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Abstract: Applications of various positron emission tomography (PET) tracers for assessing atherosclerosis have 
been evolving over the years. 18F-fluorodeoxyglucose (FDG)-PET was introduced in 2001 as a probe for this purpose. 
During the past decade, numerous papers have described a major role for sodium 18F-fluoride (NaF) as another trac-
er for assessing this vascular disease. We have reviewed the existing data about the merits of both techniques for 
assessing atherosclerosis. We have to emphasize that our team has been actively involved in conducting research 
with both tracers over many years. In this review, we have relied upon the data from the CAMONA study which has 
become a gold standard for defining the role of PET imaging in atherosclerosis. This study was one of the largest of 
any in recent years and has allowed comprehensive comparison between these two tracers in detecting and quan-
tifying atherosclerosis. Based on what we have learned from this major undertaking, we believe the role of FDG-PET 
will be limited in assessing atherosclerosis in clinical work-up. This is relevant to both major and coronary arteries. In 
contrast to NaF-PET, the role of FDG-PET in assessing coronary artery atherosclerosis is almost non-existent. Based 
on the existing data in this domain, NaF-PET is an ideal imaging modality for both research and clinical assessment 
of atherosclerosis. The aim of this review is to describe the pros and cons of both approaches based on the existing 
data in the literature.
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Introduction

The underlying cause of coronary heart dis-
ease, peripheral artery disease and cerebro-
vascular accidents is atherosclerosis. These 
cardiovascular diseases count for the majority 
of mortality and morbidity in the Western coun-
tries [1, 2]. Effective strategies to identify ath-
erosclerotic disease early in the course of the 
disease, as well as to quantify the extent dis-
ease burden are therefore of great interest in 
this setting. The atherosclerotic process is 
complex and multi-factorial and begins in early 
decades of life and progresses in the ensuing 
years [3].

Endothelial cell dysfunction is believed to un- 
derlie the pathogenesis of atherosclerosis [4]. 
Briefly, both hyperlipidemia and hypertension 
promote an upregulation of endothelial cell 
adhesion molecules [5], which leads to the 
recruitment of inflammatory cells and the acti-
vation of inflammatory cascade, including pla- 
telet activation, deposition of lipid plaques, 
smooth muscle proliferation, vessel micro-cal-
cification- and, ultimately, macro-calcifications 
(Figure 1) [2, 6]. Oxidation of modified lipopro-
teins in the atheromatous plaque and secretion 
of pro-inflammatory cytokines by macrophag- 
es promote osteogenesis and formation of hy- 
droxyapatite crystals lead to the vulnerability of 
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the plaque to further damage and possible rup-
ture [7, 8]. The calcification of atheromatous 
plaques starts as areas of molecular micro-
calcification that may further progress to struc-
tural macro-calcification. The underlying inflam-
matory mechanisms and the promoted ac- 
tivated molecular calcification of plaques are 
asymptomatic and progress gradually. Thus, 
diagnostic methods that can detect atheros- 
clerosis early prior to the incidence of cardio-
vascular diseases and while the disease is still 
treatable are of great importance [9, 10].

Modern imaging modalities, such as ultraso-
nography, computed tomography (CT), and ma- 
gnetic resonance imaging (MRI) angiography, 
are all widely used clinically to identify gross 
symptomatic plaques but have significant limi-
tations in the detection of early stages of ath-
erosclerosis when the plaques are biologically 
highly active [8, 11]. Positron emission tomog-
raphy (PET) allows examining the pathological 
and biologically active features of atheros- 
clerotic disease at the molecular level [6]. 
18F-fluorodeoxyglucose (FDG) and sodium 18F- 

fluoride (NaF) are the most commonly used  
PET tracers for detecting atherosclerosis. FDG 
is taken up by the activated macrophages in 
the plaques [12-14], while NaF is deposited at 
the sites of micro-calcification due to physico-
chemical exchange of the 18F- ion with the 
hydroxyl group in hydroxyapatite [15-17]. Thus, 
PET/CT imaging with FDG and NaF has the abil-
ity to assess atherosclerotic disease at the 
molecular phase of the disease when the pro-
cess may still be reversible.

FDG-PET as a molecular probe in atheroscle-
rosis

FDG-PET imaging for detecting atherosclerotic 
plaques was reported in 2001 by investigators 
at the University of Pennsylvania [1, 2, 18]. This 
observation was interpreted to reflect the pres-
ence of activated macrophages in the athero-
sclerotic plaques which are highly glycolytic. 
This observation eventually led to the adoption 
of FDG-PET/CT imaging by various groups to 
detect and characterize atherosclerotic plaqu- 
es [19-29]. During the past 2 decades, numer-

Figure 1. Progression from healthy arteries to complicated lesions. FDG and NaF uptake have long been known 
to precede vascular calcification evident on CT and intravascular ultrasonography (IVUS). The paradigm shift is 
the stronger predictive power of NaF uptake and the occurrence of active calcification measured by NaF uptake 
in early coronary fatty streaks and preatheroma (CAC coronary artery calcium) (Reproduced with permission from 
McKenney-Drake ML et al.) [39].
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ous publications have reported some evidence 
for FDG-PET’s sensitivity in detecting plaques, 
particularly in major arteries such as the aorta 
[30-33]. However, FDG’s non-specificity and its 
uptake in other tissues in the arterial wall such 
as smooth muscles has raised some concerns 
about the role of this approach in assessing 
suspected atherosclerotic plaques [34, 35]. 
Also, the fact that plaques are very small in size 
and are subject to constant motion due to  
cardiac cycle, have led to decreasing level of 
enthusiasm for adopting FDG-PET imaging as 
an optimal modality for assessing atheroscle-
rotic plaques [36]. Furthermore, the significant 
uptake of FDG in the myocardium has prevent-
ed using this technology in detecting athero-
sclerosis in the coronary arteries, which is a 
main cause of morbidity and mortality in th- 
is population. Therefore, what is visualized by 
FDG in the arterial wall likely reflects uptake  
by a mixture of cells in addition to the macro-
phages in the plaques.

NaF-PET as a molecular probe in atheroscle-
rosis

NaF imaging was introduced in the early 1960s 
as a radiotracer for examining osseous lesions 

in the skeleton but was abandoned soon after 
the introduction of technetium labeled phos-
phates in the early 1970s [37]. During the past 
decade, the interest in NaF has been revived 
due to its ability to detect molecular calcifica-
tion in the plaques [17, 38, 39] and possibly in 
other organ structures [40-42]. This tracer is 
only taken up at the sites of active calcification/
ossification and no other organs or disease pro-
cesses are the targets for this tracer [43]. Also, 
NaF is rapidly cleared from the circulation and 
by 60-90 minutes, the content of this tracer in 
the circulation is very minimal and therefore a 
high contrast is reached between the sites  
of calcification and the background activity 
(Figure 2) [6].

In order to overcome the shortcomings of FDG-
PET imaging in the assessment of atheroscle-
rotic plaques, efforts have been made to deter-
mine the role of NaF-PET imaging in this domain 
[44]. Extensive data generated by many investi-
gators around the world have shown the superi-
ority of NaF-PET as a molecular probe over 
FDG-PET with regards to its sensitivity and 
specificity in detecting and characterizing this 
serious arterial disease [39, 45-48]. The fact 
that NaF can be used to detect plaques in the 

Figure 2. Transverse images (left CT, middle PET, right PET/CT) of the heart (green circles) in two clinically normal 
subjects (A, 25 years old, B, 61 years old). The global cardiac calcification scores were 12,492.44 in subject A and 
18,424.70 in subject B. Normalizing the values to background NaF uptake increases the discrepancy between the 
subjects, resulting in 2.18 times the uptake in subject B than in subject A. Corresponding to the sites of NaF up-
take in subject B, no structural calcification is seen on the corresponding CT scan and there is significant disparity 
between the PET and CT results. This is not an uncommon observation in this setting and clearly demonstrates the 
basis for assessment of cardiovascular calcification with these two different imaging modalities. While molecular 
imaging with NaF detects the earliest evidence for vascular calcification, evidence for calcification on CT largely re-
flects an end-stage disease process and therefore may be an irreversible pathologic state. Disparity between these 
two observations provides evidence for stage of calcification and has implications for the irreversibility of macrocal-
cification (Reproduced with permission from McKenney-Drake ML et al.) [39].
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coronary arteries is a major advantage for this 
tracer [6, 49]. Uptake of NaF can be quantified 
more accurately and precisely than that of FDG, 
and this is another significant advantage of this 
radiotracer for assessing atherosclerosis (Fi- 
gure 1) [39]. Therefore, the future of PET based 
molecular assessment of atherosclerotic pla- 
ques will heavily rely upon NaF based imaging 
techniques [50].

Limitations and challenges of PET imaging in 
assessing atherosclerosis

The challenges that we face assessing athero-
sclerotic plaques are related to the limited spa-
tial resolution of PET in detecting submillimeter 
lesions in various arterial structures in the 
body. While the spatial resolution of PET in 
phantom studies is in the range of 3-5 mm, in 
the human body it deteriorates substantially to 
8-10 mm [51]. This poses a major challenge in 
detecting and characterizing a variety of dis-
eases including atherosclerosis. In the early 
stages of the disease, these plaques are no 
more than a few hundred microns in size in 
most arteries and, therefore, PET imaging tech-
niques will fail to detect such subtle abnormali-
ties anywhere in the arterial system [36]. 
Furthermore, many tracers including FDG that 
have been proposed for detecting plaques 

remain in the circulation for an extended period 
of time [14, 52]. The degree of uptake of trac-
ers that have been proposed for assessing ath-
erosclerosis is also of great importance in 
determining the role of PET as a molecular 
probe to detect and characterize the plaques. 
Therefore, efforts must be made to employ 
tracers that have high affinity for the ingredi-
ents of the plaques and minimal uptake in the 
adjacent structures. FDG scanning in particular 
is prone to poor contrast resolution due to non-
specific uptake in many tissues that are adja-
cent to arteries and this significantly affects the 
sensitivity and specificity of this tracer in this 
domain [6, 53, 54]. Accordingly, tracers with 
significant nonspecific uptake in the arterial 
wall structures and slow clearance from the cir-
culation will be of limited value in detecting and 
characterizing atherosclerotic plaques (Figure 
3) [35].

Molecular imaging of coronary artery athero-
sclerosis is particularly a challenging territory. 
The main challenge relates to the combined 
effects of cardiac and respiratory motions dur-
ing data acquisition over an extended period of 
time. The constant and combined movements 
make it almost impossible to assess focal up- 
takes of the intended tracers (including FDG 
and NaF) at the targeted sites. While cardiac 
and respiratory gating has been proposed as a 
possible solution to correct for these unde- 
sirable movements, the success of such app- 
roaches is unproven. The questionable role of 
such efforts is particularly applicable to dia-
phragmatic movement, which is very irregular 
and cannot be corrected by adopting standard 
gating approaches [55, 56]. Therefore, improv-
ing the spatial resolution of PET for imaging 
focal plaques in the coronary arteries is almost 
impossible and cannot be achieved with the 
current PET imaging modalities. Based on the 
limitations enumerated, the published reports 
in the literature about detecting focal athero-
sclerotic plaques in the coronaries with FDG, 
NaF and other tracers have to be viewed with 
great caution and skepticism.

Hybrid PET/MRI has added a new dimension to 
medical imaging with PET and has enhanced its 
role in domains where MRI has been success-
fully employed over the past 3 decades [57-59]. 
Unfortunately, there are still concerns about 
the accuracy of the quantitative data generated 

Figure 3. Changes in aortic wall and luminal blood 
FDG activity at different imaging time-points as seen 
on sagittal FDG PET images of the thoracic aorta. 
With time, luminal blood activity decreases while 
the aortic wall activity increases, which improves 
the arterial wall-to-blood contrast (superior target-to-
background ratio) (Reproduced with permission from 
Moghbel M et al.) [35].
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by this instrument due to the lack of optimal 
attenuation correction of the emitted gamma 
rays [60, 61].

Questionable validity of Target-to-Background 
Ratio (TBR) correction

Attempts have been made to correct for blood 
pool activity by measuring target-to-backgr- 
ound ratio (TBR) [62]. However, based on expe-
rience gained, this correction attempt appears 
to be unreliable and cannot be employed suc-
cessfully for this purpose. Data from our own 
center reveals that when this correction is app- 
lied from images acquired over 1-3 hours, the 
numbers generated are totally different among 
different time points (Figure 4) [33]. Therefore, 
such “correction” schemes are suboptimal and 
of limited value for this purpose [63].

CAMONA study as a model for future research 
in atherosclerosis

In recent years, a major research study (CA- 
MONA, which stands for Cardiovascular Mole- 
cular Calcification Assessed by NaF PET/CT) 
was conducted to compare the performance of 
FDG- and NaF-PET for assessing atherosclero-
sis [33, 46, 64]. This comprehensive study 
included a large number of normal controls as 
well as patients at risk for atherosclerosis. 

Normal subjects and angina pectoris patients 
underwent the same imaging protocol with 
these two tracers and the data generated from 
both groups were compared. In sub-studies, 
FDG-PET imaging was performed at 90 and 
180 minutes, while NaF-PET was performed at 
45, 90, and 180 minutes.

The data from this research study have been 
published extensively in the literature and 
clearly reflects the potential for future use of 
these tracers as molecular probes for detec-
tion and characterization of atherosclerosis 
[17, 33, 45, 46, 64-77]. Based on the results 
from the CAMONA project, it has become 
increasingly clear that the performance of FDG 
is substantially inferior to that of NaF (Figure 5) 
[67, 78-80]. These data clearly demonstrate 
that NaF as a PET tracer will play a critical role 
in detecting atherosclerosis in both normal 
aging as well as in patients with low or high risk 
for this potentially fatal disease [67].

PET tracers beyond FDG and NaF to detect 
atherosclerosis

The role of other tracers that have been pro-
posed as potential probes for imaging athero-
sclerosis is unknown but does not appear 
promising based on what has been published 
in the literature [35]. For example, similar to 

Figure 4. The dependence of SUVMAX, blood-pool SUVMEAN, cSUVMAX, and the TBR on FDG circulating time-The aver-
age maximum carotid (A) and aortic (B). Arterial FDG activity was invariant to time, whereas blood-pool activity 
decreased and blood-pool corrected values and the target-to-background ratio significantly increased with time. 
Error bars represent the 95% confidence interval of the mean. ***P<.0001 decline or increase compared to previous 
time-point established by the paired Student’s t test (Reproduced with permission from Blomberg BA et al.) [33].
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FDG, tracers that have been used for this pur-
pose are nonspecific in nature and therefore 
lead to generating images with low contrast 
between the plaques and the surrounding 
structures [81, 82].

Based on what has been described above, it  
is increasingly clear that the role of FDG-PET 
imaging to detect atherosclerosis is very limit-
ed. Therefore, the future of this approach is 
uncertain at this time. While inflammation is 
considered as the beginning of the disease, its 
assessment by PET or other imaging modalities 
will encounter substantial challenges that will 
be difficult to overcome. Attempts are being 
made to use radiolabeled nanoparticles, par-
ticularly with positron-emitting radionuclides, 
which could play a major role in detecting only 
the inflammatory process in the plaques [83]. 

This type of research is in its early stages and is 
conducted only in animals but could eventually 
lead to applications in human studies in the 
near future (Figure 6) [84]. With the nanoparti-
cle methodology and global disease assess-
ment, it is conceivable that we will be able to 
detect and quantify inflammatory components 
of the plaques more successfully than what  
is achievable by FDG-PET. This approach may 
prove to be of some value in detecting coronary 
artery disease as a diffuse process.

Global disease assessment (Alavi-Carlsen 
Score) and total body PET

Atherosclerotic plaques are diffuse in nature 
and involve most of the arteries in their entirety 
with different degrees [85]. As such, the dis-
ease does not present itself as a focal process 

Figure 5. The graphic data shown above reveal the correlation between age and evidence for inflammation (FDG) 
and calcification (NaF) in healthy subjects (A, C) and subjects with high risk for atherosclerosis (B, D). Based on 
these molecular data, NaF-PET imaging appears to be more sensitive in detecting evidence for atherosclerosis in 
the arch of the aorta than FDG-PET scanning (Reproduced with permission from Alavi A et al.) [78].
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and this should be taken into consideration in 
quantitative assessment of its extent. Based 
on the data that we and others have published, 
it is increasingly clear that global disease mea-
surement is substantially superior to approach-
es that focus on detecting the disease process 
as focal lesions [86-90]. Since atherosclerosis 
is treated as a systemic disease, providing a 
global value will be the optimal means for guid-
ing the management of these patients. Also, 

global assessment allows clinicians to take 
advantage of the diffuse nature of atheroscle-
rotic processes throughout the body and there-
fore treat the disease as a systemic process 
(Figures 7 and 8) [39]. Performing CT coronary 
angiogram along with gated PET imaging is also 
of limited value in assessing global disease 
activity [91].

Conventional PET studies with instruments 
with a limited field of view (FOV) of approximate-
ly 20-30 cm in the axial direction requires imag-
ing the body in segments over a period of 20- 
30 minutes with acquisitions time of 2-3 min-
utes for each bed position. Because of this limi-
tation, most 18F-based imaging studies are per-
formed at 60-90 minutes following the admin-
istration of the related compounds, which is 
suboptimal for the detection of atherosclerosis 
[92, 93]. This major shortcoming has been 
overcome by the introduction of total body PET 
instruments over the past 2 years which allow 
imaging the entire body with a single image 
acquisition over a few minutes [94, 95]. The 
sensitivity of this technique is substantially 
higher (theoretically about 40 times) than that 
of conventional instruments with limited FOV, 
allowing for delayed imaging and ensuring 
clearance of the tracer from circulation. We 
believe one of the major applications of total 
body imaging is going to involve detection of 
atherosclerotic plaques throughout the body 
[96-98]. With this approach, it is likely that sen-
sitivity of PET imaging with either FDG or NaF 
will substantially improve and this will further 
enhance the role of these tracers in assessing 
atherosclerosis. Significant clearance of back-
ground activity in the blood and other tissues 
will result in enhanced contrast between the 
plaques and surrounding structures [96].

Questionable validity of organ interplay in gen-
esis and course of atherosclerosis

In recent years, a very complicated and convo-
luted process has been proposed that claims 
to play a major role among atherogenic plaques, 
brain function and hematopoietic cells in the 
bone marrow and spleen [99]. A large body of 
animal and human data has been introduced in 
an effort to convince the community about a 
strong relation among these organs as the 
underlying factor for genesis and progression 
of atherosclerotic plaques in brain disorders 

Figure 6. Heart uptake and digital autoradiography 
(DAR) from control and apolipoprotein-E-deficient 
(apoE-/-) mice. Mean heart uptake obtained af-
ter intravenous administration of [125I]-labeled iron 
oxide nanoparticles (IONPs) into healthy and ath-
erosclerotic mice (n=4) (A). Mean heart/blood ra-
tios obtained after intravenous administration of 
[125I]IONPs into healthy and atherosclerotic mice 
(n=4) (B). DAR obtained from heart of healthy and 
atherosclerotic mice, respectively, at 72 h post-
injection of [125I]IONPs (20 μCi, 0.8 mg Fe/kg) (C). 
Increased uptake in apoE-/- mouse likely represent  
atherosclerotic plaques in coronary arteries (Repro-
duced with permission from de Barros AL et al.) [84].
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due to depression and inflammatory disorders 
[100-103]. Although there is relatively clear-cut 
evidence for high incidence of atherosclerosis 
in patients with psoriasis, rheumatoid arthritis, 
HIV-AIDS and other diseases such as cancer, 
the claim that neuropsychiatric disorders have 
a role in causing atherosclerosis via direct and/
or indirect interactions with the hemopoietic 
system is theoretical and unclear at this time 
[103]. These investigators do not consider the 
non-specific nature of FDG accumulation in the 
bone marrow in such self-claimed hypotheses. 
FDG uptake in bone marrow is due to metaboli-
cally active cells that eventually lead to produc-
ing blood cells [104]. Furthermore, bone mar-
row activity as visualized by FDG is extremely 
variable among subjects as noted on standard 
FDG-PET scans and is significantly different 
between younger and older populations [105, 
106]. Therefore, using FDG for assessing bone 
marrow as the source of inflammatory cells that 
eventually migrate to atherosclerotic plaques is 
very speculative. Similarly, uptake of FDG in the 
spleen is extremely variable since this organ, 
like the bone marrow, is subject to many ongo-
ing activities in the rest of the body [107]. 
Therefore, hypothesizing the spleen as the 
source of inflammatory cells for atherosclerosis 
is also questionable and unjustified.

Future prospects for PET imaging in athero-
sclerosis

Finally, the future of molecular imaging for 
detection of atherosclerosis appears very pro- 
mising and it is likely that this approach will 
replace structural imaging techniques for medi-
cal management of this very common and 
potentially fatal disease. We believe changes 
that are detected by CT, MRI or ultrasound are 
of limited value since they represent late or end 
stages of the disease, whereas PET depicts pri-
marily its early, molecular and active phase 
[39]. Detection of plaques as focal abnormali-
ties such as structural calcification is of limited 
value in the management of patients with ath-
erosclerosis [80]. The introduction of PET/CT 
and PET/MRI has demonstrated the critical the 
role of combined molecular and structural te- 
chniques in medicine and theses innovative 
advances will substantially enhance the overall 
performance of medical imaging in treating 
patients with atherosclerosis [11, 108]. How- 
ever, among the various molecular imaging 
probes, NaF-PET may become the technique of 
choice for the early detection of atherosclerosis 
[6]. Although the data are limited at this time, it 
is conceivable that the natural course of the 
disease and the efficacy of systemic medical 

Figure 7. Coronary artery global molecular calcification score (GMCS) and percent injected dose per gram body 
weight NaF uptake. A region of interest was drawn around the heart on each cardiac CT slice from which GMCS was 
calculated (A). Pigs with metabolic syndrome (MetS; n=11) had a GMCS almost 2.5-fold higher than lean pigs (n=2; 
*P<0.05) (B) (Reproduced with permission from McKenney-Drake ML et al.) [39].
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Figure 8. Image set (A) is reproduced exactly from the original data (without processing) generated in a patient with rheumatoid arthritis with evidence for significant 
molecular calcification in the aortic arch (Reproduced with permission from Moghbel M et al.) [35]. The left column shows significant NaF uptake in the aortic wall 
(arrow) on PET images alone, the middle column shows CT images, and the right column shows fused NaF-PET/CT images. The latter clearly shows the sites of mo-
lecular calcification on PET correspond to aortic wall which reveals no evidence for structural calcification. These images were generated without modifying original 
data provided by the PET/CT instrument. Image set (B) shows selected sites of NaF (left column) and FDG (right column) uptake superimposed on coronary angio-
gram from the contrast enhanced CT scan (Reproduced with permission from Joshi NV et al.) [109]. These images were generated based on selected NaF uptake 
sites at the corresponding segments of coronary artery. As such, the scans do not correspond to the original images reconstructed by the conventional software 
provided by the PET/CT instruments. Therefore, the reproducibility and reliability of such results are of some concern and may not be as accurate and realistic as 
conventional approaches in optimal applications of this modality. As such, detection and quantification of coronary artery calcification should be based upon reliable 
and reproducible approaches for convincing applications of NaF-PET imaging in this setting.
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treatment and other interventions will be best 
served by this approach in the future [44, 50].
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