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Abstract: Breast cancer (BrCa) ranks as the most prevalent malignant neoplasm affecting women worldwide. The expression of pro-
grammed death-ligand 1 (PD-L1) in BrCa has recently emerged as a biomarker for immunotherapy response, but traditional immuno-
histochemistry (IHC)-based methods are hindered by spatial and temporal heterogeneity. Noninvasive and quantitative PD-L1 imaging 
using appropriate radiotracers can serve to determine PD-L1 expression in tumors. This study aims to demonstrate the viability of PET 
imaging with 64Cu-labeled Durvalumab (abbreviated as Durva) to assess PD-L1 expression using a murine xenograft model of breast 
cancer. Durvalumab, a human IgG1 monoclonal antibody against PD-L1, was assessed for specificity in vitro in two cancer cell lines 
(MDA-MB-231 triple-negative breast cancer cell line and AsPC-1 pancreatic cancer cell line) with positive and negative PD-L1 expres-
sion by flow cytometry. Next, we performed the in vivo evaluation of 64Cu-NOTA-Durva in murine models of human breast cancer by PET 
imaging and ex vivo biodistribution. Additionally, mice bearing AsPC-1 tumors were employed as a negative control. Tumor uptake was 
quantified based on a 3D region-of-interest (ROI) analysis of the PET images and ex vivo biodistribution measurements, and the results 
were compared against conventional IHC testing. The radiotracer uptake was evident in MDA-MB-231 tumors and showed minimal 
nonspecific binding, corroborating IHC-derived results. The results of the biodistribution showed that the MDA-MB-231 tumor uptake of 
64Cu-NOTA-Durva was much higher than 64Cu-NOTA-IgG (a nonspecific radiolabeled IgG). In Conclusion, 64Cu-labeled Durvalumab PET/CT 
imaging offers a promising, noninvasive approach to evaluate tumor PD-L1 expression.
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Introduction

Breast cancer (BrCa) is the most commonly diagnosed 
cancer among women worldwide and the leading cause of 
cancer-related deaths in women [1, 2]. The current stan-
dard-of-care treatments for BrCa are insufficient, as in- 
herent or drug-induced resistance often underlies metas-
tasis, relapse, and mortality [3, 4]. Programmed cell death 
ligand-1 (PD-L1) is an essential immune checkpoint that 
is ubiquitously expressed across a spectrum of malignant 
tumors and involved in the immune evasion process [5]. 
Immune checkpoint blockade therapy, which targets the 
programmed death protein 1 (PD-1) and its ligand PD-L1, 
has shown promising efficacy in treating BrCa and other 
malignancies [6, 7]. However, not all patients respond to 
this therapy, and there is a need for developing biomark-
ers to guide patient selection, predict response, and 
assist with combinatorial therapy [8, 9].

PD-L1 expression in tumor cells and tumor-associated 
immune cells are the most commonly investigated bio-
marker for immunotherapy, and several companion diag-
nostic tests for PD-L1 expression, including 22C3 and 
SP142 assays have been approved by the FDA [10, 11]. 

However, biopsy-based immunohistochemical (IHC) test-
ing is limited by intra-tumoral and inter-lesional heteroge-
neity, which may lead to a lack of focal PD-L1 expression, 
dynamic changes in PD-L1 expression after therapeutic 
intervention, and poor uniformity in the determination of 
PD-L1 levels by different tests [12, 13]. Moreover, the 
localization of PD-L1 is challenging due to its presence on 
the surface and in the cytoplasm of tumor cells and 
immune cells [14, 15]. Conventional IHC assays often 
lack accuracy and reliability due to the interference 
caused by the staining of cytoplasmic proteins, which 
hampers accurate measurement of proteins on the cell 
membrane [16].

This dual localization impacts the detection and quantifi-
cation of PD-L1, as surface PD-L1 plays a pivotal role in 
immune response modulation, while cytoplasmic PD-L1 
may be involved in different intracellular processes. 
Accurately identifying and quantifying PD-L1 in these dis-
tinct cellular locations is crucial for understanding its role 
in tumor biology and for the effective application of tar-
geted therapies [17, 18].

In contrast, in vivo techniques to assess PD-L1 expres-
sion via molecular imaging can be used to monitor dis-
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ease progression, localize metastatic sites, and generate 
personalized therapies [19-23]. PET imaging with a posi-
tron-emitting radionuclide is a popular choice due to its 
high sensitivity, superb tissue penetration, reproducible 
quantification, and potential for clinical translation, am- 
ong others [24-30]. U.S. Food and Drug Administration 
(FDA) has approved three anti-PD-L1 antibodies for the 
treatment of various types of cancer: Atezolizumab 
(Tecentriq), Durvalumab (Imfinzi), and Avelumab (Baven- 
cio) [31]. Several immunoPET tracers targeting PD-L1 
have been reported in pre-clinical and clinical studies [32-
34]. Of these, Atezolizumab (Atz, MPDL3280A) is a practi-
cal option given its clinical usage and reliability in assess-
ing PD-L1 expression in BrCa [35-37] and when labeled 
with zirconium-89 (89Zr), it has been used in PET imaging 
to visualize PD-L1 expression in tumors. This tracer is 
beneficial due to the long half-life of 89Zr, allowing for 
delayed imaging which matches the pharmacokinetics of 
antibodies. However, the long half-life may also increase 
the radiation dose to the patient [38, 39].

Similar to Atezolizumab, Durvalumab is another anti-PD-
L1 antibody. Durvalumab, a fully human IgG1 monoclonal 
antibody targeting PD-L1, has a high affinity for PD-L1. 
Early human studies employing Durvalumab labeled with 
89Zr for evaluation of PD-L1 expression in squamous cell 
carcinoma of head and neck and non-small cell lung can-
cer (NSLC) patients have yielded promising results [40-
42]. 124I-labeled F(ab’)2 fragments of Durvalumab and 
124I-labeled Durvalumab have been used for PD-L1 
expression in human NSLC tumors in vivo, as well [43]. 
FDA has approved Durvalumab for the treatment of uro-
thelial carcinoma and other malignancies, and it is cur-
rently under phase I and II clinical trials for the combina-
tion therapy of BrCa [44-46]. These advancements have 
enhanced our confidence in the safety and feasibility of 
immunoPET imaging based on the tracer derived from 
Durvalumab. Furthermore, recent studies have used dif-
ferent radiotracers such as 89Zr-Atezolizumab and 89Zr- 
labeled Avelumab for assessing the PD-L1 expression 
using immune-PET imaging [47-49]. 89Zr, with a half-life of 
about 78.4 hours, offers a longer imaging window, which 
can be beneficial for slower pharmacokinetics of antibod-
ies but increases radiation exposure [50]. 64Cu has a half-
life of about 12.7 hours, which can be a good balance 
between providing enough time for the antibody to local-
ize to the tumor and limiting radiation exposure [51]. 
Previous studies have demonstrated the feasibility of 
antibody labeling with 64Cu [52] and its successful appli-
cation in detecting PD-L1 expression patterns using  
PET/CT [32]. The in vivo findings indicated that 64Cu- 
Atezolizumab has the specificity for detecting different 
levels of PD-L1 expression in Triple Negative Breast 
Cancers (TNBCs) using PET/CT, validating its use in varied 
PD-L1 detection [35].

In this study, we evaluated the efficacy of immunoPET for 
noninvasive monitoring of PD-L1 expression in BrCa using 

64Cu-NOTA-Durva. We confirmed the high expression of 
PD-L1 in MDA-MB-231 human BrCa cell line in murine 
xenograft models via biopsy IHC and validated the effica-
cy of this tracer for PET imaging. In our control experi-
ments, we utilized the PD-L1 negative AsPC-1 tumor cell 
line with the 64Cu-NOTA-Durva, and the PD-L1 positive 
MDA-MB-231 tumor cell line with the 64Cu-NOTA-Ritu- 
ximab, a nonspecific radiolabeled IgG.

Our results provide insights into the potential of immu-
noPET imaging with 64Cu-NOTA-Durva as a noninvasive 
approach for monitoring of PD-L1 expression in BrCa.

Materials and methods

Chemicals

Durvalumab (anti-PD-L1) was obtained from Selleck 
Chemicals, Inc. (Houston, TX). 1,4,7-triazacyclononane-
1,4,7-triacetic acid (p-SCN-Bn-NOTA) was purchased from 
Macrocyclics, Inc. (Dallas, TX). 64CuCl2 in 0.05 M HCl was 
obtained from UW-Madison’s cyclotron research group. 
PD-L1 (E1L3N) XP Rabbit monoclonal antibody was pur-
chased from Cell Signaling, Inc. (Danvers, MA). PE anti-
human CD274 (B7-H1, PD-L1) antibody was purchased 
from BioLegend, Inc. (San Diego, CA). APC Conjugation  
Kit - Lightning-Link was purchased from Abcam, Inc. 
(Boston, MA).

Rituximab (monoclonal anti-CD20 antibody) was pur-
chased from Selleck Chemicals, Inc. (Houston, TX). PD-10 
desalting columns were supplied by GE Healthcare, Inc. 
(Piscataway, NJ). 4’,6-diamidino2-phenylindole (DAPI) is 
the product of ThermoFisher, Inc. (Burlingame, CA). 
Dulbecco Modified Eagle Medium (DMEM) was obtained 
from Gibco, Inc. (Grand Island, NY). Fetal bovine serum 
(FBS) was provided by Gibco, Inc. (Grand Island, NY). All 
other reagents were from ThermoFisher, Inc.

Cell culture

Human BrCa cell line MDA-MB-231 and human pancreas 
cancer cell line AsPC-1 were provided by the American 
Type Culture Collection (ATCC; Manassas, VA). The cells 
were cultured in DMEM and RPMI-1640 medium, respec-
tively, with high glucose, FBS (10%), and Penicillin/strep-
tomycin (1%). The T75 flasks containing the cells were 
placed in a humidified constant thermoincubator at 37°C 
with CO2 (5%). Cells were trypsinized and harvested for 
tumor inoculation and in vitro experiments after reaching 
~70% confluence.

Subcutaneous xenograft model

Female athymic nude mice aged 4 to 7 weeks were pur-
chased from Envigo (Cambridge Shire, UK). Approximately 
5×106 MDA-MB-231 cells and 4×106 AsPC-1 cells, sus-
pended in 150 μL of medium were implanted subcutane-
ously on the right shoulder of each mouse. The injected 
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mixture can be adsorbed in 1-2 days. At ~5 weeks post-
inoculation of MDA-MB-231 cells and 10 days post-inocu-
lation of AsPC-1 cells, tumors with a diameter of ~10 mm 
were accepted for in vivo experiments. 12-h light-dark 
cycle was maintained, and food and water were continu-
ously available. All experiments complied with current 
regulations of the Institutional Animal Care and Use 
Committee (IACUC) at the University of Wisconsin-
Madison (UW-Madison).

Identification of PD-L1 expression

Immunofluorescent staining and confocal imaging were 
conducted to validate the expression of PD-L1 on the 
MDA-MB-231 and AsPC-1 cell lines. The cells were cul-
tured in glass-bottom dishes (50 mm, ~2×105 cells/dish) 
and incubated at 37°C in CO2 (5%) overnight. Then cells 
were incubated with PE-anti-PD-L1, APC-Durvalumab (10 
μg/mL), and DAPI (5 μg/mL) at 4°C overnight in the dark 
and imaged on an A1R confocal microscope (Nikon, Inc.; 
Melville, NY).

PD-L1 expression on the tumor cell surface was verified in 
the MDA-MB-231 and AsPC-1 cell lines by flow cytometry. 
The cells were suspended in a staining buffer (4°C) and 
split into aliquots of 1×106 cells/tube. Then the cells were 
incubated with PE-anti-PD-L1, APC-Durvalumab (10 μg/
mL) for 1 h on ice in darkness. Finally, all cells were re-
suspended in 500 μL of staining buffer (4°C) and DAPI 
was added 10 min before the flow cytometry analysis on 
a 5-Laser LSR Fortessa cytometer (Becton-Dickinson, 
Inc.; San Jose, CA). Cell counts were recorded and ana-
lyzed using FlowJo (ver. X.0.9; Tree Star, Inc.; Ashland, OR) 
software.

Chelator conjugation and radiolabeling

p-SCN-Bn-NOTA was dissolved in 10 μL of dimethyl-sulf-
oxide (DMSO) and Durvalumab was conjugated to NOTA at 
a molar ratio of 1:5 at pH 8.4. The mixture was incubated 
at room temperature (RT) for 2 h with constant shaking 
and later purified by size-exclusion columns using metal-
free phosphate buffer solution (PBS) as the mobile phase 
to remove unbound NOTA. Fractions containing NOTA-
conjugated Durvalumab were collected, and the peak 
fraction of solute was confirmed on the NanoDrop One 
(ThermoFisher; Waltham, MA). For 64Cu radiolabeling, 
Durvalumab/IgG was incubated with 64CuCl2 (111 MBq/3 
mCi) in 300 μL of sodium acetate buffer (0.1 mol/L, pH 5) 
for 60 min at 37°C with constant shaking. The reaction 
solution was purified by PD-10 (PBS as the eluent). Eluted 
64Cu-NOTA-Durvalumab (64Cu-NOTA-Durva) fractions were 
combined and used for mouse studies.

Serum stability testing of 64Cu-NOTA-Durvalumab

The in vitro serum stability of 64Cu-NOTA-Durva was 
assessed using instant thin-layer chromatography. 100 
μCi (3.7 MBq) of 64Cu-NOTA-Durva was incubated in 200 
μL of human serum at 37°C for 4, 24, and 48 h.

PET imaging and biodistribution studies

In vivo PET imaging was performed using an Inveon 
Micropet/CT scanner (Siemens Medical Solutions USA, 
Inc.). Tumor xenograft mice (n = 3/group) were injected 
with 3.7-7.4 MBq (0.10-0.20 mCi) of 64Cu-NOTA-
Durvalumab/NOTA-IgG via the lateral tail vein. PET/CT 
scans were acquired at 4, 24, and 48 h post-injection 
(p.i.). The Inveon Research Workplace (IRW) software 
(Siemens, Inc.) was used to quantify the mean uptake of 
the region of interest (ROI) in major organs in terms of the 
percentage of injected dose per gram (%ID/g, decay-cor-
rected). The %ID/g value was calculated by dividing tissue 
activity in MBq/g (converted from ROI uptake) by the total 
radioactive dose injected.

Ex vivo biodistribution studies were carried out after the 
last PET scan at 48 h p.i. and all mice were euthanized by 
CO2 asphyxiation. The tumor, blood, brain, heart, lung, 
liver, spleen, kidneys, stomach, intestine, muscle, bone, 
and pancreas were harvested and wet weighed. The 
radioactivity of major organs was determined using a 
Wizard 2480 automatic γ-counter (PerkinElmer, Inc.; 
Waltham, MA), and the results are presented as %ID/g, 
mean ± standard deviation.

Immunohistochemistry

Tumors were excised from mice, fixed overnight in 4% 
paraformaldehyde, and subsequently transferred to 70% 
ethanol for preservation. Immunohistochemical analysis 
was performed at the University of Wisconsin-Madison’s 
Translational Research Initiatives in Pathology (TRIP) 
facility. The samples were embedded in paraffin for tis- 
sue processing. Deparaffinization was achieved using 
standard protocols, followed by heat-induced epitope 
retrieval using an EDTA-based buffer (Ventana #950-
500) at 95°C for 32 minutes. The primary antibody 
(E1L3N®) XP® Rabbit mAb #13684 was applied at a dilu-
tion of 1:100 and incubated at 37°C for 32 minutes. The 
secondary antibody, Discovery OmniMap anti-Rabbit HRP 
(Ventana #760-4311), was applied and incubated at 
37°C for 16 minutes. Counterstaining was performed 
with Harris hematoxylin at a 1:5 dilution for 30 seconds, 
and the slides were then covered with xylene. Finally, the 
slides were imaged using ImageScope.

Statistical analysis

Quantitative data were analyzed using GraphPad PRISM 
(version 10.1.1) and presented as mean ± standard devi-
ation (SD).

Results

PD-L1 expression

As depicted in Figure 1A, the nuclei of MBA-MB-231 cells 
were stained by DAPI (blue channel). The PD-L1 on the 
cells was heavily stained by APC-Durvalumab and exhib-
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Figure 1. Characterization of in vitro PD-L1 expression in human BrCa cell line. A, B. 
The confocal imaging of MDA-MB-231 and AsPC-1 cells after immuno-fluorescent 
staining, Scale bar: 10 μm. A. MDA-MB-231 cells stained by APC-Durva and PE-anti-
PD-L1. B. AsPC-1 cells stained by APC-Durva and PE-anti-PD-L1. Sample groups: DAPI, 
the nucleus stained by DAPI; APC, the PD-L1 expression stained by APC-Durvalumab; 
PE, the PD-L1 expression stained by PE-anti-PD-L1. C, D. The PD-L1 expression on the 
cell membrane of the MDA-MB-231 and AsPC-1 cell lines were evaluated using flow 
cytometry. C. The cell lines were stained by a commercialized PE-anti-PD-L1 antibody. 
D. The cell lines were stained by APC-Durva antibody. The blue area represents cells 
without PD-L1 expression, and the red area represents cells with PD-L1 expression. 
There is a significant shift in both Anti-PD-L1 antibody and Durvalumab treated group 
in MDA-MB-231 PD-L1 positive cell line compared to AsPC-1 PD-L1 negative cell line.

ited strong fluorescence (red channel), 
the cells engaging with PE-anti-PD-L1 
antibody showed an intense red fluores-
cent signal as well. This verifies the high 
expression of PD-L1 on the MDA-MB-231 
cell line. AsPC-1 PD-L1 negative cell lines 
(Figure 1B) were also stained to confirm 
the specificity of APC-Durvalumab bind-
ing. The nuclei of AsPC-1 cells were 
stained by DAPI (blue channel) and the- 
re was no significant PD-L1 expression 
on these cells after staining with APC-
Durvalumab/PE-anti-PD-L1 antibody. 

In the results of flow cytometry, cells 
stained with PE-anti-PD-L1 (Figure 1C) 
and APC-Durva (Figure 1D) shared nota-
ble positive shifts compared with control 
groups, confirming the high expression of 
PD-L1 on the MDA-MB-231 cell surface. 
The shift in the PD-L1 negative group of 
flow cytometry and the negative signal in 
the confocal images of the PD-L1 nega-
tive group is circumstantial evidence of 
the specificity APC-Durva. The in vitro 
results demonstrate that the MDA-MB- 
231 cell line is PD-L1 positive and Dur- 
valumab shows specificity for PD-L1.

Radiochemistry

Durvalumab was successfully conjugated 
with NOTA and radiolabeled with 64Cu. 
The 64Cu-labeling achieved a radiochemi-
cal yield of >80% 64Cu-NOTA-Durva. RTLC 
analysis results showed that 64Cu-NOTA-
Durva has high stability in serum, with 
>74% radiochemical purity at 48 h (Figure 
2).

PET/CT imaging and biodistribution of 
64Cu-NOTA-Durvalumab

Figure 3 shows the PET/CT images and 
biodistribution results of 64Cu-NOTA-Dur- 
va. 64Cu-NOTA-Durva showed noticeable 
tumor uptake differences between the 
targeting and non-targeting groups at all 
timepoints from 4 to 48 h p.i. 64Cu-NOTA-
Durva showed longer blood retention in 
the non-targeting group. We further per-
formed a biodistribution study at 48 h p.i.

Histology

Tumor samples were fixed in PFA 4% over-
night and then transferred to cold Ethanol 
70%. Slide scans of these tissues after 
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using murine models [32-37, 56, 57]. This study differs 
from previous ones in a few key aspects. Firstly, human 
cell lines were used to induce the tumor models, enhanc-
ing clinical translatability compared to studies using 
murine cell lines such as 4T1 [58-60]. Secondly, the posi-
tive cell line used in this study (MDA-MB-231) expresses 
native levels of PD-L1 without artificial overexpression, 
unlike some previous studies that have used human 
PD-L1 gene-transfected A375 cells and human PD-L1-
gene transfected B16-F10 [61, 62]. Lastly, the study 
avoided predosing/blocking strategies employed in other 
studies [48, 61, 63] to minimize off-target lymphatic 
uptake. Only the radiolabeled protein was administered  
at a low dose to avoid potential pharmacologic respons- 
es while achieving sufficient imaging signal. Predosing 
involves administering an excess of unlabeled antibody 
before introducing the radiolabeled counterpart, aiming 
to saturate target binding sites in normal tissues, thus 
reducing background signal. Some studies have highlight-
ed the advantages of predosing in improving image qual-
ity and target-to-background ratios, emphasizing its 
potential clinical relevance [64]. Predosing or blocking 
strategies, while effective in minimizing non-specific bind-
ing, can introduce complexities such as altering the phar-
macokinetics of the radiotracer, potentially influencing its 
distribution and clearance patterns [48, 65, 66]. The 
choice to avoid these strategies in the current study 
aimed to maintain simplicity in the experimental design 
and enhance the reliability of the obtained imaging data. 

PD-L1 imaging presents challenges compared to tradi-
tional tumor markers. The widespread expression of 
PD-L1 reduces the imaging signal in tumors, and conven-
tional control experiments cannot be applied. As the injec-
tion of a blocking dose would saturate PD-L1 in the spleen 
and lymph nodes, this method might lead to increased 
tracer accumulation in the tumor, challenging its specific-
ity for cancer cells, contrary to conventional studies. Using 
a nonspecific, isotype-matched antibody as a control also 
presents issues, as it would not bind to ubiquitous PD-L1 
throughout the body and may accumulate to higher levels 
in tumor tissue that were elaborated in previous studies 
[47, 67]. In our study, as a negative control, mice with 
AsPC-1 tumors were used to assess the 64Cu-NOTA-Durva 
accumulation in tumor tissues not attributed to PD-L1 
expression by tumor cells. Furthermore, nonspecific 
uptake was assessed by a radiolabeled control IgG anti-
body, 64Cu-NOTA-IgG, in MDA-MB-231 mice models.

The choice of PD-L1-targeted radiotracer for immunoPET 
imaging depends on the specific requirements of the 
study, including the desired imaging window, the balance 
between resolution and radiation dose, and the pharma-
cokinetic properties of the tracer in relation to the tumor 
characteristics. 64Cu has a half-life of approximately 12.7 
hours. Our study benefits from the relatively short half-life 
of the 64Cu, enabling multiple imaging sessions in a day 

Figure 2. RTLC analysis of 64Cu-NOTA-Durva. The radiochemical 
purity of 64Cu-NOTA-Durva was ≥74% after 48 h incubation in se-
rum. n = 3.

immunofluorescent staining are shown in Figure 4. The 
fluorescence from PD-L1 of MDA-MB-231 (in brown) is vis-
ible and overlays with the cell nuclei (in blue) in tumor 
tissue.

Discussion

The level of PD-L1 expression has been shown to greatly 
influence the patient’s response to therapy [53, 54] and 
could be a superior predictor of patient response to 
immune checkpoint blockade compared to biopsy IHC 
analysis, which is the current clinical standard [10]. 
However, PD-L1 expression is not consistently stable on 
the cell surface and can be influenced by various signal-
ing pathways, post-translational modifications, and the 
release of inflammatory factors during treatments like 
radiotherapy and chemotherapy [40-43, 55].

In light of these challenges, the development of advanced 
imaging techniques such as PD-L1 PET imaging becomes 
imperative. By allowing noninvasive and real-time moni-
toring of PD-L1 expression, PD-L1 PET imaging offers a 
valuable tool for accurately assessing PD-L1 status and 
guiding treatment decisions. This imaging modality over-
comes the limitations of traditional methods and provides 
timely information on PD-L1 expression dynamics, ensur-
ing optimal patient selection and treatment efficacy.

Several studies have investigated tumor detection using 
molecular imaging based on PD-L1 expression, often 
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Figure 3. Representative PET/CT images and biodis-
tribution of MDA-MB-231 and AsPC-1 tumor-bearing 
mice over time. Representative PET/CT images (A) 
and biodistribution (B) of MDA-MB-231 and AsPC-1 tu-
mor-bearing mice injected with 64Cu-NOTA-Durva/64Cu-
NOTA-IgG. n = 3.

and capturing changes in PD-L1 expression over 
shorter time spans. Furthermore, shorter-lived 
radionuclides like 64Cu typically result in lower 
radiation exposure for patients and medical per-
sonnel, enhancing safety in clinical settings. 
64Cu is more accessible and easier to handle in 
many clinical settings, which can streamline the 
logistics of our study as well.

On the other hand, 89Zr forms stable chelates 
with antibodies, ensuring long-lasting imaging 
signals. However, for our specific study, the 
shorter half-life of 64Cu may still provide suffi-
cient stability while offering more flexibility in 
imaging scheduling. In summary, based on the 
title and focus of our study on breast cancer and 
PD-L1 expression using 64Cu-labeled Durvalu- 
mab, 64Cu appears to be a suitable choice. Its 
shorter half-life, rapid imaging capabilities, and 
lower radiation exposure align well with the 
objectives of noninvasively evaluating PD-L1 
expression dynamics in breast cancer tumors.

The results presented in this study demonst- 
rate the successful conjugation of NOTA with 
Durvalumab and its radiolabeling with 64Cu, 
resulting in a stable and pure 64Cu-NOTA-Durva 
tracer. The in vitro experiments also showed high 
expression of PD-L1 on the MDA-MB-231 cell 
line, which indicates that Durvalumab can be a 
promising tracer for PD-L1 imaging in breast 
cancer. 

The in vivo PET/CT imaging and biodistribution 
studies of 64Cu-NOTA-Durva showed noticeable 
tumor uptake differences between the targeting 
and non-targeting groups, confirming the speci-
ficity of the tracer for PD-L1 positive tumors 
(14.47 ± 3.70 %ID/g for 64Cu-NOTA-Durva vs 
5.55 ± 2.5 %ID/g for 64Cu-NOTA-IgG; n = 3). A 
five-fold higher uptake of radioactivity in MDA-
M231 cells than in AsPC-1 cells further con-
firmed the specificity of 64Cu-NOTA-Durva for 
PD-L1. The biodistribution study at 48 h p.i. fur-
ther supported the selective accumulation of  
the tracer in the tumor, as evidenced by the high-
er uptake of the targeting group compared to  
the non-targeting group. The immunofluorescent 
staining of tumor tissue and flow cytometry 
results also confirmed the expression of PD-L1 
in the MDA-MB-231 tumors. The findings of this 
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study are consistent with previous studies that have used 
Durvalumab as a tracer for PD-L1 imaging in various 
types of cancer [42, 43]. 

Conclusion

Our study demonstrates the potential of PD-L1 PET/CT 
imaging with 64Cu-labeled Durvalumab for noninvasive 
evaluation of PD-L1 expression in tumors. The radiolabel-
ing of Durvalumab with 64Cu was straightforward, and the 
radiolabeled compound showed high in vitro serum stabil-
ity and specificity for PD-L1-expressing cells. The PET/CT 
imaging studies showed that 64Cu-labeled Durvalumab 
can accumulate in PD-L1-expressing tumors and provide 
high-contrast images. The quantitative measurement of 
PD-L1 expression using PET/CT imaging with 64Cu-labeled 
Durvalumab showed a significant correlation with PD-L1 
expression levels in tumors, and the specificity of 64Cu- 
labeled Durvalumab binding to PD-L1 was confirmed by 
non-targeting models. The results from this work can help 
guide the development of new PD-L1 inhibitors and 
improve our understanding of the role of PD-L1 in cancer 
biology.
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