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Abstract: In the current issue of American Journal of Nuclear Medicine and Molecular Imaging, Vasdev et al. presented a work entitled 
“In Vitro Evaluation of PET Radiotracers for Imaging Synaptic Density, the Acetylcholine Transporter, AMPA-tarp-γ8 and Muscarinic M4 
receptors in Alzheimer’s disease”. In which, in vitro autoradiography studies using radioligands were employed as a valuable tool to gain 
more insights for potential clinical translation. In this invited perspective, we would like to briefly introduce the current state of AD diag-
nosis, especially PET imaging on synapse, and highlight the advances of PET imaging in pre-clinic and clinic that might assist on precise 
therapy in the future.  
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Alzheimer’s disease (AD) is the most common type of 
dementia affecting elderly people worldwide. The neuro-
pathological hallmarks of AD include amyloid-β (Aβ) 
plaques, neurofibrillary tangles, and neuronal loss. A  
conceptual framework of “A/T/N” (amyloid/tau/neurode-
generation) biomarkers recommended by the National 
Institute on Aging-Alzheimer’s Association shifted the 
definition from a syndrome to a biological classification 
[1, 2]. Derived from thioflavin-T, carbon-11 labeled Pitt- 
sburgh compound B achieved for the first time of visual-
izing Aβ plaques in the living humans by positron emission 
tomography (PET) [3], followed by the development of  
[18F]florbetapir and [18F]flobetaben - fluorine-18 labeled 
Aβ molecular probes approved by the Food and Drug 
Administration (FDA) and the European Medicine Agency 
(EMA). In comparison with Aβ imaging, PET imaging of 
fibrillary tau is more challenging due to the existence of 
various proteoforms [4]. Continuous efforts culminated in 
PET tracers with high specificity for tau and favorable 
kinetic profiles, such as [18F]AV1451, [18F]MK-6240 and 
[18F]RO-948. The strong correlation of tau PET imaging 
with Braak histopathologic classification appears to be an 
efficient tool for staging AD in clinic [5].

Original biomarkers for AD-related neurodegeneration 
(“N”) include an elevated level of phosphor-tau in cere- 
brospinal fluid, decreased uptake of fluorodeoxyglucose 
[18F]FDG and structural magnetic resonance imaging 
(MRI) with a characteristic pattern. Until 2016, [11C]UCB-J 
targeting synaptic vesicle glycoprotein 2A (SV2A) was 
developed providing an invaluable approach to “see” the 
synaptic loss in patients with temporal lobe epilepsy [6]. 
Its analogue [18F]SynVesT-1, also known as [18F]SDM-8 or 

[18F]MNI-1126, displayed excellent kinetics and specific 
bindings to quantify the alteration of synaptic density in 
neurological disorders. Synaptic loss measured by [18F]
SynVesT-1 demonstrated its close relationship with 
“A/T/N” biomarkers in the hippocampus and parahippo-
campal gyrus of patients with Alzheimer’s clinical syn-
drome [7]. Nevertheless, the molecular mechanism un- 
derlying the progressive neurodegeneration remains com-
plicated and not yet fully understood. 

As a consequence, the failure rate stays high for AD drug 
development. The cholinergic system may represent the 
most successful therapeutic target validated as far. 
Cholinesterase inhibitors approved by FDA, namely done-
pezil, galantamine and rivastigmine, were found to stabi-
lize or slow decline in cognition, function and behavior in 
patients with AD dementia [9]. Donepezil and galantamine 
inhibit acetylcholinesterase (AChE), whereas rivastigmine 
inhibits both AChE and butyrylcholinesterase. As suggest-
ed by the cholinergic hypothesis, the deterioration of cho-
linergic neurons in the brain and the loss of acetylcholine 
in synapse clefts are the major causes of cognitive impair-
ment in patients with AD [10]. However, the efficacy of 
these drugs is accompanied by adverse side effect and 
cannot completely arrest the disease progression. On the 
other hand, memantine demonstrated therapeutic effect 
in moderate and severe AD dementia by regulation of 
N-methyl-D-aspartate (NMDA) receptor system. Several 
drug candidates function as NMDA receptor antagonist 
entered Phase III with the goal of improving neuropsychi-
atric symptoms of AD [11]. BMS-984923, a silent allo- 
steric modulator of metabotropic glutamate receptor 5 
(mGluR5), reversed synapse loss in mouse models of AD 
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[12] and is recruiting participants for a multiple ascending 
dose study in Phase 1b (NCT05804383). The mGluR5 
availability measured by [18F]PSS232 showed correlation 
with neuropathological biomarkers of AD as well as neuro-
degenerative biomarkers [13]. Of note, owing to PET imag-
ing of Aβ plaques, FDA granted accelerated approval for 
lecanemab and aducanumab, two antibody-based drugs 
that bind to and mop up Aβ decomposition. Overall, the 
multifaceted AD added barriers to the AD drug develop-
ment. Future investigations in preclinical and clinical stag-
es await multiple tracers to comprehend the molecular 
bases behind progressive neurodegeneration, to assist 
drug development with a right target, a right biomarker, 
and a right timing for interventions. 

Vasdev et al. used in vitro autoradiography and various 
molecular probes to assess the altered target expression 
on post-mortem human brain tissues. [3H]UCB-J and [3H]
SynVesT-1 were applied as a starting point to detect the 
variability of synaptic density in the cerebellum (CRB), pre-
frontal cortex (PFC) and hippocampus (HIP) of AD, mild 
cognitive impairment (MCI) and normal healthy volunteer 
(NHV). Both radioligands showed reduced synaptic densi-
ty in MCI and AD tissues compared to NHV sections, with 
[3H]SynVesT-1 being more sensitive. These results were 
consistent with the crucial role of [18F]SynVesT-1 played in 
clinical investigations for synaptic loss in AD progression 
[14]. Most recently, our group carried out clinical studies 
to investigate the influence of apolipoprotein E (APOE) ε4 
on synaptic density in the individuals with cognitive impair-
ment [15]. It is in line with apolipoprotein E (APOE) ε4 
stands for the major genetic risk factor for sporadic AD 
[8]. Using [18F]SynVesT-1, even though after the control of 
Aβ burden, we can still observe significant synaptic loss in 
the brain regions of APOE ε4 carriers, and provided the 
first time a direct evidence that APOE ε4 potentiates syn-
aptic loss via tau pathology in humans.

Acetylcholine synthesized in the presynaptic cholinergic 
neuron is transported via the vesicular acetylcholine 
transporter (VAChT) into presynaptic vesicles. Upon trig-
gering, the released acetylcholine binds to and activates 
nicotinic and muscarinic acetylcholine receptors (nAChRs 
and mAChRs). Afterward, AChE in synapse clefts cleaved 
it into acetate and choline. [18F]FEOBV and [18F]VAT are 
two VAChT PET tracers transferred to clinical studies with 
favorable characteristics. Previously, [18F]FEOBV display 
ed superior ability over [18F]FDG on discriminating AD  
from NHV [16]. In contrast, the development of selective 
PET tracer towards mAChRs subtypes was lagging behind. 
[11C]MK-6884 disclosed by Li et al. made a breakthrough 
in the regards of high selectivity and showing capability of 
measuring target engagement in the living human brain 
[17]. A declined non-displaceable binding potential of [11C]
MK-6884 in a small cohort of AD patients was reported, 
reflecting the loss of the M4 subtype of mAChRs. In the 
work performed by Vasdev et al., substantial reduction of 
VAChT was detected neither by [18F]FEOBV nor [3H]VAT on 
brain tissues with confirmed neuropathology. Meanwhile, 

[3H]MK-6884 revealed 27% and 41% reductions in the 
hippocampal regions of MCI and AD, respectively. Clinical 
PET studies might be of interests to unveil the variability 
of various cholinergic components during the diseased 
progression. Together with minimal mental state exami-
nation and Montreal cognitive assessment, this hopefully 
may gain more insights into pathophysiology, guide clini-
cal trials, and ultimately personalized treatment.

Besides NMDA receptors mentioned-above, α-amino-3-
hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) re- 
ceptors represent another subtype of ionotropic gluta-
mate receptor, which is crucial to synaptic plasticity and 
memory [18]. [11C]K-2 with higher affinity to GluA2 and 
GluA4 subunits of AMPA receptors provided a valuable 
tool for visualizing the aberration of target expression in 
neuropsychiatric disorders [19]. JNJ-55511118, a small 
molecule targeting the transmembrane AMPA receptor 
regulatory protein γ8 (TRAP-γ8), emerged as a novel tool 
for reversible AMPA receptor inhibition and potentially as 
a new agent for neuroprotectant [20]. Interestingly, as 
shown by Vasdev et al., the specific binding of [3H]JNJ-
55511118 showed the substantial reduction in the hip-
pocampal region of MCI (-41%) and AD (-56%) compared 
to those of NHV, which was more profound than synaptic 
loss detected by [3H]SynVesT-1 and decreased M4 sub-
type of mAChRs detected by [3H]MK-6884. The details for 
its mechanism warrant further investigations. 

In summary, Vasdev et al. presented in vitro autoradiogra-
phy using radioligands as powerful tools to interpretate 
the target alterations in AD pathology. This provides valu-
able insights for potential PET imaging studies in patients 
with AD and related dementia. In the meantime, novel 
PET tracers with promising results in preclinic are emerg-
ing to image targets in cholesterol degradation [21], endo-
cannabinoid system [22-24] and purinergic signaling [25]. 
We hope these advances could assist on the elucidation 
of the molecular bases underlying AD pathology and cul-
minate in novel diagnostic and therapeutic options with 
clinical relevance. 
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