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Review Article
Claudin18.2-targeted cancer theranostics
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Abstract: Claudin 18.2 (CLDN18.2) is an emerging target for the treatment of CLDN18.2-expressing cancers such 
as gastric and pancreatic cancers. Cell and antibody therapies targeting CLDN18.2 are under intensive clinical tri-
als. In this setting, how to efficiently and specifically detect CLDN18.2 expression before and after the therapies is 
a clinical challenge. In recent years, molecular imaging with radiolabeled antibodies or antibody fragments have 
shown promise in noninvasively annotating antigen expression across the body. In this Perspective, we will bring 
together the most recent progress on CLDN18.2-targeted imaging and therapy of solid tumors. 
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Introduction

Gastrointestinal (GI) tumors represent the most 
common form of malignant neoplasm, with the 
majority of patients receiving a diagnosis in 
intermediate to late stages. Despite being the 
cornerstone of treatment for advanced GI tu- 
mors, traditional chemotherapy is subject to 
considerable limitations in terms of therapeutic 
outcomes. The advent of individualized and 
precise therapies has sparked a renewed inter-
est in targeted therapy and immunotherapy, 
which have emerged as hotspots of compre-
hensive treatment for this malignancy, offering 
new avenues of hope for patients with advanced 
gastric cancer and other GI tumors. The tight 
junction protein claudin 18.2 (CLDN18.2) has 
demonstrated significant potential in the field 
of tumor-targeted therapy, with promising out-
comes observed for solid tumors like pancre-
atic and gastric cancer [1]. The CLDN protein 
family is composed of no less than 27 trans-
membrane proteins, which are categorized into 
classical and non-classical types based on 
their sequence characteristics. CLDN18 be- 
longs to the non-classical type. Following post-
translational modifications, the expression of 
CLDN18 has two isoforms: CLDN18.1 and 
CLDN18.2 [2]. CLDN18.2 is exclusively ex- 
pressed in the tight junctions of gastric muco-

sal cells, remaining inaccessible to intravenous-
ly administered antibodies [3]. With the malig-
nant transformation of gastric mucosal cells, 
CLDN18.2 is exposed and becomes available 
by therapeutic antibodies. 

CLDN18.2-targeted cancer therapeutics: all 
flowers bloom together

Presently, individualized immunotherapy forms 
the crux of targeted therapy for CLDN18.2-
positive tumors. Various approaches such as 
monoclonal antibodies (mAb), chimeric antigen 
receptor T (CAR-T) cells, bispecific antibodies 
(BsAb), and antibody-drug conjugates (ADC) 
have been developed and shown promising 
results. As a result, numerous studies are now 
underway to assess the clinical efficacy of 
these therapies. Jia and colleagues investigat-
ed the immune microenvironmental profile of 
CLDN18.2-positive gastric cancer by multiplex 
immunohistochemistry, and the results sug-
gested that positive CLDN18.2 expression is 
associated with poor prognosis and CLDN18.2-
positive gastric cancer is unlikely to benefit 
from programmed cell death protein 1 (PD-1) 
and its ligand (PD-L1) inhibitors, while CL- 
DN18.2-targeted CAR-T cell therapy may be a 
promising treatment strategy [4]. Indeed, the 
CAR-T technology is undergoing continuous 
refinement and development. Recently, Harris 
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and colleagues utilized the Receptor Targeting 
Chimeras (ReceptorTAC) technology to degra- 
de the T cell antigen receptor and create 
CLDN18.2-specific CAR-T cells, which can pre-
vent allogeneic T cell reactivity. This innovative 
approach presents a novel strategy for the gen-
eration of allogeneic T cells with encouraging 
clinical implications [5]. The interim findings 
from a phase I clinical trial (NCT03874897) 
conducted at the Peking University Cancer 
Hospital demonstrated encouraging results  
for patients with CLDN18.2-positive digestive 
cancers treated with CAR-T therapy targeting 
CLDN18.2. The overall efficacy rate was 48.6%, 
the disease control rate was 73.0%, and the 
6-month efficacy rate was 44.8%. Notably, 
patients with gastric cancer exhibited a higher 
overall efficacy rate and disease control rate of 
57.1% and 75.0%, respectively, and a 6-month 
overall survival rate of 81.2%, with an accept-
able safety profile [6]. BsAb contain two specific 
antigen binding sites that redirect T cells to 
tumor target antigens, inducing T cell-mediated 
cell killing. Liang et al. developed and synthe-
sized anti-CLDN18.2-CD28 BsAb. Both in vivo 
and ex vivo experiments demonstrated that 
treatment with anti-CLDN18.2-CD28 reduced 
tumor load and increased infiltration of T cells 
into the tumor, while also reducing immunosup-
pressive cells. Furthermore, the treatment did 
not exhibit any systemic adverse effects [7]. 
Belmontes et al. developed bispecific T cell 
engager (BiTE) molecules and showed that the 
quadruple combination of CLDN18.2 BiTE + 
anti-4-1BB + anti-PD-1 + anti-CTLA-4 exhibited 
enhanced antitumor efficacy [8]. BsAbs have 
promising results in inducing T cell-mediated 
cell killing by redirecting T cells towards tumor 
target antigens, but face several challenges. 
One challenge is the complex manufacturing 
process, requiring precise engineering to avoid 
issues such as stability, solubility, and aggre- 
gation. Another challenge is the potential for 
off-target effects and toxicity. Additionally, the 
production of BsAbs can be costly, limiting 
accessibility to patients. Overcoming these 
challenges requires ongoing research and de- 
velopment efforts to improve the efficacy and 
safety of BsAbs for cancer treatment [9].

Zolbetuximab (IMAB362) is a chimeric mAb and 
mediates specific killing of CLDN18.2-positive 
cells through antibody-dependent cellular cyto-
toxicity and complement-dependent cytotoxici-

ty [10]. Following initial studies reporting the 
manageable safety profiles and anti-tumor 
activity of zolbetuximab in patients with gastric 
or gastro-oesophageal junction patients [11, 
12], a randomized phase II study reported that 
the addition of zolbetuximab to the first-line 
EOX (epirubicin + oxaliplatin + capecitabine) 
significantly improved the progression-free sur-
vival (PFS) and overall survival (OS) than that 
obtained in the EOX treatment group [13]. The 
novel treatment option also improved the qual-
ity of life of the included patients [14]. Ongoing 
phase III studies are investigating the therapeu-
tic efficacy of zolbetuximab 600-800 mg/m2 in 
patients with moderate-to-strong CLDN18.2 
expression (>70% of tumor cells). CLDN18.2 is 
among the most promising targets that can be 
leveraged to improve the theranostic lands- 
cape of gastric cancers. As far as we know, 
immunohistochemistry (IHC) staining with CLA- 
UDETECT™ 18.2 is the only available option to 
determine CLDN18.2 expression. However, IHC 
is limited to examine the surgically resected or 
the biopsied tissue, failing to provide the heter-
ogenous expression of CLDN18.2 across the 
whole tumor tissue or in the metastases. Novel 
techniques that can determine the expres- 
sion level of CLDN18.2 and further diagnose 
CLDN18.2-expressiong tumors are needed.

Immuno-positron emission tomography (im-
munoPET) imaging of CLDN18.2

ImmunoPET is a rapidly expanding direction in 
the field of molecular imaging [15]. ImmunoPET 
has a well-recognized role in guiding the early 
development of antibody therapeutics and is 
increasingly used in clinical practice to select 
patients for molecularly targeted therapies and 
immunotherapies. It can also help assess the 
therapeutic responses after administration of 
the antibody therapeutics. By labeling mAbs 
with radiometals (e.g., 64Cu or 89Zr) [16-20], we 
have developed several novel immunoPET 
probes and characterized the diagnostic effica-
cies in preclinical settings. Admittedly, the clini-
cal translational way of these probes is ardu-
ous and long. Hurdles impeding the clinical 
translation include high expenditure in pro- 
ducing humanized mAbs, scarcity of long-lived 
radiometals or radiohalogens, multiple cycles 
of imaging, and the resultant high radiation 
exposure. To alleviate these concerns and fa- 
cilitate same-day imaging, antibody derivatives 
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and protein scaffold mimicking antibodies have 
been leveraged to develop next-generation 
molecular imaging probes [15, 21]. Nanobo- 
dies are naturally occurring antigen recognition 
domains found in alpacas, llamas, and camels 
[22]. They are 12-15 kDa in size, highly stable in 
various conditions, display strong binding affini-
ties, and can be expressed in bacterial, yeast, 
and mammalian expression systems with high 
yields. Nanobodies are the most promising can-
didates to substitute their full-size counterparts 
for diagnostic applications [23]. Nanobody-
derived immunoPET probes targeting human 
epidermal growth factor receptor 2 and pro-
grammed death ligand-1 have been success-
fully translated to the bedside [24-26].

The CLDN18.2 protein plays a significant role  
in tumor cell proliferation, differentiation, and 
migration. Its distinct expression pattern has 
made it a unique molecular target for immu-
noPET imaging. There are several immunoPET 
probes currently under investigation in preclini-
cal models for targeting CLDN18.2. Wei et al. 
developed a series of nanobody-derived trac-
ers ([68Ga]Ga-NOTA-hu19V3, [64Cu]Cu-NOTA-
hu19V3, and [18F]F-hu19V3) and evaluated the 
diagnostic value of the tracers in several pre-
clinical models [27]. While [68Ga]Ga-NOTA-
hu19V3 showed high kidney accumulation, 
[64Cu]Cu-NOTA-hu19V3 and [18F]F-hu19V3 had 
relatively lower kidney accumulation, indicating 
the complementary roles of the tracers in  
annotating CLDN18.2. Zhao et al. developed  
a molecular imaging approach based on 
CLDN18.2 for precise tumor detection and sur-
gical guidance. The team prepared a monoclo-
nal antibody 5C9 targeting CLDN18.2 and con-
structed the 124I-C59 probe for imaging and a 
near-infrared fluorescence-II probe (FD1080-
5C9) for guiding surgical removal of lesions. 
These probes demonstrated high specificity 
and accuracy, highlighting their potential as 
effective clinical tools for cancer diagnosis and 
treatment [28]. Zhong et al. developed the vari-
able region of the heavy chain of the heavy 
chain-only antibodies (VHHs), named hu7v3, 
targeting CLDN18.2 as a vector for diagnostic 
and therapeutic applications. The humanized 
hu7v3-Fc, which was fused with human IgG1 
Fc, was labeled with 89Zr, and 89Zr-hu7v3-Fc 
exhibited higher tumor uptake and better tu- 
mor penetration compared to the 89Zr-labeled 
mAb probe 89Zr-Zolbetuximab [29]. Hu et al. 

developed three 89Zr-labeled anti-CLDN18.2 
antibody probes for non-invasive dynamic visu-
alization of CLDN18.2 expression on the sur-
face of gastric cancer cells. These probes 
include 89Zr-VHH, 89Zr-VHH-ABD (serum albu-
min-binding), and 89Zr-VHH-Fc [30]. The devel-
opment of antibodies and their derivatives  
has significantly enhanced the precision of 
CLDN18.2 diagnostics, thus propelling the field 
forward. Availability of antibody forms suitable 
for various radionuclides also aids in expanding 
the clinical use of immunoPET. The advent of 
immunoPET has ushered in a new era of patient 
care for those with tumors. 

Since the expression of CLDN18.2 protein is 
highly conserved, an ideal CLDN18.2-target- 
ed molecular imaging approach may identify 
CLDN18.2 expression across a variety of spe-
cies including mouse, rat, rabbit, dog, monkey, 
and human [3, 31]. Gastric and gastroesopha-
geal junction adenocarcinomas are on the top 
list for CLDN18-targeted theranostics. How- 
ever, accumulating evidence indicates that sev-
eral other types of cancers may also express 
CLDN18.2. Previous studies reported CLDN18 
expression in 60-90% of pancreatic ductal ade-
nocarcinoma (PDAC). A more recent study 
reported that over 50% of primary and meta-
static PDACs highly express CLDN18.2 [32], 
adding to the validity of the previous evidence. 
Given that CLDN18.2 expression persists dur-
ing tumor metastasis, therapeutic strategies 
aimed at targeting CLDN18.2 could offer a via-
ble treatment approach for a significant popu- 
lation of pancreatic cancer patients. Zhang et 
al. conducted a study to examine the expres-
sion and clinical significance of CLDN18.2 in 
PDAC using immunohistochemistry. The find-
ings revealed that 56.52% of PDAC patients 
demonstrated CLDN18.2 positivity, which cor-
related with certain clinicopathological charac-
teristics such as sex, smoking, and patholo- 
gical differentiation. Moreover, CLDN18.2 posi-
tivity was associated with improved survival but 
not PFS. Therefore, the study suggests that 
CLDN18.2 could potentially serve as a thera-
peutic target for PDAC and provides compelling 
pathological evidence for CLDN18.2-targeted 
therapy in PDAC patients [33]. The findings of 
Pellino and colleagues revealed that CLDN18.2 
expression was correlated with younger age 
(below 70 years), advanced tumor stage, and 
reduced occurrence of peritoneal and liver 
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metastases [34]. Aberrantly activation or ex- 
pression of Claudin18.2 was also found in non-
small-cell lung cancer and colitis-associated 
colorectal adenocarcinomas [35, 36]. These 
results indicate that CLDN18.2-targeted diag-
nostic or therapeutic agents would be in princi-
ple eligible for a considerable number of tumors 
[1]. 

Perspectives of CLDN18.2-targeted theranos-
tics

There are several practical factors limiting  
the development and characterization of 
CLDN18.2-targeted theranostic agents. First  
of all, cancer cell lines naturally and stably 
expressing CLDN18.2 are lacking. Most of the 
gastric cancer cell lines express CLDN18.2 at 
low levels. Therefore, cancer cell lines trans-
fected with CLDN18.2 or patient-derived xeno-
graft models were used in most of the pre- 
vious studies. Since the natural expression of 
CLDN18.2 in gastric mucosal cells, CLDN18.2-
targeted tracers may have diagnostic value in 
patients with total or subtotal gastrectomy to 
detect local and/or distant metastases. In 
patients with partial gastrectomy or endoscop-
ic submucosal dissection, CLDN18.2 expres-
sion in gastric mucosal cells may act as antigen 
sink and further migrate the tracers from bind-
ing to the mestasatic lesions. Lastly, nano- 
body-derived radiopharmaceuticals are rapidly 
cleared from kidneys to the bladder. Although 
the rapid renal clearance results in high tumor-
to-background ratio, it will compromise the 
diagnostic value for tumor lesions located near 
kidneys and cause undesirable nephrotoxicity 
when a therapeutic dose is given [37]. To devel-
op next-generation theranostic platforms, strat-
egies that can improve the pharmacokinetics 
of radiopharmaceuticals need to be adapted 
[38-40]. 

Diffuse gastric cancer is known to be highly 
aggressive, with high rates of recurrence and 
metastasis, and a poor prognosis. Targeting 
CLDN18.2 presents a promising therapeutic 
approach [41]. Development and clinical tr- 
anslation of CLDN18.2-targeted theranostric 
agents may help improve the management of 
CLDN18.2-expressing cancers such as gastric 
and pancreatic cancers. The potential for tar-
geted CLDN18.2 treatment is promising, how-
ever, there remains a vast landscape of explo-

ration before reaching the pinnacle of precision 
treatment.
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