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Abstract: Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality. Early detection of HCC is 
important since potentially curative therapies exist in the initial stages of HCC; no curative therapies exist for late-
stage HCC. However, the initial detection of HCC remains challenging due to the lack of symptoms during the early 
stage of the disease. Other methods of screening and detecting HCC, including blood serum tests and conventional 
imaging methods, remain inadequate due to genetic differences between patients and the high background activity 
of liver tissues. Thus, there is a need for an accurate imaging agent for the diagnosis, staging, and prognosis of HCC. 
Glypican-3 (GPC3) is an oncofetal receptor responsible for regulating cell division, growth, and survival. GPC3 is a 
clinically relevant biomarker for imaging and therapeutics, as its expression is HCC tumor-specific and absent from 
normal and other pathological liver tissues. The development of novel GPC3-targeting imaging agents has encom-
passed three classes of biomolecules: peptides, antibodies, and aptamers. These biomolecules serve as constructs 
for diagnostic imaging (demonstrating potential as positron emission tomography [PET], single-photon emission 
tomography [SPECT], and optical imaging agents) and HCC treatment delivery. More than 20 unique ligands have 
been identified in the literature as showing specificity for the GPC3 receptor. Although several ligands are currently 
under clinical investigation as therapies for HCC, clinical translation of GPC3-targeting ligands as imaging agents is 
lacking. This review highlights the current landscape of ligands targeting GPC3 and describes their promising pos-
sibilities as imaging agents for HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the leading 
cause of primary liver cancers and the third 
most frequent cause of cancer-related mortali-
ty worldwide [1]. However, early detection of 
HCC remains difficult due to the lack of specific 
symptoms during the early stages of the dis-
ease and the inadequate sensitivities of the 
two primary surveillance methods, ultrasonog-
raphy and alpha-fetoprotein serum levels [2]. 
Therefore, diagnosis of HCC often requires 
more advanced imaging techniques. Although 
effective therapeutics, including surgical resec-
tion, exist for early-stage HCC [3], only 40% of 
this aggressive cancer is diagnosed in earlier 
stages, resulting in poorer prognoses [4, 5]. 
Therefore, an early and accurate diagnosis of 
HCC is essential.

Though serum and histochemical biomarkers 
have been identified to detect the presence of 
HCC with varying accuracy [6], more sophisti-
cated methods of tumor imaging in vivo remain 
elusive [7]. Exploiting the high uptake of glu-
cose by tumor cells, positron emission technol-
ogy/computerized tomography (PET/CT) using 
the radiotracer 18F-fluorodeoxyglucose (18F-
FDG) has proven advantageous in the diagno-
sis, monitoring, and prognosis of many cancers 
[8, 9]. However, 18F-FDG PET/CT is limited in the 
detection of HCC, with a sensitivity of only 40% 
[10]. 18F-FDG’s limited accuracy may be medi-
ated by genetic differences in the expression of 
β-hydroxy β-methylglutaryl-CoA reductase deg-
radation 1 (HRD1) enhancing the degradation 
of glucose transporter 1 (GLUT1) and subse-
quently decreasing uptake of 18F-FDG [11]. 
Furthermore, the liver is a primary clearance 
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organ of exogenous molecules, such as radio-
tracers, resulting in high normal liver uptake 
and limiting the use of certain imaging agents 
[12]. Thus, HCC imaging agents must overcome 
high background liver uptake in visualizing 
tumors.

Glypican-3 (GPC3) is a surface heparan sulfate 
proteoglycan expressed in approximately 80% 
of hepatocellular carcinomas [13] and is asso-
ciated with poorer prognoses [14]. It is postu-
lated that GPC3 plays a role in the regulation of 
cell division and growth through the signaling 
pathways of Wnt, hedgehog, bone morphogenic 
protein, and fibroblast growth factor [15]. GPC3 
is a promising biomarker for HCC due to its his-
tochemical and serologic presence in liver tis-
sue of HCC patients and absence in normal and 
other pathological liver tissues [16]. Additionally, 
the GPC3 receptor is expressed during the 
early stage of hepatocarcinogenesis, potential-
ly allowing for earlier detection of HCC [17].

GPC3 is a novel target for the development of 
high-affinity probes. Molecular labeling of such 
probes, for instance with Cu-64 or Lu-177 [18, 
19], may allow integration of diagnostic imag-
ing and targeted therapeutics, a term coined 
“theranostics”. Thus, a probe targeting GPC3 
may enable the theranostic management of 
HCC patients. This review intends to summarize 
the current landscape of research into imaging 
ligands targeting the expression of GPC3 for 
diagnosing, monitoring, and predicting progno-
ses of HCC, specifically those of peptide, anti-
body, and aptamer constructs.

Ligands targeting GPC3 receptor

Biomolecules

Ligands targeting GPC3 have utilized three 
basic structures - protein, antibody, and aptam-
er - each with its own unique set of advantages 
and disadvantages as imaging agents. Protein 
ligands have seen extensive use as an imaging 
modality due to their small size, high affinity, in 
vivo stability, ease of synthesis and modifica-
tion, and low immunogenicity. However, due to 
their small size, receptor binding affinity and 
pharmacokinetics are heavily dependent on 
the type of imaging label and are potentially 
subject to enzymatic degradation [20]. Antibody 
constructs show excellent antigen specificity 

and sensitivity and can be labeled for diagnos-
tic and/or therapeutic purposes. Several anti-
GPC3 antibodies are currently being assessed 
in clinical trials for their therapeutic potential in 
HCC, as they have previously been shown to 
inhibit HCC growth [21]. However, unlike pro-
teins, antibodies are large molecules that suf-
fer from long clearance times and half-lives, 
resulting in greater radiation exposure to the 
patient and potentially limiting their use as 
imaging agents [22]. Aptamers are short oligo-
nucleotides between 15 and 40 bases and 
research on their use to target GPC3 is limited. 
However, aptamers have demonstrated poten-
tial as an imaging agent due to their stability, 
high affinity, and low immunogenicity [23]. As 
such, aptamer-based ligands are a versatile 
tool designed to tackle the inherent disadvan-
tages of peptide and antibody-based ligands 
for targeting the GPC3 receptor in HCC [24, 25].

Imaging

Non-invasive imaging modalities serve a crucial 
role in cancer, relaying valuable information 
regarding tumor size, location, and regional 
physiologic and chemical processes. PET is a 
powerful imaging tool that uses positron-emit-
ting radiopharmaceuticals and can be coupled 
with CT or magnetic resonance imaging (MRI) 
to detect and localize abnormal tissue patholo-
gies [26]. SPECT is a nuclear imaging modality 
that is more accessible than PET and uses 
gamma-emitting radioisotopes [27]. Together, 
PET and SPECT have a complementary role in 
oncology, allowing the identification of tumors 
expressing biomarkers, including specific 
receptors, in vivo [28]. Optical imaging uses 
bioluminescent or fluorescent probes to reveal 
cellular and molecular functions in cancer. 
Optical imaging plays a significant role in the 
development of preclinical drugs and tracers 
due to its low-cost and noninvasiveness of fluo-
rescent probes to determine in vitro and in vivo 
performance. Although limited in its ability to 
be used at a tissue depth beyond several centi-
meters, optical imaging may still have clinically 
translatable importance in surgical resection 
and tissue staining [29]. Several ligands have 
been reported in the literature showing affinity 
for GPC3 and some are currently under investi-
gation as HCC therapy in humans [30]. Ligands 
with potential for diagnostics or theranostics 
will be mentioned.
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PET ligands

In the past decade, many ligands have been 
preclinically assessed for their use in PET imag-
ing of GPC3 in in vitro and in vivo studies. The 
only clinically researched PET ligand targeting 
GPC3 is iodine-124 (I-124) labeled codrituzum-
ab (also known as GC33, KD=0.673 nM). This 
2009 phase Ib study (NCT00976170) assessed 
the humanized antiGPC3 antibody, codrituzum-
ab, in combination with sorafenib in 41 HCC 
patients to determine efficacy. 14 patients 
underwent subsequent I-124 codrituzumab 
imaging to explore biodistribution and pharma-
cokinetics, 13 of which showed positive scan 
findings of an HCC tumor [31]. Low tumor accu-
mulation in one patient with negative HCC 
detection may have been due to antigen het-
erogeneity and low GPC3 expression [32]. 
Figure 1 shows a patient’s representative I-124 
codrituzumab PET/CT cross-section. Sham et 
al. demonstrated the targeting capability of 
antibody fragments using 89Zr-αGPC3-F(ab’)2 
(KD=0.03 nM) to improve upon their previous 
monoclonal antibody, 89Zr-αGPC3 (KD=0.03 
nM), which suffered from suboptimal imaging 
pharmacokinetics, poor tumor penetration, and 
increased immunogenicity [33]. 89Zr-αGPC3-
F(ab’)2 demonstrated faster blood clearance 
and allowed earlier detection of tumors but suf-

fered from lower absolute tumor uptake than 
89Zr-αGPC3 [34]. An et al. introduced the GPC3-
specific single domain antibody (sdAb), G2 
(KD=1.297 nM), labeled with Ga-68 and F-18, 
which clearly diagnosed HCC tumors. Further 
modification with the albumin-binding domain 
significantly improved imaging pharmacokinet-
ics [35]. There are no published chemical struc-
tures for antibody PET ligands targeting GPC3. 
The first protein-based PET ligand targeting 
GPC3 reported in the literature is 18F-AlF-NOTA-
MP-6-Aoc-L5 (KD=101 nM) by Wang et al. using 
the novel 12-mer peptide ligand L5 (sequence: 
RLNVGGYYFLTTRQ, KD=44.7 nM), which was 
first identified by Lee et al. in 2011. Although 
the probe demonstrated selectivity for GPC3 
expressing tumor cells and clear visualization 
in vivo, the authors concluded that 18F-AlF-
NOTA-MP-6-Aoc-L5 requires further chemical 
modification to achieve higher tumor-to-liver 
ratios [36, 37]. Furthermore, Berman et al. 
showed that in vitro performance of L5 and 
another promising peptide, TJ12P1 (sequence: 
DHLASLWWGTEL, KD=280.4 ± 33.51 nM) [38], 
demonstrated a lack of selectivity or potency, 
failing to bind to GPC3 at concentrations in the 
range of their published KD potentially due to 
their relative hydrophobicity. Therefore, the 
authors concluded that TJ12P1 and L5 should 
no longer be developed in their current forms 

Figure 1. Representative imaging data for I-124 codrituzumab-PET/CT in a patient with HCC (adapted from the 
literature [32]).



Imaging of glypican-3

116	 Am J Nucl Med Mol Imaging 2022;12(4):113-121

with F-18 to produce 18F-AlF-NOTA-TJ12P2. 
Unlike TJ12P1, TJ12P2 showed improved affini-
ty and decreased normal liver uptake and is a 
promising candidate for translation as an HCC 
imaging agent [40]. The chemical structure of 
18F-AlF-NOTA-MP-6-Aoc-L5 and 18F-AlF-NOTA-
TJ12P2 are depicted in Figure 2. Other GPC3-
targeting PET ligands published in the literature 
are summarized in Table 1.

SPECT ligands

To date, only one SPECT ligand targeting the 
GPC3 receptor has been published. Using the 
GBP protein (sequence: THVSPNQGGLPS) iso-
lated by Qin et al. [41], Xu et al. synthesized the 
SPECT radiotracer 99mTc-HPG (sequence: 99mTc-
(tricine)-TPPTS)HyNIC-PEG4-GBP, Figure 3) and 

Figure 2. PET imaging ligands targeting GPC3.

Table 1. PET ligands reported in the literature targeting GPC3
Ligand Biomolecule KD (nM) Reference
89Zr-DFO-1G12 Antibody 0.41 ± 0.05 [12]
90Y-DOTA-αGPC3 Antibody 0.03 [50]
89Zr-DFO-αGPC3 Antibody 0.03
89Zr-ERY974 Antibody 1.5 [51]
89Zr-Df-H3K3 Antibody 3.89 ± 0.23 [52]
GP2076 (sequence: RLNVGGTYFLTTRQ) Protein 101 [53]
GP2633 (sequence: GGGRDNRLNVGGTYFLTTRQ) Protein 63.3
68Ga-DOTA-F3 (sequence: not reported) Protein Not reported [54]

Figure 3. SPECT imaging ligand targeting GPC3.

as molecular imaging agents [39]. Optimizing 
the methods used to identify TJ12P1, TJ12P2 
(sequence: SNDRPPNILQKR, KD=158 ± 26.25 
nM) was isolated and subsequently labeled 
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investigated in vitro characteristics, obtained 
SPECT/CT images, and assessed biodistribu-
tion in GPC3-positive tumor models. This study 
showed that the modified SPECT structure of 
GBP retained the affinity and ability to target 
GPC3. Furthermore, the probe showed higher 
uptake in GPC3-positive cells than in GPC3-
negative cells. The high tumor-to-background 
uptake allowed definitive detection of lesions in 
their HCC tumor transplantation model. Using 
the same synthesis strategies due to similari-
ties in chemical properties, the authors men-
tion that HPG can utilize a Re-188 label to pro-
vide radiation therapy in conjunction with the 
diagnostic capabilities of 99mTc-HPG [42].

Optical imaging ligands

Optical imaging is a powerful modality for the 
molecular imaging of disease and therapy. 
Fluorescent labeled imaging agents play an 
important role in the development of imaging 
tracers and have an opportunity for clinical  
use. Optical imaging agents can be further 
developed into PET and SPECT radiotracers. 
Modifying the L5 peptide construct, Han et al. 
synthesized the peptide probe (P-probe) and 
subsequently generated the supramolecular 
2D imaging probe (2D probe) that sensitively 
and selectively imaged GPC3 overexpression in 
vitro. 2D probe (KD= not reported) shows prom-

Figure 4. Optical imaging ligands targeting GPC3.
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ise as a tumor-section staining method as well 
as a fluorescence imaging-guided surgery pro- 
be [43]. In 2021, Feng et al. synthesized the 
near-infrared peptide (sequence: ALLANHEE- 
LFQT, KD=39.5 nM) using IRDye800 as a  
fluorescence label. This peptide showed high 
affinity, optimal kinetics, and demonstrated 
visualization of implanted HCC tumors [44].  
The GPC3 binding peptide (GBP) was identified 
by Wang et al. (sequence: THVSPNQGGLPS, 
KD=735.2 ± 53.6 nM) and labeled with the 
near-infrared dye Cy5.5 showing a high accu-
mulation in HCC tumors and not in normal liver 
tissues in vivo suggesting the potential for 
translation to radiolabeling and clinical studies 

[41]. Using the fluorescent labels 6-FAM and 
AF750, the aptamer probe AP613-1 (sequence: 
5’-TAACGCTGACCTTAGCTGCATGGCTTTACATGT- 
TCCA-3’, KD=59.85 ± 15.39 nM) was labeled  
by Zhao et al. and demonstrated high affinity  
to GPC3 in in vitro and in vivo studies [45]. 
Subsequent efforts by Zhao et al. developed 
the AP613-1 aptamer into an MRI probe using 
ultrasmall superparamagnetic iron oxide nano- 
particles showing high specificity in vivo [46]. 
Figure 4 depicts the chemical structure of  
protein optical imaging probes; no chemical 
structures for aptamer optical imaging ligands 
have been published. Additional optical imag-
ing probes are summarized in Table 2.

Table 2. Optical imaging ligands reported in the literature targeting GPC3
Ligand Biomolecule KD (nM) Reference

GPC-ICG Antibody Not reported [55]
TJ12P1 (sequence: DHLASLWWGTEL) Protein 390 ± 27.47 [38]
L5 (sequence: RLNVGGYYFLTTRQ) Protein 44.7 [36, 37]
L5-2 (sequence: YFLTTRQ) Protein Not reported
TJ12P2 (sequence: SNDRPPNILQKR) Protein 158.2 ± 26.25 [40]
MPA-IPA (sequence: DYEMHLWWGTEL) Protein 225.1 [56]

Figure 5. Schematic of the mechanism of action for HN3 (adapted from the literature [48]).
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Unlabeled and therapeutic ligands

Several therapeutic ligands showing affinity to 
the GPC3 receptor have been reported but 
have seen no further investigation as imaging 
agents. YP7 (KD=0.3 nM), a mouse anti-GPC3 
antibody, was identified by Phung et al. and 
showed significant inhibition of HCC growth in 
xenograft tumor mice through antibody-depen-
dent cellular cytotoxicity [47]. Feng et al. isolat-
ed the heavy-chain variable domain antibody, 
HN3 (KD=0.6 nM), which also significantly inhib-
ited HCC xenograft tumor growth in nude mice 
through inhibition of YAP signaling and HCC cell 
proliferation as depicted in Figure 5 [48]. HS20 
(KD=0.6 nM), a humanized monoclonal anti-
body, inhibited HCC tumor growth by blocking 
GPC3 interaction with Wnt/β-catenin signaling 
[49]. Although holding potential for in vivo 
tumor imaging, YP7, HN3, and HS20 have not 
been further investigated as imaging agents. 

Concluding remark

In summary, we reviewed ligands targeting the 
GPC3 receptor overexpressed in HCC. The 
GPC3 receptor is a promising target for de- 
tecting and potentially treating HCC. The last 
decade has seen numerous preclinical studies 
investigating the ability of ligands to target 
GPC3. These ligands may serve a future role as 
diagnostic and therapeutic agents. The clinical 
value of GPC3 imaging in HCC requires fur- 
ther investigation. Currently, no GPC3-targeting 
agents for the main purpose of imaging HCC 
have been translated into human clinical trials. 
The progression and treatment of HCC may 
alter GPC3 expression, further necessitating 
the exploration of novel targets for HCC imag-
ing and therapeutics.
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