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Abstract: This study aimed to assess the efficacy of fluor-18 fluorodeoxyglucose (18F-FDG) PET/CT using sub-regional-based radiomics 
in predicting epidermal growth factor receptor (EGFR) mutation status in pretreatment patients with solid lung adenocarcinoma. A ret-
rospective analysis included 269 patients (134 EGFR+ and 135 EGFR-) who underwent pretreatment 18F-FDG PET/CT scans and EGFR 
mutation testing. The most metabolically active intratumoral sub-region was identified, and radiomics features from whole tumors or 
sub-regional regions were used to build classification models. The dataset was split into a 7:3 ratio for training and independent testing. 
Feature subsets were determined by Pearson correlation and the Kruskal Wallis test and radiomics classifiers were built with support 
vector machines or logistic regressions. Evaluation metrics, including accuracy, area under the curve (AUC), sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive value (NPV) were employed for different classifiers. Results indicated that the sub-
region-based classifier outperformed the whole-tumor classifier in terms of accuracy (73.8% vs. 66.2%), AUC (0.768 vs. 0.632), specific-
ity (65.0% vs. 50.0%), PPV (70.2% vs. 62.2%), and NPV (78.8% vs. 74.0%). The clinical classifier exhibited an accuracy of 75.0%, AUC 
of 0.768, sensitivity of 72.5%, specificity of 77.5%, PPV of 76.3%, and NPV of 73.8%. The combined classifier, incorporating sub-region 
analysis and clinical parameters, demonstrated further improvement with an accuracy of 77.5%, AUC of 0.807, sensitivity of 77.5%, 
specificity of 77.5%, and NPV of 77.5%. The study suggests that sub-region-based 18F-FDG PET/CT radiomics enhances EGFR mutation 
prediction in solid lung adenocarcinoma, providing a practical and cost-efficient alternative to invasive EGFR testing.
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Introduction

Lung cancer represents a ubiquitous and highly conse-
quential global health challenge, characterized by the 
highest rates of both mortality and morbidity on a world-
wide scale. Non-small cell lung cancer (NSCLC) consti-
tutes approximately 85% of all diagnosed lung cancer 
cases [1, 2]. NSCLC harboring epidermal growth factor 
receptor (EGFR) mutations exhibits heightened respon-
siveness to EGFR tyrosine kinase inhibitors (TKIs), consti-
tuting a targeted therapeutic approach. Implementation 
of EGFR-targeted therapy holds the promise of enhancing 
both median overall survival (OS) and progression-free 
survival (PFS) for patients within this particular subset [3]. 
Initial EGFR gene testing before treatment has been rec-
ommended by several clinical guidelines [4]. The prevail-
ing clinical protocol for EGFR genotyping relies on biopsy 
procedures, a methodology fraught with potential techni-
cal constraints such as insufficient tissue availability, 
complications associated with invasive biopsy, and the 
inherent risk of procedural complications [5].

Genotypic heterogeneity significantly influences the diver-
sity observed in the tumor microenvironment, encom-
passing aspects such as tumor metabolism, which can 
manifest in imaging modalities. 18F-FDG positron emis-
sion tomography (PET) relies on varying rates of 18F-FDG 

uptake, and in the context of lung cancer cells with EGFR 
mutations, the uptake of 18F-FDG may be modulated by 
the signaling activity of the EGFR pathway [6]. The incor-
poration of 18F-FDG PET/computed tomography (CT), a 
hybrid imaging modality that integrates 18F-FDG PET for 
the quantitative assessment of glucose metabolism with 
CT for X-ray absorption detection, is advocated for the 
routine staging of patients diagnosed with lung adenocar-
cinoma as an integral component of the initial clinical 
evaluation. While prior investigations employing 18F-FDG 
PET/CT to predict gene mutations in lung cancer have pre-
dominantly centered on visual analysis or conventional 
semi-quantitative parameters, such as standardized 
uptake values (SUVs) [7, 8], without considering CT infor-
mation and various textures reflecting heterogeneity [8]. 
With the application of medical artificial intelligence, it 
has become feasible to find fast, convenient, and nonin-
vasive surrogates for EGFR genotyping. Quantitative 
imaging analysis employing radiomics methodology has 
the capacity to extract a robust set of objective and  
high-throughput imaging features from provided images, 
facilitating automated gene prediction. Consequently, 
radiomics holds promise for its application in genotyping 
within the context of 18F-FDG PET/CT.

Previous radiomics analysis usually set the whole tumor 
volume as the region of interest (ROI). However, many 
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studies have found that information from different sub-
regions of the tumor contributes differently to classifica-
tion. Whole tumor analysis assumes that the tumor is 
homogeneous or well mixed throughout the whole volume. 
In addition, regional differences are apparent within the 
whole tumor on medical images, such as 18F-FDG PET. In 
recent years, efforts have been made in developing imag-
ing analysis based on sub-regions instead of whole tumors 
[9, 10]. Regional disparities within the tumor may mani-
fest distinct metabolic patterns on 18F-FDG PET, thereby 
suggesting that information derived from specific sub-
regions could serve as valuable indicators for the assess-
ment of tumor heterogeneity and genotype.

A study conducted by Stanford University demonstrated 
that the metabolically most active sub-region, as identi-
fied through FDG PET, can function as a reliable predictor 
of overall survival (OS) and progression outside the treat-
ment field in patients with previously treated lung cancer 
[11]. Therefore, radiomics features can be used along 
with other clinical data to improve diagnostic accuracy.

We postulated that the EGFR genetic profile of solid lung 
adenocarcinomas could be discerned in their phenotypic 
and metabolic traits, and that these characteristics could 
be more effectively elucidated through radiomics analysis 
employing sub-regions in 18F-FDG PET/CT. Our goal was to 
formulate an innovative integrated radiomics classifier for 
predicting EGFR mutation status in patients with solid 
lung adenocarcinoma before treatment. This classifier 
incorporates both metabolic and anatomical information 
extracted from the most metabolically dynamic sub-
region within the tumor on 18F-FDG PET/CT, alongside 
clinical information.

Materials and methods

This single-center analysis was approved by institutional 
ethic committee (IRB-2020-207) and individual written 
informed consent for this retrospective analysis was 
waived.

Patient selection

The workflow of this study is displayed in Figure 1. We 
retrospectively reviewed patients with histologically prov-
en lung adenocarcinoma who underwent pretherapy  
18F-FDG PET/CT scan between December 2016 and 
December 2020 in Zhejiang cancer hospital. The inclu-
sion criteria were (1) pathologically confirmed adeno- 
carcinoma according to the latest guidelines [12]; (2) 
presence of solid lung lesion on pretreatment 18F-FDG 
PET/CT; (3) EGFR mutation tested by real-time fluores-
cence polymerase chain reaction (PCR); (4) < 1 months 
between 18F-FDG PET/CT scan and gene alteration detec-
tion; (5) no anti-tumor treatment received before PET/CT 
examination; and (6) no history of other malignant tu- 
mors. The exclusion criteria were (1) patients with rare 
EGFR mutations in exons other than between exons 
18-21; (2) pure ground-glass nodule without 18F-FDG 
uptake and subsolid pulmonary nodule; (3) patients with 
chest active infections such as pneumonia that could 
confound 18F-FDG analysis.

EGFR mutation testing

In patients with stages 1-3 (n=102, 37.9%), EGFR muta-
tion analysis was performed on histological specimens 
obtained through surgical resection using real-time fluo-

Figure 1. The workflow employed in this study.
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rescence PCR with the EGFR Mutations Detection Kit 
(Human EGFR gene mutation detection kit, AmoyDx, 
Xiamen, Fujian, China), and the outcome was interpreted 
following the manufacturer’s instructions. For patients in 
stage 4 (n=167, 62.1%), the specimens submitted for 
EGFR mutational analysis were predominantly acquired 
through CT-guided core-needle biopsy (n=125, 74.9%); 
The remaining specimens were acquired through ultra-
sound-guided percutaneous biopsy (n=42, 25.1%). If any 
mutation in EGFR exon 18-21 was detected, the subject 
was considered to be an EGFR mutant. Otherwise, the 
tumor was considered as EGFR wild type.

Image acquisition

The imaging acquisition protocol was established follow-
ing the Image Biomarker Standardization Initiative (IBSI) 
reporting guidelines [13]. 18F-FDG PET/CT imaging was 
conducted utilizing the Discovery 710 PET/CT system (GE 
Medical Systems, Milwaukee, Wisconsin, USA). Patients 
were instructed to fast for at least 6 h before the PET 
scan. Blood glucose level was measured to ensure that it 
was < 200 mg/dL. 18F-FDG was administered intrave-
nously at a dosage of 3.7 MBq/kg. 18F-FDG PET/CT scan 
was performed within 1 month before treatment. In short, 
18F-FDG PET/CT images were acquired 60 ± 5 min after 
18F-FDG injection in accordance with the European 
Association of Nuclear Medicine guidelines, version 2.0 
[14]. Attenuation correction CT was conducted with the 

All lesions on CT were initially and manually contoured 
slice by slice by 2 radiologists (reader 1: YW with 12 years 
of experience; reader 2: XYG with 10 years of experience) 
using ITKSNAP (http://www.itksnap.org) and then scruti-
nized by a radiology specialist (HZZ, with 27 years of expe-
rience). Based on the method of Wu et al. [15], we further 
tested intra- and inter-observer reproducibility. Therefore, 
an intra-class correlation coefficient > 0.75 was consid-
ered to indicate satisfactory reproducibility. In this study, 
the segmentation of sub-regional Regions of Interest 
(ROIs) is performed using Otsu’s thresholding method, 
which divides an image into two classes, foreground and 
background, based on the grayscale intensity values of 
its pixels. This segmentation technique is implemented 
through the utilization of the open-source Python pack-
age, scikit-image, to automatically delineate sub-regional 
ROIs. The process involves leveraging Otsu’s thresholding 
method to efficiently separate image components, and 
this implementation is facilitated using the scikit-image 
library for enhanced precision and automation (https://
scikit-image.org/docs/dev/api/skimage.filters.html#skim- 
age.filters.threshold_otsu). Figure 2 illustrates an exam-
ple of whole-tumor ROI and sub-region ROI.

Feature extraction, selection and model construction

We applied normalization to the feature matrix. Radiomic 
features were extracted from each whole-tumor ROI and 

Figure 2. An illustrative example of tumor segmentation for a patient. In the PET im-
ages, the whole-tumor ROI is delineated in red, and the sub-region ROI is highlighted 
in yellow (A and B). Likewise, in the CT images, the whole-tumor ROI is marked in red, 
and the sub-region ROI is indicated in yellow (C and D).

following parameters: 120 kV, 150 mA, 
slice thickness: 3 mm. Subsequently, 
the PET scan was promptly acquired 
from the head to the upper leg, with a 
duration of 3 minutes per bed position. 
Typically, 6-8 bed positions were sur-
veyed, adjusting as per the patient’s 
height. The PET images were recon-
structed employing the ordered set ex- 
pectation maximization algorithm. The 
attenuation correction of PET images 
was carried out with CT data, and the 
corrected PET images were fused with 
CT images. The PET parameters com-
puted in 3D mode using vendor-provided 
software included: metabolic tumor vol-
ume (MTV), maximum SUV (SUVmax), 
total lesion glycolysis (TLG), and mean 
SUV (SUVmean). The MTV for each solid 
lung adenocarcinoma lesion was as- 
sessed utilizing the adaptive thres- 
hold method. This involved selecting a 
volume of interest (VOI) on the axial 
image, and the size of the VOI was veri-
fied using corresponding coronal and 
sagittal images to encompass the entire 
lesion. The TLG was computed by multi-
plying the SUVmean by the MTV.

ROI segmentation and sub-region clus-
tering
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the prediction performance. In addition, we estimated the 
95% confidence interval by bootstrapping with 1000 sam-
ples. All the above processes were implemented with 
FeAture Explorer (FAE, V 0.3.6) on Python (3.7.6) [16].

Results

Patient characteristics

Based on the provided criteria, a total of 269 patients 
diagnosed with lung adenocarcinoma were enrolled in 
this study. The cohort comprised 155 males and 114 
females, with an average age of 63.0 ± 11.0 years (range 
from 29 to 89). Among the participants, 134 cases ex- 
hibited EGFR mutation, constituting 49.8% of the total, 
while 135 cases were classified as EGFR wild type, repre-
senting the remaining 50.2%. The proportion of female 
patients with EGFR mutations is higher than that of males 
(56.0% vs. 44.0%). Additionally, EGFR wild-type patients 
exhibit a higher prevalence of smoking history compared 
to EGFR mutant patients (62.2% vs. 33.6%). EGFR wild-
type patients demonstrate significantly elevated SUVmax, 
MTV, and TLG compared to EGFR mutant patients, with all 
differences reaching statistical significance (all P < 0.05). 
There were no statistically significant differences in age 
and TNM staging between EGFR mutant and wild-type 
groups (both P > 0.05), as shown in Table 1. Representa- 
tive 18F-FDG PET/CT images of patients with EGFR muta-
tions and wild-type are illustrated in Figure 3. The clinical 
characteristics of the patients are summarized in Table 1.

Feature selection, model establishment and evaluation

269 patients were randomly split into the training set 
(EGFR mutant: 94; EGFR wild type: 95; total: 189) and the 
testing set (EGFR mutant: 40; EGFR wild type: 40; total: 
80).

Classifier 1: SVM training and testing based on whole-
tumor ROI: In the SVM training and testing phase, exclu-
sive attention was directed towards features originating 
from whole-tumor ROIs. Through meticulous scrutiny, the 
classifier discerned the top 12 features from a compre-
hensive pool of 1130, culminating in the development of 
an SVM classifier exhibiting a diagnostic accuracy of 
66.2% in the test cohort. The AUC was computed as 
0.733 in the training cohort. The comprehensive perfor-
mance metrics of the whole-tumor classifier included an 
accuracy of 66.2%, AUC of 0.632 (95% CI: 0.507-0.763), 
sensitivity at 82.5%, specificity at 50.0%, PPV at 62.2%, 
and NPV at 74.0%. The acquisition of diagnostic proficien-
cy for EGFR mutation status through the SVM classifier 
based on Whole-Tumor ROIs is underscored by these 
results, elucidating its capability to effectively categorize 
instances within the evaluated datasets. The ROC curve 
for classifier 1 is visually depicted in Figure 4A.

Classifier 2: SVM training and testing based on sub-region 
ROI: In this phase of the study, SVM classifier training  
and testing were exclusively conducted utilizing features 

sub-region ROI with Pyradiomics (http://pyradiomics.
readthedocs.io/en/latest/index.html). Shape features, 
together with grayscale and texture features from the 
original image, wavelet transform, and LoG hyper-param-
eters (lambda =1.0, 3.0, 5.0) filtered images were 
extracted.

Texture features encompassed various types, including 
Gray Level Co-occurrence Matrix (GLCM), Gray Level Size 
Zone Matrix (GLSZM), Gray Level Run Length Matrix 
(GLRLM), Neighboring Gray Tone Difference Matrix 
(NGTDM), and Gray Level Dependence Matrix (GLDM). 
The primary objectives encompass addressing imbalanc-
es in the training dataset via the Synthetic Minority 
Oversampling Technique (SMOTE) and each feature vec-
tor underwent a normalization process by subtracting its 
mean value and dividing by the module of the vector. 
Given the discrepancy between the relatively small sam-
ple size and the high-dimensional feature size, dimension 
reduction and feature selection were executed. For each 
feature exhibiting a Pearson correlation coefficient (PCC) 
value of > 0.99, one of them was randomly omitted, 
resulting in a reduction of the feature space dimension 
and mitigating feature redundancy.

Before model construction, measures were taken to elimi-
nate highly correlated features, reduce dimensionality 
through feature selection using Kruskal Wallis, and utilize 
logistic regression as the classifier. The F-value was cal-
culated to evaluate the relationship between features and 
the label. Features were classified depending on the cor-
responding F-value and top N features were determined 
through cross-validation with 5-fold on the training data-
set based on the model’s performance on the validation 
dataset. Classifier 1 was built based on features extract-
ed from the whole-tumor ROIs. Classifier 2 was built 
based on features extracted from the sub-regional ROIs. 
Classifier 3 was a clinical model (gender, age, TNM stage, 
smoking history, MTV, TLG, and SUVmax). Classifier 2 and 3 
prediction probabilities were combined for building model 
4. We used a support vector machine (SVM) with a linear 
kernel - an effective and robust classifier that searches 
the hyperplane to separate the cases with different labels 
- to build classifier 1 and 2. We used the linear kernel for 
its simplicity and interpretability. For classifier 3 and 4, we 
adopted logistic regression, which is a linear classifier 
that combines all features. To determine the number of 
retained features in each model, a 5-fold cross-validation 
was performed on training dataset, and the final features 
number was set according to cross-validation results.

Prognostic performance evaluation

The area under receiver operation characteristic (ROC) 
curve (AUC) value were computed to evaluate and com-
pare the prediction performance. Meanwhile, other quan-
titative evaluation indices involving accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative 
predictive value (NPV) were also computed to evaluate 
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the clinical model were determined. The clinical model 
was trained using clinical variables (gender, age, smoking 
history, and TNM stage) along with PET parameters. ROC 
curve analysis was employed to assess the predictive effi-
cacy of the clinical model in diagnosing EGFR mutations. 
This model exhibited an AUC of 0.753, accuracy of 66.7% 
in the training cohort. In the independent test cohort, the 
clinical classifier demonstrated metrics with values of 
75.0% accuracy, AUC of 0.768 (95% CI: 0.658-0.868), 
sensitivity at 72.5%, specificity at 77.5%, PPV at 76.3%, 
and NPV at 73.8%. The ROC curve of classifier 3 is visually 
depicted in Figure 4C, providing a graphical representa-
tion of the classifier’s discriminative performance.

Classifier 4: combined model: In this methodology, the 
prediction probabilities generated by classifier 2 and 3 
were utilized to train a combined model. Following the pre-
processing and feature selection steps in the develop-

extracted from sub-regions. The classifier strategically 
identified and employed the top 17 features from a com-
prehensive set of 1130 features. Within the training 
cohort, the SVM model achieved an AUC of 0.774 and 
accuracy of 0.682 for the diagnosis of EGFR status. 
Subsequently, the SVM classifier demonstrated notable 
performance metrics in the independent test cohort, reg-
istering an accuracy of 73.8%, an AUC of 0.768 (95% CI: 
0.657-0.871), sensitivity at 82.5%, specificity at 65.0%, 
PPV at 70.2%, and NPV at 78.8%. These findings under-
score the efficacy of the sub-region classifier in discerning 
and accurately categorizing instances within the exam-
ined datasets. Figure 4B illustrates the ROC curve of clas-
sifier 2.

Classifier 3: clinical model: Following the preprocessing 
procedures and feature selection steps in the develop-
ment of the classification model, feature parameters for 

Table 1. Demographics and clinicopathologic characteristics of eligible lung adenocarcinoma patients with EGFR muta-
tion status included in this study

Total Mutant EGFR Wild type EGFR p value
Number 269 134 135
Age, median years (range) 64 (29-89) 63 (29-82) 65 (30-89) 0.082
Smoking history (yes) 129 (48.0%) 45 (33.6%) 84 (62.2%) < 0.001
Sex < 0.001
    Male 155 (57.6%) 59 (44.0%) 96 (71.1%)
    Female 114 (42.4%) 75 (56.0%) 39 (28.9%)
Stage 0.980
    I-II 38 (14.1%) 19 (14.2%) 19 (14.1%)
    III-IV 231 (85.9%) 115 (85.8%) 116 (85.9%)
Diameter, cm
    SUVmax, mean ± SD 10.6 ± 4.9 14.0 ± 6.0 < 0.001
    MTV, mean ± SD 10.4 ± 14.0 19.1 ± 23.3 < 0.001
    TLG, mean ± SD 74.2 ± 109.5 164.7 ± 204.1 < 0.001
EGFR, epidermal growth factor receptor; SUVmax, maximum standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis. P < 
0.05 was considered to indicate a statistically significant difference.

Figure 3. The image illustrates representative 18F-FDG PET/CT images of patients with EGFR mutant and wild-type status. Patient 1, 
male, 64 years old, tested positive for EGFR mutation. The fused PET/CT images reveal an approximately 3.2 cm diameter lesion in the 
right upper lobe of the lung, exhibiting increased radioactive uptake with SUVmax=6.8, MTV=6.8, and TLG=27.2 (A and B). Patient 2, male, 
62 years old, tested negative for EGFR mutation. The fused PET/CT images display an approximately 4.9 cm diameter lesion in the right 
upper lobe of the lung, showing elevated radioactive uptake with SUVmax=18.3, MTV=23.7, and TLG=228.3 (C and D).
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clinical parameters, the performance metrics in the inde-
pendent test cohort were as follows: an accuracy of 
77.5%, an AUC of 0.807 (95% CI: 0.699-0.896), and both 
sensitivity and specificity at 77.5%. Additionally, the posi-
tive predictive value (PPV) and negative predictive value 
(NPV) were both registered at 77.5%. Figure 4D visually 
depicts the ROC curve of classifier 4, while Table 2 pro-
vides a detailed representation of the performance of dif-
ferent classifiers.

ment of the combined model, the classifier discerned the 
top two features from a pool of 1130. The performance of 
the model in predicting EGFR mutation status was 
assessed using ROC curve analysis, revealing that the 
model based on these two features achieved the highest 
AUC in the test cohort. In the training cohort, the com-
bined model demonstrated an AUC of 0.801, accompa-
nied by an accuracy of 0.730. For the combined classifier, 
which integrates sub-region analysis parameters and 

Figure 4. ROC curves for four distinct models predicting EGFR mutations. ROC curve for classifier 1 using whole-tumor ROI (A). ROC curve 
for classifier 2 using sub-regional ROI (B). ROC curve for classifier 3 based on the clinical model (C). ROC curve for classifier 4 represent-
ing the combined model (D).

Table 2. Comparison of the model performance in terms of different evaluation
Models Accuracy AUC 95% CI NPV PPV Sensitivity Specificity
Classifier 1 0.662 0.632 0.507-0.763 0.740 0.622 0.825 0.500
Classifier 2 0.738 0.768 0.657-0.871 0.788 0.702 0.825 0.650
Classifier 3 0.750 0.768 0.658-0.868 0.738 0.763 0.725 0.775
Classifier 4 0.775 0.807 0.699-0.896 0.775 0.775 0.775 0.775
AUC, area under curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; Classifier 1, whole-tumor ROI based 
model; Classifier 2, sub-regional ROI based model; Classifier 3, clinical model; Classifier 4, combined model.
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enhances glucose metabolism through the Akt signaling 
cascade in neoplastic cells, thereby inducing their prolif-
eration and enhancing viability [20]. Subjective character-
istics analysis depending on the naked eye or convention-
al 18F-FDG PET parameters were most commonly used to 
predict EGFR mutation status in previous EGFR genotyp-
ing-related 18F-FDG PET/CT researchers. Those studies 
have investigated the relationship between SUVmax mea-
sured from PET and led to contradictory results [6, 21]. 
Kim et al. found that all the metabolic and volumetric 18F-
FDG PET/CT values were significantly lower in EGFR 
mutant than EGFR wild type lung adenocarcinomas [22]. 
In current study, EGFR mutant subset showed lower 
SUVmax than EGFR wild subset. Various studies have iden-
tified specific SUVmax cutoff values indicative of EGFR 
mutation in NSCLC patients [6, 23-27]. Lv et al. [6] re- 
ported SUVmax < 7.0 as a predictor (AUC=0.557, n=849), 
Na et al. [28] SUVmax < 9.2 predictive (AUC=0.74, n=100), 
Mak et al. [29] observed SUVmax < 5.0 as a predictor 
(AUC=0.62, n=100), Cho et al. [30] identified SUVmax < 9.6 
as predictive (AUC=0.68, n=61), and Guan et al. [31] 
determined SUVmax < 8.1 as predictive (AUC=0.65, n= 
316). Conversely, Ko et al. [31] established SUVmax ≥ 6 
(AUC=0.63, n=132) as predictive in lung adenocarcino-
ma, while Huang et al. [32] found SUVmax ≥ 9.5 predictive 
(n=77).

However, those previous studies showed comparable 
inconsistency and relatively low discriminative abilities, 
because traditional PET parameters including SUVmax and 
SUVpeak do not include any spatial or texture information, 
which greatly reflecting EGFR mutation biology and tumor 
heterogeneity [33]. In the capacity of a hybrid imaging 
methodology, our 18F-FDG PET/CT radiogenomic analysis 
derived radiomics characteristics from both CT and 18F-
FDG PET, thereby extensively harnessing imaging details 
through machine learning techniques. Currently, some 
radiogenomics studies on NSCLC EGFR mutation status 
have involved 18F-FDG PET. Yip et al. [21] developed a 21 
features-based radiomics model could distinguish the dif-
ferences of tumor metabolic phenotypes caused by EGFR 
mutation and might potentially serve as noninvasive 
imaging biomarkers for somatic mutations. Rios et al. [27] 
analyzed the radiomic characteristics of 763 patients 
with lung adenocarcinoma from 4 medical centers and 
found that 16 features correlate with EGFR mutations. Li 
et al. [34] built a 18F-FDG PET/CT-based radiogenomics 
signature for EGFR mutation classification reaching an 
AUC of 0.805, an accuracy of 80.798%, a sensitivity of 
0.826, and a specificity of 0.783.

Failure to consider sub-region variations may reduce the 
diagnostic power of useful imaging biomarkers. By lever-
aging the most metabolically active sub-regional informa-
tion of 18F-FDG PET/CT, we proved the sub-region-based 
machine learning classifier outperformed traditional 
whole-tumor-based machine learning classifier, which is 
consistent with previous sub-regional radiomics analyses 
[11, 35]. After assessing copy number alterations, Xie et 
al. [9] further found that the sub-region-based CT 

Discussion

In the standard care protocol for pretreatment of NSCLC 
patients, determining EGFR mutation status plays a cru-
cial role in the selection of individuals who may potentially 
benefits from EGFR TKI treatment and predicting subse-
quent clinical outcomes [12]. However, the current clinical 
standard for EGFR genotyping, reliant on biopsy proce-
dures, is invasive and prone to certain limitations. These 
limitations include patient reluctance, challenges related 
to the location or size, potential sampling errors, proce-
dural complexities, extended testing durations, limited 
samples availability, compromised patient health, and 
spatial and temporal heterogeneity within the tumor [17, 
18]. Alternative strategies such as radiogenetic analysis, 
may help overcome these limitations.

In this retrospective study, we investigated the feasibility 
of radiogenomics analysis to predict EGFR genotyping in 
269 pretreated patients suffering solid lung adenocarci-
noma. The sub-region-based machine learning classifier 
(classifier 2) outperformed the traditional whole-tumor-
based machine learning classifier (classifier 1) with a 
higher AUC in the independent test group. Integration of 
the predictive probabilities from clinical features and sub-
region Region of Interest (ROI) features, the combined 
radiogenomics model (classifier 4) demonstrated robust 
diagnostic performance. By incorporating radiomics met-
abolic features from 18F-FDG PET, radiomics structural 
features from CT, relevant clinical factors, and sub-region-
based radiomics, this study comprehensively explored 
the hybrid 18F-FDG PET/CT image information to an 
unprecedented extent. Hence, the combined sub-region-
based pretherapy hybrid 18F-FDG PET/CT machine learn-
ing radiogenomics classifier could accurately predict 
EGFR mutation in solid lung adenocarcinoma, potentially 
serving as a noninvasive surrogate for traditional EGFR 
status test. It should be noted that the majority of EGFR 
mutations occur in hotspots between exons 18 and 20 
[2]. However, targeted therapies are approved for patients 
with “classical” mutations and a small number of other 
mutations. Furthermore, effective therapies have not 
been identified for additional EGFR mutations [19]. 
Therefore, rare EGFR mutations were not included in this 
study.

In contradistinction to the general population of NSCLC 
patients, those harboring EGFR kinase domain mutations 
are more predisposed to being of Asian ethnicity, female 
gender, exhibiting adenocarcinoma histology, and having 
no history of smoking [4, 6]. Our study similarly identifies 
a lack of smoking history and female gender as predictors 
of EGFR mutation status. Notably, no statistically signifi-
cant differences in terms of age and tumor stage were 
observed among distinct EGFR mutation groups (all P > 
0.05).

18F-FDG uptake on PET may be a noninvasive biomarker 
of underlying tumor genotypes. The EGFR gene mutation 
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introduce bias, compromise model’s generalization abili-
ty, as well as affect its accuracy. Hence, it is necessary to 
formulate a prospective multi-center study with a larger 
population to validate this model. Second, the EGFR 
mutation status of only one tissue type (lung adenocarci-
noma) was analyzed. Therefore, the predictive efficacy of 
this model in other lung cancer types necessitates further 
investigation.

Conclusion

This study substantiated that the integrated sub-region-
based pretherapy 18F-FDG PET/CT machine learning radi-
ogenomics exhibited commendable predictive efficacy in 
discerning EGFR mutation status during the pretreatment 
phase of solid lung adenocarcinoma. This could poten-
tially serve as a reasonably accurate, convenient, and 
noninvasive alternative to invasive biopsy for identifying 
suitable candidates for EGFR TKI therapy.
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