally, 
3) Some perforating branches 
are originated directly from the 
communicating segments of 
the supraclinoid carotids.

The SHAs and infundibular 
arteries pass medially below 
the chiasma to reach the tuber 
cinereum. In most cases, this 
vascular standard has ana-
tomical variants in relation to 
number, caliber and distribu-
tion of these perforating arter-
ies [12, 13, 15, 16, 24]. At 
grade infundibular these arter-
ies form a fine circuminfundib-
ular plexus, which gives rise to 
small arteries (range 0.07 to 
0.40-mm of caliber) and arteri-
oles to the basal and medial 
portions of the hypothalamus 
to form subependymal capil-
laries plexus, surrounding the 
third ventricle, as well as in the 
median eminence [10-12, 14, 
15, 26]. In the hypothalamic 
parenchyma, there are not 
end-arteries, but on the con-
trary, their terminal branches 
have anastomoses which 
branches of other origins as 
anterior perforating arteries, 
posterior perforating arteries 
and medial lenticulostriate 
arteries [9, 10, 12, 13, 24]. 
Thus, the vascularization in 
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protein (AgRP), Cocaine amphetamine-regulat-
ed transcript (CART) and proopiomelanocortin 

preoptic nuclei [19, 45, 46] and orexinergic sys-
tem [21, 39, 43], they terminate in the DMNV 

Figure 2. Afferent and efferent fibers of the hypothalamus. Schematic repre-
sentation of the hypothalamic-pituitary-adrenal and hypothalamic-autonom-
ic-renal axes. The excitation of the sympathetic pathway is related which 
neurogenic hypertension; whereas the two others with type 2 Diabetes. 
MTL, medial temporal lobes. PLA, prefrontal limbic áreas. DMNV, dorsal mo-
tor nuclei of the vagus. PSF, preganglionic sympathetic fibers. Adapted from 
reference [6].

(POMC) neurons, as well as 
ependymal cells and tanycytes 
[9, 25, 27-31]. Moreover, 
unlike the presence of adult 
stem cells located in the sub-
ventricular zone (SVZ) of the 
lateral ventricles during whole 
the adult life [32-34], it seems 
that these neural stem cells in 
the SVZ of the third ventricle 
[35-37], it are scarce or do not 
exist after the 30 years of age 
[27, 33] due to a vascular 
deterioration and progressive 
decrease in the number of 
neurons which age [9, 27, 38, 
39].

The NPY, AgRP and ghrelin 
neural cells are orexigenic 
neurons (inductor of the appe-
tite) with excitatory function 
through the NPY, ghrelin and 
AgRP neuropeptides on the 
orexigenic neurons distributed 
in the lateral hypothalamic 
área (LHA), perifornical área, 
dorsomedial nuclei (DMN) and 
the caudal portion of the para-
ventricular nuclei (PVN) [20, 
25, 26, 31, 40]. In the arcuate 
nucleus, the ghrelin-contain-
ing neurons send efferent 
fibers onto POMC neurons to 
supress the release of this 
anorexigenic peptide [31]; 
whereas other axons of the 
ghrelin neurons acts on NPY 
neurons in the PVN, which in 
turn suppress GABA release, 
resulting in the stimulation of 
corticotropin-releasing hormo 
ne (CRH)-expressing neurons.

Some orexigenic neurons from 
the LHA and perifornical área 
send descending axons to ter-
minate in the ventral tegmen-
tal area, rostral raphe pallidus, 
nucleus of the tractus solitari-
us and DMNV [18, 37, 39, 
41-44]. Then, descending pro-
jections originated from the 
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and, through the parasympathetic división of 
the vagus nerves (Figure 2), the gastric, pan-
creatic and biliar secretion are increased. So, 
the digestión of proteins, lipids and carbohy-
drates are favored and the plasma levels of glu-
cose amino acids and lipids are increased. 
Therefore, the chronic excitation of this para-
sympathetic pathway from the hypothalamus 
are related, in part, with the overweight and 
obesity [6, 19].

The POMC and CART neurons are anorexigenic 
cells (inductor of the satiety) with inhibitory 
function through the POMC and alpha-melano-
cyte stimulating hormone (alpha-MSH) neuro-
peptides on the anorexigenic neurons distrib-
uted in the DMN, PVN, perifornical área and the 
LHA [25, 31, 47, 48]. The VMN comprises main-
ly of glutamatergic neurons with exciting func-
tion on the orexigenic neurons [25, 41]. Lesions 
of these nuclei result in obesity driven by exces-
sive food intake, indicating that, it has an 
important role in satiety, and by contrast, dam-
age to the LHA can cause reduced food intake 
[49]. Likewise, low-frequency electrical stimula-
tion to the LHA cause a desire to eat, while 
stimulating the VMN causes a desire to stop 
eating [41, 49, 50].

The hypothalamic-pituitary-adrenal (hpa) axis

The paraventricular nuclei (PVN) contains neu-
roendocrine neurons that synthezise and 
secrete vasopressin and corticotropin-releas-
ing hormone(CRH). Parvocellular neurons with-
in the PVN send short axons to terminate in the 
median eminence, wherein they secrete CRH. 
Thus, the hyperfunction of the HPA axis (also 
known as the limbic-hypothalamic-pituitary-
adrenal (LHPA) axis) by stress can cause an 
increase in the serum ACTH and cortisol levels, 
which is implicated in the overweight, because 
the endogenous cortisol stimulates the secre-
tion of gastric acid [18, 51]. Then, the chronic 
hyperfunction of this HPA axis may cause obe-
sity and type 2 DM [6, 52, 53]. Therefore, the 
parasympathetic pathways and the HPA axis 
,both of them can provoke the accumulation of 
fat tissue in the liver, omentum and subcutane-
ous tissue, among other regions.

Currently the adipose tissue is considered as 
an endocrine organ [54-57] by producing 
numerous adipocytokines, which include both 
pro-inflammatory and anti-inflammatory mole-

cules with an ample biological activity [55, 56, 
58-60]. However two adipocytokines, tumor 
necrosis factor alpha (TNF-alpha) and resistin, 
both are closely associated with the develop-
ment of insulin resistance in peripheral tissues 
such as skeletal muscle and the liver [56, 58, 
61], to interfere with the insulin at grade of its 
receiving located in the celular membrane [58, 
62, 63]. That is, glucose does not enter into 
cells after it has attacked to its insulin receptor. 
Both cytokines, TNF-alpha and resistin are pro-
teins with potent inflammatory effects [62, 64]. 
Therefore, aspirin can improve the dysfunction 
of endotelial cells in arteries [65, 66] and per-
haps, to prevent damage to the insulin receptor 
caused by the cytokines. For example, a 
75-year-old woman with history of type 2 DM 
between 45 to 55 years of age, she received 
metformin, Bi-Euglucon M and glibenclamide, 
and then, besides this anti-diabetic therapy, 
she received diclofenac, ibuprofen and aspirin 
by osteoarthritis in fingers, wrists and knees. 
But about 60 years of age, she presented peri-
ods of hypoglycemia. For these reasons, she 
suspended willfully the anti-diabetic therapy. 
Since then and until her death, she received 
only 500 mg% of aspirin per day and glycemias 
of 80 to 110 mg% [65]. 

The macrophages and mononuclear leukocytes 
of the adipose tissue are the primary source of 
TNF-alpha and resistin and, its production is 
increased in obese people [55-57, 61]. In addi-
tion to these two cytokines, the insulin receptor 
(a glycoprotein) can also be antagonized by the 
cortisol, growth hormone, glucagón and cate-
cholamines and by contrast, is actived by insu-
lin and insulin-like growth factor-1 (IGF-1) [60, 
63]. Therefore, type 2 DM in obese children and 
adolescents is related, essentially, with insulin  
resistance [19, 54]; meanwhile in adults, with 
progressive ischemia in the arcuate nucleus 
and adjacent nuclei of the hypothalamus [1, 3, 
6, 65].

The hypothalamic-autonomic-renal (har) axis

Like other neurological diseases [19, 27, 67], 
arterial hypertension is considered a challeng-
ing disease for medical communicating in spite 
of neurosurgical experiences since 1973, when 
was performed the first vascular decompres-
sion of the lateral medulla and/or 9th-10th cra-
nial nerves [68]. Since then and to date, several 
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surgical techniques are used against arterial 
hypertension [5, 7, 69-71].

To date, the medical communicating continu-
ous whereas there are two types of arterial 
hypertension. The first, essential arterial hyper-
tension (EAH) whose etiology is unknown and it 
represent, 90 to 95% of all cases of hyperten-
sion, and the second, secondary arterial hyper-
tension (SAH) caused by coarctation of the 
aorta, pheochromocytoma and renal disease, 
among others. At least, five áreas are related 
with neurogenic hypertension (main represen-
tative of EAH) [4, 18, 72-76]. 1) baroreceptors 
in the aortic arch and carotid sinus, 2) the car-
diovascular réflex center (CRC) of the nucleus 
solitarius; 3) the A1/C1 cell groups, 4) the A2/
C2 cell groups, and 5) lateral and posterior 
hypothalamus (the ergotropic triangle). Neuro- 
surgical evidences has, however, demonstrat-
ed that of these áreas, the posterior hypothala-
mus is the main component responsible for 
neurogenic hypertension by means of two path-
ways of increased activity [4, 5, 7, 18, 73, 74]. A 
principal, constituted by 1) the posterior hypo-
thalamic nuclei (PHN) and the A1/C1 cell 
groups, 2) the intermediolateral cell columns of 
the spinal cord (T1-L2), 3) the sympathetic ner-
vous system, 4) the adrenal medulla ,and 5) the 
juxtaglomerular apparatus of the kidney (origin 
of the renin-agiotensin system); and An acces-
sory, integrated by 1) PVN, LHA and PHN, 2) the 
pituitary gland (the origin of ACTH), and 3) the 
adrenal cortex (origin of the cortisol), as is 
showed in the Figure 2.

Recently have reported 60 patients which EAH 
and cerebrovascular diseases [7]. All of them 
received an omental transplantation on the 
carotid bifurcation and anterior perforated 
space. In the 80% of cases, AEH was normal-
ized during the first weeks after surgery and 
without anti-hypertensive treatment, and in the 
rest of cases, during the first 6 months. 
Likewise, into 36 patients the cardiac silhou-
ette was reduce of size. Therefore, SAH consti-
tute the immense majority of cases with arteri-
al hypertension, because the etiology is proved 
(neurogenic hypertension, coarctation of the 
aorta, pheochromocytoma, and renal disease, 
among others). A conclusión opposite to the 
established up to now by the medical communi-
cating [77].

The gastro-hypothalamic axis

Ghrelin is a neuropeptide produced predomi-
nantly in the stomach (gastric ghrelin), espe-
cially in the fundus than in the pylorus [48, 78] 
and is an endogenous ligand of the ghrelin 
receptor, also known as growth hormone secre-
tagogue receptor (GHS-R) [78, 79]. Ghrelin 
secretion has a circadian rhythm with an 
increase before each meal and a reduction 
after food intake. This preprandial increase 
plays a role in prompting food intake [48, 57]. 
Normally this hormone is one of the most pow-
erful orexigens acting on the ghrelin receptor of 
the NPY and AgRP neurons in the arcuate 
nucleus and VMN of the hypothalamus [26, 57, 
80-82]. That is, gastric and hypothalamic ghre-
lin stimulates the synthesis of NPY and AgRP 
neuropeptides and both hormones exert an 
excitatory function on the orexigenic neurons. 
Likewise, GHRH neurons are also targets of 
ghrelin [83-85] and therefore, the ghrelin facili-
tates GHRH secretion from the arcuate nucle-
us. Moreover, oral administration of MK-677 
(an oral ghrelin) [86], capromorelin (other orally 
active ghrelin agonist) [87] and other synthetic 
growth hormone secretagogues act on the 
same GHS-R in the hypothalamus.

In conclusion, normally circulating exogenous 
and endogenous ghrelin can freely and rapidly 
diffuse from the fenestrated capillaries in the 
median eminence and arcuate nucleus and, to 
exert their action on the GHS-R [26, 79]. So 
that, ghrelin have two essential functions. First, 
it stimulate the synthesis and secretion of 
GHRH [1, 17] and Second, ghrelin stimulates 
appetite by acting on NPY and AgRP neurons 
[31, 81, 87]. Accordingly, this gastro-hypotha-
lamic axis is very important in the childhood 
and adolescence for the growth and develop-
ment, and by contrast, in healthy older adults 
can favor the rejuvenation [9, 86].

The adipose tissue-hypothalamic axis

The adipocytokine, leptin is a peptide hormone 
secreted principally but not exclusively by adi-
pocytes [54, 88]. Serum leptin levels are signifi-
cantly associated with body-mass index, ie., 
with the amount of adipose tissue [56, 58]. 
Thus, the circulating leptin levels in normal 
adults is of 11.5 (6.35-20) ng/ml and in obese 
adults, 22 (13.5-44) ng/ml [54]. That is, in 
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obese subjects the circulating level of the 
anorexigenci hormone leptin is increased; 
whereas surprisingle, the levels of the orexigen-
ic hormone ghrelin is decreased [79, 89]. 
However, in obese subjects, generally the appe-
tite is increased.

At the level of the arcuate nucleus of the hypo-
thalamus, leptin exerts an inhibitory action on 
the leptin receptor (ob-R, also known as LEP-R) 
[56, 90] of the NPY and AgRPneurons and by 
contrast, POMC and CART neurons are actived 
by hormone leptin [42, 91, 92]. In other words, 
leptin stimulates the anorexigenic pathway and 
inhibits to the orexigenic pathway; both of them 
originate in the arcuate nucleus.

Therefore, VMN is a potential target for leptin’s 
anti-diabetic effects because leptin-sensitive 
neurons in these nuclei are implicated in glu-
cose homeostasis [93, 94]. So that, normally 
the leptin acts in the arcuate nucleus and adja-
cent nuclei to reduce body weight and fat mass 
[95, 96] and on the contrary, loss of the leptin 
receptor or a deficiency of leptin in the circula-
tion results in hyperphagia, obesity and type 2 
DM [88, 97]. In base to neurosurgical experi-
ences [2, 7]. I believe that the obese adults are 
not leptin-resistant [89], but that there is not 
penetration of leptin inside the arcuate nucle-
us. Moreover, in the hypothalamus [98] and cir-
culating brain-derived neurotrophic factor 
(BDNF) levels [99] can also act in the control 
eating, drinking and body weight. Since this 
protein exert as nerve growth factor and so, 
promotes the dendritic spine reorganization 
into the hypothalamus and hippocampal forma-
tion, among other cerebral áreas [100, 101].

In conclusion, the circulating leptin and BDNF 
levels and its penetration in the arcuate nucle-
us and adjacent áreas, both have inhibitory 
action on the appetite. ie., both of them cause 
a desire to stop eating. A different conclusión to 
the bariatric surgery procedures (gastric sleeve 
and band ,among others) to lose body weight. 
Likewise, BDNF is essential for the develop-
ment of the central nervous system and for 
neuronal plasticity.

The hypothalamic-pituitary-gonadal (hpg) axis

Normally from both temporal lobes, all sensory 
modalities (especially,sexual excitation) are 
send to the hypothalamus through the fornix 
[22, 23, 46] and moreover, it receive also sen-

sory impulses from the spinal cord. So that, 
LHRH neurons located in the arcuate nucleus 
and preoptic área [93] are stimulated by sexual 
impulses through glutamatergic axons originat-
ed from the hippocampal formation. The pulsa-
tile LHRH secretion from small neurons located 
in the arcuate nucleus and preoptic área are 
transported through unmyelinated axons in the 
median eminence. Then, this hormone is 
released into a network (primary plexus) and 
transported through veins (hypophyseal portal 
veins) to a secondary capillaries network (sec-
ondary plexus) that supplies the adenohypoph-
ysis. Here, LHRH acts on the gonadotrophs to 
provoke the liberation of follicle stimulating hor-
mone (FSH) and luteinizing hormone (LH) to the 
blood strem [20, 83, 102]. The secretion of 
FSH occurs when the pulsatile frequency of 
LHRH is low and by contrast, LH when is high. 
Both sexual hormones have biological action in 
the ovaries and testicles [83, 103]. The LHRH 
activity is very low during childhood and is 
actived at puberty or adolescence. There are 
differences in LHRH secretion between females 
and males. In males, LHRH is secreted in puls-
es at a constant frequency; However, in females 
the frequency of the pulses varies during the 
menstrual cycle and there is a large surge of 
LHRH just before ovulation [104]. Therefore, 
the stimulation frequent of this HPG axis may 
favor the growth and function of the sexual 
organs and  besides, to provoke rejuvenation 
[1, 27, 39].

Hypothalamic dysfunction and omental trans-
plantation

Between 25 to 30 years of age, the cerebral 
blood flow decline progressively to means val-
ues of adults [9, 27, 105] and in general, start-
ing from 50 years the cerebral blood flow and 
glucose consumption are reduced still more 
[105, 106]. Deterioration circulatory that coin-
cides which appearance of atheromatous 
plaques in the supraclinoid carotids [106-108] 
and it observed into patients who received 
omental transplantation on the optic chiasma, 
carotid bifurcation and anterior perforated 
space for patients with ischemic optic chiasma 
[109, 110], Huntington’s disease [67, 111], 
Alzheimer’s disease [112-116] and neurogenic 
hypertension [4, 7, 74].

In addition to the anatomical variants of the 
circle of Willis and its branches [117-119], the 
atheromatous plaques located at the mouths 
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of the superior hypophyseal, infundibular and 
anterior perforating arteries are responsibles 
of progressive ischemia in the adenohypohysis 
and mediobasal portion of the hypothalamus. 
Thus, this mediobasal portion do not receive 
suitably the amount of ghrelin, leptin, BDNF 
and oxygen, among other substancias from the 
circuminfundibular plexus; because several 
anterior perforating arteries are exsanguines 
[1, 6, 7, 27].

On May 1998, we transplanted omental tissue 
to a 75-year-old woman with history of type 2 
DM, attacks of daytime sleepiness and mild 
Alzheimer’s disease. After surgery, we observed 
complete reversal of the three clinical data [3, 
110, 116]. In my opinión, the reversal of these 
periods of somnolence was due to functional 
recovery of the orexin neurons; because in con-
trast to this, the loss of these neurons in 
humans is associated with the sleep disorder  
narcolepsy [44, 120]. On March 2003, we 
report to two patients with history of cerebro-
vascular disease, obesity and EAH whom 
received an omental transplantation. After sur-
gery, they experienced neurological improve-
ment, loss of weight (the reduction of the 
abdominal obesity was evident) and normaliza-
tion of arterial hypertension [2]. I think that, this 
gradual loss of body weight, without no food 
restriction was due to supression exerted by 
leptin on the NPY and AgRP neurons in the 
arcuate nucleus [89, 95, 121]. A surgical meth-
od against obesity [2] and very different to the 
bariatric surgery procedures. Likewise, on 
January 2004, we transplanted omental tissue 
to a 82-year-old man with history of type 2 DM, 
EAH, cerebrovascular disease and erectile dys-
function. After the operation, he presented 
neurological improvement, normal levels of cir-
culating blood glucose, normalization of EAH, 
rejuvenation and sex life with  erection and 
orgasm in 3 or 4 times a month [1, 3]. 
Neurological findings suggestive of a functional 
recovery of residual neurons in the arcuate 
nucleus and adjacent nuclei [1, 7, 9, 27, 74]. 
Then the excessive food intake into obese 
patients is due to short of penetration of leptin 
in the arcuate nucleus [2] and by contrast, 
action of ghrelin neural cells on the NPY and 
AgRP neurons within the hypothalamus [31]. 
For these reasons, the obese patients have the 
appetite increased.

I believe that these neurosurgical observations 
were due to the omentum by two reasons [33, 

56, 58, 122-125]. First, because the omentum 
is the best tissue for developing vascular con-
nections with underlying and adjacent zones 
and second, it provide omental stem cells for 
neurogenesis and neuronal regeneration in the 
hypothalamic nuclei. In other words, this surgi-
cal technique can produce anatomical and 
functional improvement of the hypothalamus 
and so, to improve or normalize the function of 
many neuroendocrinological disorders of hypo-
thalamic origin

Conclusions

Like aging, Huntington’s disease, Alzheimer’s 
disease, Parkinson’s disease and amyotrophic 
lateral sclerosis [9, 27, 67, 112, 126]. I believe 
that obesity in adults, type 2 DM in people 
adults, EAH and narcolepsy have also ischemic 
origin, in one or several hypothalamic nuclei. 
Progressive ischemia which is caused by ath-
erosclerosis in the supraclinoid carotids and 
associated with vascular  anomalies of the cir-
cle of Willis.

In contrast to this, its revascularization by 
means of omental tissue provoke complete 
reversal or improvement of these diseases. 
Because the omental tissue placed on the 
optic chiasma, carotid bifurcation and anterior 
perforated space promotes the neoformation 
of blood vessels and, through omental pene-
trating vessels into the underlying and adjacent 
brain, transports neurotransmitters, cytokines, 
and neurotrophic factors. Thus, the hypotha-
lamic nuclei receives an increase in blood flow, 
leptin, ghrelin, oxygen, and omental stem cells, 
to maintain the neuroendocrine regulation of 
the hypothalamus. In other words, in my opin-
ión, the hypothalamic revascularization with 
omental tissue in adult patients with obesity 
and type 2 DM have best advantages than the 
bariatric surgery procedures.
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