
Am J Nucl Med Mol Imaging 2024;14(4):239-252
www.ajnmmi.us /ISSN:2160-8407/ajnmmi0154301

https://doi.org/10.62347/JMKV7596

Original Article
Radiomics-based model for prediction of TGF-β1  
expression in head and neck squamous cell carcinoma

Kai Qin1*, Chen Gong1*, Yi Cheng1, Li Li2, Chengxia Liu2, Feng Yang1, Jie Rao1, Qianxia Li1

1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, 
Hubei, China; 2Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 
Wuhan 430030, Hubei, China. *Equal contributors.

Received November 7, 2023; Accepted August 8, 2024; Epub August 15, 2024; Published August 30, 2024

Abstract: Objective: To explore the connection between TGF-β1 expression and the survival of patients with head and neck squamous cell 
carcinoma (HNSCC), as well as whether non-invasive CT-based Radiomics can predict TGF-β1 expression in HNSCC patients. Methods: 
Data on transcriptional profiling and clinical information were acquired from the TCGA database and subsequently categorized based 
on the TGF-β1 expression cutoff value. Based on the completeness of enhanced arterial phase CT scans, 139 HNSCC patients were 
selected. The PyRadiomics package was used to extract radiomic features, and the 3D Slicer software was used for image segmentation. 
Using the mRMR_RFE and Repeat LASSO algorithms, the optimal features for establishing the corresponding gradient enhancement 
prediction models were identified. Results: A survival analysis was performed on 483 patients, who were divided into two groups based 
on the TGF-β1 expression cut-off. The Kaplan-Meier curve indicated that TGF-β1 was a significant independent risk factor that reduced 
patient survival. To construct gradient enhancement prediction models, we used the mRMR_RFE algorithm and the Repeat_LASSO algo-
rithm to obtain two features (glrlm and ngtdm) and three radiation features (glrlm, first order_10percentile, and gldm). In both the train-
ing and validation cohorts, the two established models demonstrated strong predictive potential. Furthermore, there was no statistically 
significant difference in the calibration curve, DCA diagram, or AUC values between the mRMR_RFE_GBM model and the LASSO_GBM 
model, suggesting that both models fit well. Conclusion: Based on these findings, TGF-β1 was shown to be significantly associated with 
a poor prognosis and to be a potential risk factor for HNSCC. Furthermore, by employing the mRMR_RFE_GBM and Repeat_LASSO_GBM 
models, we were able to effectively predict TGF-β1 expression levels in HNSCC through non-invasive CT-based Radiomics.

Keywords: TCGA, TCIA, head and neck squamous cell carcinoma, Radiomics, TGF-β1 expression, prediction model

Introduction

Head and neck squamous cell carcinoma (HNSCC) is a 
malignant tumor with a high incidence that develops in 
the mucous epithelium of the mouth, pharynx, and larynx. 
The standard treatment for HNSCC is currently a combi-
nation of surgery and chemoradiotherapy in clinics; how-
ever, patients’ survival rates within 5 years are still unsat-
isfactory, only reaching up to 34% [1-3]. Traditional prog-
nostic indicators of HNSCC, such as clinical stages, p16, 
human papillomavirus (HPV) status, and Programmed cell 
death ligand 1 (PD-L1) expression [4], can no longer meet 
the clinical needs of precision medicine. As a result, more 
research is required to identify new prognostic indicators 
for personalized stratified patient care.

Due to the unsatisfactory outcomes of the standard treat-
ment options, immunotherapy has been observed as 
another therapeutic strategy and has been widely used 
for the treatment of HNSCC. However, only 15-20% of 
patients have benefited from this treatment [5], highlight-
ing the need to investigate immune-resistant mecha-
nisms in the immune microenvironment and provide evi-
dence for HNSCC treatment. The transforming growth 
factor beta (TGF-β) family is a key immunosuppressive 
gene in HNSCC and is linked to a poor prognosis [6]. TGF-β 

signal dysfunction promotes tumor progression and 
metastasis by regulating epithelial cell proliferation, inhib-
iting cell apoptosis, and inducing genomic instability of 
tumor cells [7]. PD-L1 is a protein that is crucial to the 
regulation of the immune system. Similar to TGF-β, PD-L1 
is highly expressed in patients with HNSCC. PD-L1 can 
inhibit lymphocyte activation and induce apoptosis by 
binding to the PD-1 receptor on lymphocytes’ surfaces, 
allowing tumor cells to escape the immune system. TGF-β 
promotes tumorigenesis and contributes to drug resis-
tance against PD-L1 monoclonal antibodies. Blocking 
both PD-L1 and TGF-β signals can enhance a synergistic 
anti-tumor effect and response rate of PD-1 inhibitors [8]. 
TGF-β1 is highly expressed in the majority of HNSCCs [9], 
however, whether it is an independent factor that can pre-
dict the survival of HNSCC patients remains unclear.

Radiomics is a high-throughput “image sequencing” that 
can acquire a large number of image parameters by non-
invasive, dynamic, and quantitative detection of tumor 
features [10]. Radiomics has been regarded as an effec-
tive technology in HNSCC for guiding early diagnosis and 
classification, assessing tumor heterogeneity, and identi-
fying cell constituents in the tumor microenvironment 
[11]. In addition, radiomics has a high potential for over-
coming the limitations of traditional tumor markers [12], 
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because it provides complete three-dimensional infor- 
mation about tumors and allows for non-invasive repeti-
tive analysis using follow-up images. In this study, we 
used CT-based radiomics to determine the prognostic 
value of TGF-β1 in HNSCC. We also investigated its  
potential molecular mechanism and relationship with 
immune cell constituents using integrated bioinformatics 
analysis.

Methods

Sources of data & images

Transcriptome profiling data and clinical information of 
528 HNSCC patients were collected from the TCGA data-
base (https://portal.gdc.cancer.gov/). About 211 arterial 
enhanced CT images were obtained from TCIA-HNSC. All 

data and images are anonymous and public, so they are 
exempt from ethics and informed consent once approved 
by the unit ethics committee. TCIA images were used to 
identify radiomic features and establish models, whereas 
TCGA data was used for prognosis analysis. Sample selec-
tion criteria include preoperative samples, complete clini-
cal data (survival time greater than 30 days), transcrip-
tome sequencing data, arterial phase enhanced CT imag-
es, and TCGA-TCIA intersection data. Figure 1A shows a 
brief flow chart.

Analysis of TGF-β1 expression and patients’ survival

The R package “survminer” was used to determine the 
cut-off for TGF-β1 expression. Toil [13] processed RNA 
sequencing data in FRKM format obtained from UCSC 
XENA (https://xenaburowser.net/datapages/). The Wil- 

Figure 1. The scheme of patients’ selection (A) and radiomics modeling (B). TCGA: The Cancer Genome Atlas, TCIA: The Cancer Imaging 
Archive, HNSCC: Head and Neck squamous cell carcinoma, ICC: the intraclass correlation coefficient, GBM: Gradient Boosting Machine, 
mMRM: maximum relevance minimum redundancy, RFE: recursive feature elimination.
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coxon test was used to compare TGF-β1 expression in 
HNSC and normal tissue. Visualization was performed 
using the R package “ggplot2”. TGF-β1 expression in 
HNSC and normal tissue was compared using the R pack-
age “ggplot2”. Kaplan-Meier analysis was used to esti-
mate patients’ survival rates in the two groups. Univariate 
and multivariate Cox regression analyses were used to 
assess the prognostic value of variables such as sex, age, 
HPV status, nerve invasion, grade, TNM stage, chemora-
diotherapy, primary tumor site, and gene expression. The 
univariate Cox regression method was used to analyze 
the relationship between TGF-β1 expression and patient 
prognosis across various subgroups of covariates. The 
interaction between TGF-β1 and other covariates was 
analyzed using the likelihood ratio test. In addition, 
Spearman rank correlation coefficient was used to ana-
lyze the correlation between the main variable TGF-β1 
and the clinical features of the tumor, and the results 
were presented using a correlation thermogram. The infil-
tration of immune cells in TCGA-HNSC patients was 
assessed using the CIBERSORT (HTTPS://cibersort.stan-
ford.edu/) algorithm to examine the correlation between 
the infiltration of immune cells and various TGF-β1 ex- 
pression groups. The Wilcoxon test was applied to analyze 
the difference in infiltrated immune cells between the 
high- and low-score groups. The infiltration difference of 
some functional cells in different score groups was also 
evaluated with the same method. To predict the gene 
function and calculate the functional category distribution 
frequency, Gene Ontology (GO) and enriched Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
were identified using the KOBAS2.0 server (kobas.cbi.
pku.edu.cn/). GO (BP, CC, MF) and KEGG enrichment  
analyses were carried out on the differential genes found 
in different TGF-β1 expression groups, and the results 
were illustrated using a bubble diagram. The top 10 sig-
nificantly enriched pathways were visualized by BP, CC, 
and MF enrichment analysis, and the top 30 significantly 
enriched pathways were visualized by KEGG enrichment 
analysis.

Cohort design, tumor segmentation & radiomic feature 
determination

The diagrammatic scheme is shown in Figure 1B. About 
139 images obtained from the TCIA database were 
grouped randomly (training or validation) according to  
the ratio of 8:2. Images segmentation was performed by 
3D Slicer software (version 4.10.2; https://www.slicer.
org/). Before tumor segmentation, the images were pre-
processed using the isotropic voxel resampling techni- 
que of linear interpolation to achieve the geometric  
normalization of CT images. All images were visually eval-
uated independently by an imaging specialist with 10 
years of radiology department experience using the  
double-blind method. Pyradiomics (https://pyradiomics.

readthedocs.io/en/latest/index.html) containing 107 fea-
tures was used for radiomics analysis. Four features in 
total - texture features, wavelet transform features,  
volume, and shape features - were obtained. The prePro-
cess function in the R package “caret” was used to  
standardize the eigenvalues in the training set by z-score. 
The resulting mean and standard deviation were then 
used to standardize the characteristic values in the vali-
dation set.

Evaluation of consistency

The consistency of the image omics features was evalu-
ated with intraclass correlation efficiency (ICC) based on 
two doctors’ descriptions of VOI [14, 15]. The former 
described the cases and 20 samples were randomly 
selected by “random number table”. Another radiologist 
with 8 years of working experience described the cases 
again and determined radiomics features for consistency 
evaluation. Generally, ICC ≥ 0.8 is considered as good 
consistency, 0.51-0.79 is regarded as average consisten-
cy, and less than 0.50 is considered poor consistency.

Determination of radiomic features

Over-fitted model with redundant features can affect the 
result for predicting TGF-β1 expression. Thus, to eliminate 
redundant features or select optimal features, the maxi-
mum correlation-redundancy (mRMR) algorithm and 
recursive feature elimination (RFE) algorithm were used 
[16]. Using the maximum correlation minimum redundan-
cy algorithm (or “mRMR” package in the R language), fea-
tures were first ranked according to their significance. 
This algorithm maximizes mutual information (MI) with 
classification labels and minimizes MI with other features. 
Then, the features that contribute the least to the model 
were continuously eliminated using the recursive feature 
elimination (RFE) algorithm, until the necessary number 
of features remained. Finally, 20 features obtained by the 
mRMR algorithm and 20 features selected by the RFE 
algorithm were used for identification of paired and cor-
related features. Using the R package “caret” and the 
“gbm” method, the predicted probability scores were 
ranked using the Gradient Boosting Machine (GBM). Using 
a set of weak classifiers - typically decision trees - and  
the cross-validation technique, the GBM algorithm modi-
fies the super-parameters for model establishment. The 
mRMR_RFE_GBM model was established based on a few 
radiomic features and the GBM algorithm [17]. The “glm-
net” package was used to perform 1000 iterations of 
Lasso regression on the radiomic features. The top N fea-
tures with the highest frequency were then chosen as the 
final subset using the repeat lasso (Least Absolute 
Shrinkage and Selection Operator) technique [18]. The 
repeat_LASSO_GBM model in this study was established 
based on the radiomic features with the top two frequen-
cies and the GBM algorithm.
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curve showed that the median survival time of patients in 
the low expression group was 69.43 months, and 46.46 
months in the high expression group. These data demon-
strated that high TGF-β1 expression was significantly cor-
related with a poor prognosis (P < 0.01) (Figure 2B).

The potential prognostic factors were identified using the 
methods of univariate and multivariate Cox regression. 
The results of the univariate analysis showed that TGF-β1 
was a risk factor for overall survival (HR = 1.876, 95% CI 
= 1.335-2.635, P < 0.001), other hazardous variables 
include nerve invasion (HR = 2.207, 95% CI 1.552-3.139, 
P < 0.001), T stage (HR = 1.842, 95% CI 1.348-2.516, P 
< 0.001), sex (HR = 0.001, 95% CI 1.362-2.623, P < 
0.001) and radiotherapy (HR = 0.477, 95% CI 0.36-0.633, 
P < 0.001) (Table 2). The results of multivariate analysis 
showed that TGF-β1 (HR = 1.773, 95% CI = 1.231-2.555, 
P = 0.002), nerve invasion (HR = 1.676, 95% CI = 1.155-
2.433, P = 0.007), N stage (HR = 1.943, 95% CI 1.37-
2.755, P < 0.001) and radiotherapy (HR = 0.364, 95% CI 
0.265-0.501, P < 0.001) were all independent risk fac-
tors for the overall survival (Table 2). The results remained 
statistically significant even after the most stringent 
Bonferroni multiple tests were applied to correct it, P = 
0.002 < 0.05/15 = 0.0033.

The comparison analysis in high and low TGF-β1 expres-
sion groups

According to subgroup analysis, TGF-β1 was a risk factor 
in cohorts under 60 years old (HR = 1.891, 95% CI = 
1.111-3.218, P = 0.019) and older than 60 years old (HR 
= 1.878, 95% CI = 1.235-2.865, P = 0.003). Furthermore, 
there was no correlation found between TGF-β1 expres-
sion and age (P = 0.97), TGF-β1, various HPV statuses, 
nerve invasion, and the primary tumor site subgroup. In 
addition, the correlation between TGF-β1 expression and 
clinical features was analyzed by the Spearman grade 
correlation coefficient. The heatmap showed that TGF-β1 
was significantly correlated with tumor grade and nerve 
invasion (P < 0.01) (Figure 2C). The violin chart demon-
strated that the group with high TGF-β1 expression had a 
significantly decreased number of infiltrated CD8 T cells, 
naive B cells, and M0 macrophages (P < 0.001) (Figure 
2F). GO enrichment analysis indicated that genes show-
ing differential expression between high and low TGF-β1 
expression were significantly enriched in pathways asso-
ciated with DNA-binding transcription factor binding, GTP 
enzyme binding, and transcription auxiliary regulator 
activity (Figure 2E). Similarly, the KEGG enrichment analy-
sis showed that these genes were significantly enriched in 
the tumor necrosis factor signaling pathway as well as in 
other cell cycle or apoptotic-related pathways (Figure 2D).

The comparison of clinical characteristics and consis-
tency in the HNSCC cohort

There was no difference in the clinical characteristics 
between the training and validation set (P > 0.05) (Table 

Evaluation of mRMR_RFE_GBM model and Repeat_
LASSO_GBM model

The receiver operating characteristic (ROC) curves, accu-
racy (ACC), specificity (SPE), sensitivity (sen), positive pre-
dictive value (PPV), and negative predictive value (NPV) 
were used to assess the predictive efficacy of the mRMR_
RFE_GBM model and the Repeat_LASSO_GBM model. 
The Hosmer-Leme show goodness-of-fit test was used to 
evaluate the calibration curve and determine the degree 
of calibration of the image omics prediction model. The 
comprehensive performance of the image ensemble pre-
diction model is determined by the Brier score (measures 
package). Moreover, the Wilcoxon test was used to com-
pare the TGF-β1 expression predicted by the mRMR_
RFE_GBM model and the Repeat_LASSO_GBM model. 
The area under the curve (AUC) value in the training and 
validation set was compared using Delong test.

Statistical analysis

SPSS 26.0 software and the R packages (version 4.2.2; 
http://www.r-project.org/) were used for statistical analy-
sis. The qualitative variables were displayed as numbers 
(percentages), means ± standard deviations, medians, 
and interquartile ranges for all the data. The evaluation of 
gender, age, and other baseline characteristics differing 
between the training and validation sets was evaluated 
using independent sample t-tests, Wilcoxon tests, χ2 
tests, chi-square tests, or Fisher’s exact tests. Time-to-
event data were estimated using the Kaplan-Meier meth-
od, and group comparisons were made using the log-rank 
test. The Cox regression model was used to estimate the 
HRs and 95% confidence intervals. Risk factor evaluation 
was assessed with both univariate and multivariate Cox 
regression analysis.

Results

Clinical features

About 483 HNSCC patients were split into two groups 
based on the TGF-β1 cut-off (5.208). The clinical informa-
tion of patients is shown in Table 1. There were no signifi-
cant differences in age, sex, histological grade, TNM stag-
ing, and chemoradiotherapy therapy among the two 
groups (P = 0.847). There were significant differences in 
HPV status, nerve invasion, and primary tumor location 
between the two groups.

The correlation analysis of high TGF-β1 expression and 
poor prognosis

Based on the Toil process transformation analysis, it was 
found that patients express TGF-β1 at a higher level than 
normal individuals (Figure 2A), with a median expression 
difference of 1.784 (P < 0.001). The correlation between 
TGF-β1 expression and the survival of patients was ana-
lyzed using the Log-Rank test. Kaplan-Meier survival 
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and original_gldm_dependence_nonuniformity_normal-
ized. The three features used for constructing the mRMR_
RFE_GBM model are shown in Figure 3. The two optimal 
features with top frequencies including original_glrlm_
RunVariance and original_ngtdm_Complexity were ob- 
tained using the repeat LASSO algorithm (Figure 4). The 
two selected features used for constructing the Repeat_
LASSO_GBM model are shown in Figure 5.

Evaluation of mRMR_RFE_GBM model and Repeat_
LASSO_GBM model

We have added the acc, sensitivity, specificity, positive 
predictive value, negative predictive value, and brierScore 
of the training set and verification set in the prediction 

3). The ICC data showed that there were 96 radiomics fea-
tures with a value greater than 0.8, and these features 
accounted for approximately 89.7% of all features, with a 
median ICC value of 0.926. The radiomics features identi-
fied by both methods had ICC values greater than 0.8 
(Table S1), indicating good consistency in the HNSCC 
cohort.

Identification of radiomics features for constructing mod-
els

The top 20 features from the mRMR algorithm and the 
remaining 20 features from the RFE algorithm were ana-
lyzed in conjunction to yield three mutual features: origi-
nal_glrlm_RunVariance, original_first order_10percentile, 

Table 1. Clinical characteristics of HNSC patients in TGF-β1 high and low expression group
Variables Total (n = 483) Low (n = 150) High (n = 333) p-value
Gender, n (%) 0.343
    Female 128 (27) 35 (23) 93 (28)
    Male 355 (73) 115 (77) 240 (72)
Age, n (%) 0.847
    ~59 211 (44) 67 (45) 144 (43)
    60~ 272 (56) 83 (55) 189 (57)
HPV_status, n (%) < 0.001
    Negative 68 (14) 17 (11) 51 (15)
    Positive 30 (6) 19 (13) 11 (3)
    Unknown 385 (80) 114 (76) 271 (81)
Perineural_invasion, n (%) < 0.001
    NO 181 (37) 64 (43) 117 (35)
    Unknown 141 (29) 56 (37) 85 (26)
    YES 161 (33) 30 (20) 131 (39)
Grade, n (%) 0.011
    G1/G2 348 (72) 96 (64) 252 (76)
    G3/G4/GX 135 (28) 54 (36) 81 (24)
T_stage, n (%) 0.328
    T1/T2 173 (36) 59 (39) 114 (34)
    T3/T4/TX/Unknown 310 (64) 91 (61) 219 (66)
N_stage, n (%) 0.476
    N0 164 (34) 47 (31) 117 (35)
    N1/N2/N3/NX/Unknown 319 (66) 103 (69) 216 (65)
M_satge, n (%) 0.257
    M0 174 (36) 48 (32) 126 (38)
    M1/MX/Unknown 309 (64) 102 (68) 207 (62)
Chemotherapy, n (%) 0.251
    NO 322 (67) 94 (63) 228 (68)
    YES 161 (33) 56 (37) 105 (32)
Radiotherapy, n (%) 0.309
    NO 234 (48) 67 (45) 167 (50)
    YES 249 (52) 83 (55) 166 (50)
Primary_tumor_site, n (%) < 0.001
    Larynx 109 (23) 40 (27) 69 (21)
    Oral Cavity 297 (61) 69 (46) 228 (68)
    Oropharynx/Hypopharynx 77 (16) 41 (27) 36 (11)
HNSCC: Head and Neck squamous cell carcinoma, TGF-β1: The Transforming growth factor-β1, HPV: human papilloma virus.
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S1) were evaluated by the ROC curve. In the training set, 
the ROC curve showed that the AUC value of the mRMR_
RFE_GBM model was 0.911, and the Repeat_LASSO_

model constructed by mRMR-RFE and Repeat_LASSO in 
Table S2. The predictive efficacy of the mRMR_RFE_GBM 
model (Figure 6) and Repeat_LASSO_GBM model (Figure 

Figure 2. The comparison analysis of high vs. low TGF-β1 expression groups. A: The expression of TGF-β1 in tumor and normal tissues. 
B: Kaplan-Meier survival analysis. C: Correlation analysis of TGF-β1 and clinical covariates. D: Enrichment analysis of top ten KEGG path-
ways. E: Enrichment analysis of top thirty GO biological processes. F: Analysis of infiltrated immune cells.
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Discussion
The two primary factors that decreased the overall medi-
an survival time (OS) in patients with advanced HNSCC 
were high recurrence and metastasis [19]. Therefore, it is 
imperative to enhance the precancerous diagnosis and 
prognostic assessment of HNSCC. Previous research has 
indicated that the expression level of the Combined 
Positive Score (CPS) and the immunohistochemical p16 
status of oropharyngeal squamous cell carcinoma 
(OPSCC) serve as the diagnostic biomarkers in HNSCC, 
while tumor mutational burden (TMB) and tumor-infiltrat-
ing lymphocytes (TILs) serve as the prognostic biomark-
ers for immunotherapy [4]. However, there is still a limita-
tion in the ability to detect these documented biomarkers, 
therefore it is necessary to find novel biomarkers or tech-
nologies. Numerous cancer types exhibit elevated expres-
sion of TGF-β, which plays a crucial role in several biologi-
cal processes such as extracellular matrix synthesis, cell 
growth, and differentiation [20]. These processes ulti-
mately result in tumor progression, invasion, and metas-
tasis [21]. Moreover, KIM et al. [22] identified TGF-β as a 
marker linked to the prognosis of patients with HNSCC 
[23-25]. TGF-β1, the most prevalent type in the TGF-β 
family [21], has been linked to a poor prognosis in several 
cancers, including HNSCC [21, 26-29]. For instance, there 
is a significant increase in TGF-β1 expression in the inter-
stitial tissue of HNSCC [9], and the prognosis of HNSCC 
patients treated with cetuximab is negatively correlated 
with an elevated TGF-β1 level in plasma [30]. In this inves-
tigation, we confirmed that TGF-β1 expression was nega-
tively correlated with patient prognosis (P < 0.01) and that 
it was an independent prognostic marker in HNSCC. TGF-β 
inhibition has demonstrated great promise in the treat-
ment of tumors in recent years. According to earlier 

GBM model was 0.733. In the validation set, the AUC 
value of the mRMR_RFE_GBM model was 0.849 and the 
Repeat_LASSO_GBM model was 0.72. When comparing 
the two cohorts (training set and validation set), we found 
that the AUC value of the mRMR_RFE_GBM model in the 
training set (P = 0.443, P = 0.912) was not statistically 
different from that in the validation set. Similarly, the AUC 
value of the Repeat_LASSO_GBM model in the training 
set (P = 0.443, P = 0.912) was not statistically different 
from the validation set. These data suggested that the 
two models fit well. When comparing the two models 
(mRMR_RFE_GBM model and Repeat_LASSO_GBM 
model), we observed that the AUC value of the mRMR_
RFE_GBM model was significantly higher than the 
Repeat_LASSO_GBM model in the training cohort (P < 
0.001), whereas no difference was observed in the valida-
tion cohort (P = 0.212). In addition, the calibration curve 
shows that the predictive result of TGF-β1 expression 
using a radiomics-based model was consistent with the 
real value. The DCA diagram demonstrated the strong 
clinical applicability of the models. Finally, we found that 
the rad score distribution in the mRMR_RFE_GBM model 
differed significantly between the training and validation 
sets, and that the high TGF-β1 expression group displayed 
a higher rad score (Figure S2C, S2D). The distribution of 
rad score differed significantly in the training set (P < 
0.001) of the Repeat_LASSO_GBM model (Figure S2B), 
but there was no difference in the validation set (P > 0.05) 
between the high and low TGF-β1 expression groups 
(Figure S2A). In summary, the mRMR_RFE_GBM model 
and the Repeat_LASSO_GBM model both have great 
potential in predicting TGF-β1 expression, and the 
mRMR_RFE_GBM model is relatively better in clinical 
applicability based on their predictive performance.

Table 2. Univariate and multivariate logistic analysis in TCGA-HNSC

Variable
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
TGFβ1: High vs. Low 1.876 (1.335-2.635) < 0.001* 1.773 (1.231-2.555) 0.002*
Gender: Male vs. Female 0.737 (0.549-0.989) 0.042* 0.928 (0.673-1.278) 0.646
Age: 60~ vs. ~59 1.262 (0.952-1.674) 0.106 1.197 (0.879-1.631) 0.253
HPV_status: Positive vs. Negative 0.349 (0.105-1.161) 0.086 0.394 (0.111-1.399) 0.15
HPV_status: Unknown vs. Negative 1.117 (0.726-1.717) 0.615 1.13 (0.715-1.786) 0.6
Perineural_invasion: Unknown vs. NO 1.836 (1.263-2.67) 0.001* 1.444 (0.976-2.137) 0.066
Perineural_invasion: YES vs. NO 2.207 (1.552-3.139) < 0.001* 1.676 (1.155-2.433) 0.007*
Grade: G3/G4/GX vs. G1/G2 0.913 (0.673-1.24) 0.561 0.929 (0.676-1.275) 0.648
T_stage: T3/T4/TX/Unknown vs. T1/T2 1.842 (1.348-2.516) < 0.001* 2.03 (1.45-2.842) < 0.001*
N_stage: N1/N2/N3/NX/Unknown vs. N0 1.897 (1.372-2.623) < 0.001* 1.943 (1.37-2.755) < 0.001*
M_satge: M1/MX/Unknown vs. M0 1.345 (0.989-1.828) 0.059 0.943 (0.681-1.306) 0.726
Chemotherapy: YES vs. NO 0.989 (0.735-1.33) 0.939 1.208 (0.85-1.717) 0.293
Radiotherapy: YES vs. NO 0.477 (0.36-0.633) < 0.001* 0.364 (0.265-0.501) < 0.001*
Primary_tumor_site: Oral Cavity vs. Larynx 1.146 (0.822-1.598) 0.422 1.153 (0.798-1.667) 0.448
Primary_tumor_site: Oropharynx/Hypopharynx vs. Larynx 0.832 (0.504-1.373) 0.471 1.371 (0.779-2.413) 0.274
*reflected the significant difference with the P value < 0.05.
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TGF-β vaccines Lucanix (NCT00676507, NCT02346747) 
and gemenovatuc (NCT03495921) target antisense oligo-
nucleotides (ASO): AP12009 (NCT00844064, NCT00- 
761280) and ISTH0036 (NCT02406833) and TGF-β 
inhibitors that are small molecules: Galunisertib (NCT- 
01582269, NCT02160106) and numerous other kinds 
are under numerous clinical RCT studies. Some of the tri-

research, tumors that express TGF-β can increase the 
anti-tumor activity of EGF receptor-targeted therapy. On 
the other hand, another study shows that TGF-β inhibi- 
tion can improve the anti-tumor activity of targeted thera-
py in vivo [31]. Numerous RCT clinical trials are investigat-
ing the use of different TGF-β inhibitors in tumors to 
establish their role in the treatment of cancer. Currently, 

Table 3. Clinicopathologic features in training and validation groups
Variables Total (n = 139) Train (n = 112) Validation (n = 27) p-value
TGF-β1, n (%) 0.983
    Low 44 (32) 36 (32) 8 (30)
    High 95 (68) 76 (68) 19 (70)
Age, n (%) 0.207
    ~59 64 (46) 55 (49) 9 (33)
    60~ 75 (54) 57 (51) 18 (67)
Gender, n (%) 0.582
    Female 34 (24) 29 (26) 5 (19)
    Male 105 (76) 83 (74) 22 (81)
HPV_status, n (%) 0.735
    Negative 15 (11) 13 (12) 2 (7)
    Positive/Unknown 124 (89) 99 (88) 25 (93)
Grade, n (%) 0.439
    G1/G2 97 (70) 76 (68) 21 (78)
    G3/G4/GX 42 (30) 36 (32) 6 (22)
T_stage, n (%) 0.759
    T1/T2 42 (30) 35 (31) 7 (26)
    T3/T4/TX/Unknown 97 (70) 77 (69) 20 (74)
N_stage, n (%) 0.996
    N0 54 (39) 43 (38) 11 (41)
    N1/N2/N3/NX/Unknown 85 (61) 69 (62) 16 (59)
M_satge, n (%) 0.77
    M0 66 (47) 52 (46) 14 (52)
    M1/MX/Unknown 73 (53) 60 (54) 13 (48)
Radiotherapy, n (%) 0.464
    NO 68 (49) 57 (51) 11 (41)
    YES 71 (51) 55 (49) 16 (59)
Primary_tumor_site, n (%) 0.061
    Larynx 34 (24) 24 (21) 10 (37)
    Oral Cavity 84 (60) 73 (65) 11 (41)
    Oropharynx/Hypopharynx 21 (15) 15 (13) 6 (22)
Chemotherapy, n (%) 0.945
    NO 96 (69) 78 (70) 18 (67)
    YES 43 (31) 34 (30) 9 (33)
Perineural_invasion, n (%) 0.286
    NO 48 (35) 36 (32) 12 (44)
    Unknown 49 (35) 39 (35) 10 (37)
    YES 42 (30) 37 (33) 5 (19)
OS, n (%) 0.249
    Alive 88 (63) 74 (66) 14 (52)
    Dead 51 (37) 38 (34) 13 (48)
OS time, Median (Q1, Q3) 29.63 (14.42, 49.07) 29.7 (13.51, 48.97) 25.13 (17.87, 49.27) 0.994
TGF-β1: The transforming growth factor-β1, HPV: human papilloma virus, OS: overall survival.
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Figure 3. Screening of radiomics features by repeat mRMR_RFE_GBM algorithm. (A, B) Bar chart of training cohort (B) and validation cohort (A). (C) Ranking imaging features based on 
their predictive potential.

Figure 4. A: Plot of ten-fold cross-validation for determining the optimal lambda (tuning parameter). B: Plot of non-zero coefficients or image features against the L1 norm penalty. C: Four 
top features based on their frequencies were identified using the method of 1000 lasso regression.



Radiomics prediction model of TGF-β1 expression in HNSCC

248 Am J Nucl Med Mol Imaging 2024;14(4):239-252

Figure 5. Screening of radiomics features by LASSO-GBM algorithm. (A, B) Bar chart of training cohort (B) and validation cohort (A). (C) Ranking imaging features based on their predic-
tive potential.
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Figure 6. Comprehensive analysis of mRMR_RFE_GBM model for predicting TGF-β1 expression. (A, B) ROC curve of mRMR_RFE_GBM model in training set (A) and validation set (B). (C, 
D) Recall curve of mRMR_RFE_GBM model in training set (C) and validation set (D). (E, F) Calibration curve of mRMR_RFE_GBM model in (E) training set and (F) validation set. (G, H) 
Decision curve of the model in (G) training set and (H) validation set. Gray heavy lines: ideal performance; Dotted lines: real performance; Solid lines: corrected performance.
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feature screening is to get the best image omics features 
and build an image omics mode. The radiomics model in 
this study was constructed using mRMR-RFE and LASSO, 
the two most popular feature screening techniques. When 
the models constructed by the two feature screening 
techniques were compared, it was discovered that the 
radiomics model created by mRMR-RFE outperformed 
LASSO (Training AUC: 0.911 vs. 0.733, Validation AUC: 
0.849 vs. 0.72). Additionally, the calibration curve demon-
strates the good degree of calibration of the mRMR-RFE 
model, which also has a good prediction effect. The DCA 
display model has a high degree of clinical applicability 
and can demonstrate the suitability of the construction 
model’s features as determined by mRMR-RFE screening. 
Using these features, which include GLRLM, NGTDM, and 
GLDM, we constructed two GBM models in this study:  
the mRMR_RFE_GBM model and the Repeat_LASSO_
GBM model. Furthermore, we discovered that gradient-
enhanced CT imaging features can accurately predict 
TGF-β1 expression in HNSCC, which is strongly correlated 
with patient prognosis.

Despite its excellent performance, the non-invasive pre-
diction model based on enhanced CT-based radiomics 
still has limitations. First of all, the outcome of the progno-
sis analysis could be impacted by data that is sourced 
from publicly available datasets because of image quality 
fluctuations. Second, only one radiomics biomarker - 
TFA1, KMT2D, NSD1, and CD8+ T cells - was employed for 
prognosis analysis in this work; additional research is 
necessary on these and other radiomics biomarkers. 
Third, the predictive value of MRI sequences and PET-CT 
images is still unknown, and this study only included 128 
enhanced CT images. Consequently, more prognostic bio-
markers and a larger sample size are required for the sta-
bility of the prognostic model, which is crucial in paving 
the way for future radiomics research on HNSCC.

In summary, TGF-β1 expression is negatively related to 
the prognosis of HNSCC patients. Based on the gradient 
enhancement algorithm, CT radiomics offers an alterna-
tive image that can accurately and non-invasively predict 
TGF-β1 expression in HNSCC. Additionally, the Repeat_
LASSO_GBM model and the mRMR_RFE_GBM model 
both have a lot of potential for predicting TGF-β1 expres-
sion, but when comparing their predictive performances, 
the mRMR_RFE_GBM model performs better.
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als have progressed to phase III clinical trials, offering 
excellent potential for clinical application [32]. Unfor- 
tunately, current TGF-β detection methods are typically 
invasive, costly, and dependent on local tumor tissue, 
which not only fails to accurately reflect the tumor’s over-
all state but also presents challenges for dynamic obser-
vation. Consequently, this study builds a noninvasive 
imaging prediction model of TGF-β based on the tumor as 
a whole, which can forecast the prognosis of patients. 
Non-invasive prediction makes it possible to track TGF-β 
dynamically, gives rise to the ability to forecast TGF-β-
related treatment, and can identify patients who may ben-
efit from TGF-β targeted therapy in the future.

Positron emission tomography/computed tomography 
(PET-CT) [33] or positron emission tomography/magnetic 
resonance imaging (PET-MR) [34] is a rare imaging modal-
ity used in radiomics studies for HNSCC. The most com-
mon imaging modality is computed tomography (CT) [35], 
followed by magnetic resonance imaging (MRI) [36-39]. 
Gray level co-occurrence matrix (GLCM), gray level run-
length matrix (GLRLM), gray level size-area matrix (GLZM), 
and gray level distance-area matrix (GLDZM) are the fea-
tures that are most frequently seen [38]. For instance, 
Francesco Mungai et al. found that a model for predicting 
human papillomavirus in oropharyngeal squamous cell 
carcinoma can be created using GLRLM [35]. Wenwu et 
al. found that GLCM can distinguish the differentiation 
degree of HNSCC based on CT radiation characteristics 
[40]. In our study, 20 radiomics features were obtained 
using the mRMR and RFE algorithms. The optimal feature 
subset obtained by the mRMR_RFE algorithm included 
one first-order feature and two second-order features. All 
the optimal feature subset obtained by the Repeat_
LASSO algorithm are second-order features. In all these 
features, the gray run-length matrix (GLRLM) was the best 
one for both the mRMR_RFE_GBM model and the 
Repeat_LASSO_GBM model.

The radiomics studies of HNSCC encompass a wide range 
of topics, such as prognostic marker identification, molec-
ular subtype classification, pathological feature discrimi-
nation, stages and risk stratification, and prediction of 
anti-tumor therapy side effects [36]. One model that can 
effectively distinguish the differentiation degree of HNSCC 
is the random forest classifier model, which is based on 
CT radiomics features [40]. With the help of a random for-
est classifier model built using CT radiomics features, 
Tanzhu et al. predicted the TP53 and HPV mutation status 
in patients with HNSCC [41]. Dang M et al. used the sub-
set size forward selection algorithm to establish a 
radiomics model, and the accuracy of this model in pre-
dicting p53 status was 81.3% [42]. In Radiomics models 
currently, feature selection techniques such as mRMR_
RFE and Repeat_LASSO, along with other embedding and 
packaging methods, are frequently employed to lower the 
risk of overfitting. Numerous high-quality radiomics [43-
48] employ the mRMR_RFE and Repeat_LASSO algo-
rithms as feature screening techniques. The purpose of 



Radiomics prediction model of TGF-β1 expression in HNSCC

251 Am J Nucl Med Mol Imaging 2024;14(4):239-252

Haussler D and Paten B. Toil enables reproducible, open 
source, big biomedical data analyses. Nat Biotechnol 
2017; 35: 314-316.

[14] Leijenaar RT, Carvalho S, Velazquez ER, van Elmpt WJ, 
Parmar C, Hoekstra OS, Hoekstra CJ, Boellaard R, Dekker 
AL, Gillies RJ, Aerts HJ and Lambin P. Stability of FDG-PET 
radiomics features: an integrated analysis of test-retest 
and inter-observer variability. Acta Oncol 2013; 52: 1391-
1397.

[15] Ma X, Wei J, Gu D, Zhu Y, Feng B, Liang M, Wang S, Zhao X 
and Tian J. Preoperative radiomics nomogram for micro-
vascular invasion prediction in hepatocellular carcinoma 
using contrast-enhanced CT. Eur Radiol 2019; 29: 3595-
3605.

[16] Huang Y, Wei L, Hu Y, Shao N, Lin Y, He S, Shi H, Zhang X 
and Lin Y. Multi-parametric MRI-based radiomics models 
for predicting molecular subtype and androgen receptor 
expression in breast cancer. Front Oncol 2021; 11: 
706733.

[17] Mirniaharikandehei S, Heidari M, Danala G, Lakshmivara-
han S and Zheng B. Applying a random projection algo-
rithm to optimize machine learning model for predicting 
peritoneal metastasis in gastric cancer patients using CT 
images. Comput Methods Programs Biomed 2021; 200: 
105937.

[18] Shur JD, Doran SJ, Kumar S, Ap Dafydd D, Downey K, 
O’Connor JPB, Papanikolaou N, Messiou C, Koh DM and 
Orton MR. Radiomics in oncology: a practical guide. 
Radiographics 2021; 41: 1717-1732.

[19] Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, 
de Castro G Jr, Psyrri A, Basté N, Neupane P, Bratland Å, 
Fuereder T, Hughes BGM, Mesía R, Ngamphaiboon N, 
Rordorf T, Wan Ishak WZ, Hong RL, González Mendoza R, 
Roy A, Zhang Y, Gumuscu B, Cheng JD, Jin F and Rischin D; 
KEYNOTE-048 Investigators. Pembrolizumab alone or with 
chemotherapy versus cetuximab with chemotherapy for 
recurrent or metastatic squamous cell carcinoma of the 
head and neck (KEYNOTE-048): a randomised, open-la-
bel, phase 3 study. Lancet 2019; 394: 1915-1928.

[20] Wang J, Xiang H, Lu Y and Wu T. Role and clinical signifi-
cance of TGF-β1 and TGF-βR1 in malignant tumors (Re-
view). Int J Mol Med 2021; 47: 55.

[21] Hawinkels LJ, Verspaget HW, van Duijn W, van der Zon JM, 
Zuidwijk K, Kubben FJ, Verheijen JH, Hommes DW, Lamers 
CB and Sier CF. Tissue level, activation and cellular locali-
sation of TGF-β1 and association with survival in gastric 
cancer patients. Br J Cancer 2007; 97: 398-404.

[22] Kim HJ, Ahn D, Park TI and Jeong JY. TGFBI expression pre-
dicts the survival of patients with Oropharyngeal squa-
mous cell carcinoma. In Vivo 2020; 34: 3005-3012.

[23] Zheng L, Guan Z and Xue M. TGF-beta signaling pathway-
based model to predict the subtype and prognosis of head 
and neck squamous cell carcinoma. Front Genet 2022; 
13: 862860.

[24] He F, Chen Z, Deng W, Zhan T, Huang X, Zheng Y and Yang 
H. Development and validation of a novel ferroptosis-relat-
ed gene signature for predicting prognosis and immune 
microenvironment in head and neck squamous cell carci-
noma. Int Immunopharmacol 2021; 98: 107789.

[25] Chen YP, Wang YQ, Lv JW, Li YQ, Chua MLK, Le QT, Lee N, 
Colevas AD, Seiwert T, Hayes DN, Riaz N, Vermorken JB, 
O’Sullivan B, He QM, Yang XJ, Tang LL, Mao YP, Sun Y, Liu 
N and Ma J. Identification and validation of novel microen-
vironment-based immune molecular subgroups of head 

that could be construed as a potential conflict of 
interest.

Address correspondence to: Qianxia Li, Department of Oncology, 
Tongji Hospital, Tongji Medical College, Huazhong University of 
Science and Technology, Wuhan 430030, Hubei, China. E-mail: 
liqianx110@163.com

References

[1] Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman 
JE and Grandis JR. Head and neck squamous cell carci-
noma. Nat Rev Dis Primers 2020; 6: 92.

[2] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and 
Jemal A. Global cancer statistics 2018: GLOBOCAN esti-
mates of incidence and mortality worldwide for 36 cancers 
in 185 countries. CA Cancer J Clin 2018; 68: 394-424.

[3] Wiegand S, Zimmermann A, Wilhelm T and Werner JA. 
Survival after distant metastasis in head and neck cancer. 
Anticancer Res 2015; 35: 5499-5502.

[4] Magnes T, Wagner S, Kiem D, Weiss L, Rinnerthaler G, 
Greil R and Melchardt T. Prognostic and predictive factors 
in advanced head and neck squamous cell carcinoma. Int 
J Mol Sci 2021; 22: 4981.

[5] Lee M, Samstein RM, Valero C, Chan TA and Morris LGT. 
Tumor mutational burden as a predictive biomarker for 
checkpoint inhibitor immunotherapy. Hum Vaccin Immu-
nother 2020; 16: 112-115.

[6] Budhwani M, Turrell G, Yu M, Frazer IH, Mehdi AM and 
Chandra J. Immune-inhibitory gene expression is positively 
correlated with overall immune activity and predicts in-
creased survival probability of cervical and head and neck 
cancer patients. Front Mol Biosci 2021; 8: 622643.

[7] White RA, Malkoski SP and Wang XJ. TGFΒ signaling in 
head and neck squamous cell carcinoma. Oncogene 
2010; 29: 5437-5446.

[8] Bell RB, Gough M, Crittenden M and Young K. Moving be-
yond the T cell synapse for combination neoadjuvant im-
munotherapy in head and neck cancer. J Clin Invest 2022; 
132: e162733.

[9] Lu SL, Reh D, Li AG, Woods J, Corless CL, Kulesz-Martin M 
and Wang XJ. Overexpression of transforming growth fac-
tor beta1 in head and neck epithelia results in inflamma-
tion, angiogenesis, and epithelial hyperproliferation. Can-
cer Res 2004; 64: 4405-4410.

[10] Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti 
AG and Bellomi M. Radiomics: the facts and the challeng-
es of image analysis. Eur Radiol Exp 2018; 2: 36.

[11] Fh T, Cyw C and Eyw C. Radiomics AI prediction for head 
and neck squamous cell carcinoma (HNSCC) prognosis 
and recurrence with target volume approach. BJR Open 
2021; 3: 20200073.

[12] Katsoulakis E, Yu Y, Apte AP, Leeman JE, Katabi N, Morris 
L, Deasy JO, Chan TA, Lee NY, Riaz N, Hatzoglou V and Oh 
JH. Radiomic analysis identifies tumor subtypes associat-
ed with distinct molecular and microenvironmental factors 
in head and neck squamous cell carcinoma. Oral Oncol 
2020; 110: 104877.

[13] Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, 
Novak A, Pfeil J, Narkizian J, Deran AD, Musselman-Brown 
A, Schmidt H, Amstutz P, Craft B, Goldman M, Rosenbloom 
K, Cline M, O’Connor B, Hanna M, Birger C, Kent WJ, 
Patterson DA, Joseph AD, Zhu J, Zaranek S, Getz G, 

mailto:liqianx110@163.com


Radiomics prediction model of TGF-β1 expression in HNSCC

252 Am J Nucl Med Mol Imaging 2024;14(4):239-252

cell transcriptomic analysis of primary and metastatic tu-
mor ecosystems in head and neck cancer. Cell 2017; 171: 
1611-1624, e24.

[38] Bruixola G, Remacha E, Jiménez-Pastor A, Dualde D, Viala 
A, Montón JV, Ibarrola-Villava M, Alberich-Bayarri Á and 
Cervantes A. Radiomics and radiogenomics in head and 
neck squamous cell carcinoma: potential contribution to 
patient management and challenges. Cancer Treat Rev 
2021; 99: 102263.

[39] Bos P, van den Brekel MWM, Gouw ZAR, Al-Mamgani A, 
Waktola S, Aerts HJWL, Beets-Tan RGH, Castelijns JA and 
Jasperse B. Clinical variables and magnetic resonance 
imaging-based radiomics predict human papillomavirus 
status of oropharyngeal cancer. Head Neck 2021; 43: 
485-495.

[40] Wu W, Ye J, Wang Q, Luo J and Xu S. CT-based radiomics 
signature for the preoperative discrimination between 
head and neck squamous cell carcinoma grades. Front 
Oncol 2019; 9: 821.

[41] Zhu Y, Mohamed ASR, Lai SY, Yang S, Kanwar A, Wei L, 
Kamal M, Sengupta S, Elhalawani H, Skinner H, Mackin 
DS, Shiao J, Messer J, Wong A, Ding Y, Zhang L, Court L, Ji 
Y and Fuller CD. Imaging-genomic study of head and neck 
squamous cell carcinoma: associations between radiomic 
phenotypes and genomic mechanisms via integration of 
The Cancer Genome Atlas and The Cancer Imaging Ar-
chive. JCO Clin Cancer Inform 2019; 3: 1-9.

[42] Dang M, Lysack JT, Wu T, Matthews TW, Chandarana SP, 
Brockton NT, Bose P, Bansal G, Cheng H, Mitchell JR and 
Dort JC. MRI texture analysis predicts p53 status in head 
and neck squamous cell carcinoma. AJNR Am J Neuroradiol 
2015; 36: 166-170.

[43] Zhang L, Shen M, Zhang D, He X, Du Q, Liu N and Huang X. 
Radiomics nomogram based on dual-sequence MRI for 
assessing Ki-67 expression in breast cancer. J Magn 
Reson Imaging 2024; 60: 1203-1212.

[44] Zhao B, Xia C, Xia T, Qiu Y, Zhu L, Cao B, Gao Y, Ge R, Cai 
W, Ding Z, Yu Q, Lu C, Tang T, Wang Y, Song Y, Long X, Ye J, 
Lu D and Ju S. Development of a radiomics-based model 
to predict occult liver metastases of pancreatic ductal ad-
enocarcinoma: a multicenter study. Int J Surg 2024; 110: 
740-749.

[45] Zhao YY, Xiong ML, Liu YF, Duan LJ, Chen JL, Xing Z, Lin YS 
and Chen TH. Magnetic resonance imaging radiomics-
based prediction of clinically significant prostate cancer in 
equivocal PI-RADS 3 lesions in the transitional zone. Front 
Oncol 2023; 13: 1247682.

[46] Fan X, Xie N, Chen J, Li T, Cao R, Yu H, He M, Wang Z, Wang 
Y, Liu H, Wang H and Yin X. Multiparametric MRI and ma-
chine learning based radiomic models for preoperative 
prediction of multiple biological characteristics in prostate 
cancer. Front Oncol 2022; 12: 839621.

[47] Dai H, Lu M, Huang B, Tang M, Pang T, Liao B, Cai H, Huang 
M, Zhou Y, Chen X, Ding H and Feng ST. Considerable ef-
fects of imaging sequences, feature extraction, feature 
selection, and classifiers on radiomics-based prediction of 
microvascular invasion in hepatocellular carcinoma using 
magnetic resonance imaging. Quant Imaging Med Surg 
2021; 11: 1836-1853.

[48] Wang J, Chen J, Zhou R, Gao Y and Li J. Machine learning-
based multiparametric MRI radiomics for predicting poor 
responders after neoadjuvant chemoradiotherapy in rec-
tal Cancer patients. BMC Cancer 2022; 22: 420.

and neck squamous cell carcinoma: implications for im-
munotherapy. Ann Oncol 2019; 30: 68-75.

[26] Fan DM, Wang XJ, He T, Wang Y, Zhou D, Kong GQ, Jiang T 
and Zhang MM. High expression of TGF-beta1 in the vagi-
nal incisional margin predicts poor prognosis in patients 
with stage Ib-IIa cervical squamous cell carcinoma. Mol 
Biol Rep 2012; 39: 3925-3931.

[27] Peng L, Yuan XQ, Zhang CY, Ye F, Zhou HF, Li WL, Liu ZY, 
Zhang YQ, Pan X and Li GC. High TGF-beta1 expression 
predicts poor disease prognosis in hepatocellular carci-
noma patients. Oncotarget 2017; 8: 34387-34397.

[28] Reis ST, Pontes-Júnior J, Antunes AA, Sousa-Canavez JM, 
Abe DK, Cruz JA, Dall’oglio MF, Crippa A, Passerotti CC, 
Ribeiro-Filho LA, Viana NI, Srougi M and Leite KR. Tgf-β1 
expression as a biomarker of poor prognosis in prostate 
cancer. Clinics (Sao Paulo) 2011; 66: 1143-1147.

[29] Talukdar J, Kataki K, Ali E, Choudhury BN, Baruah MN, 
Bhattacharyya M, Bhattacharjee S and Medhi S. Altered 
expression of TGF-β1 and TGF-βR2 in tissue samples com-
pared to blood is associated with food habits and survival 
in esophageal squamous cell carcinoma. Curr Probl 
Cancer 2021; 45: 100617.

[30] Gilbert J, Schell MJ, Zhao X, Murphy B, Tanvetyanon T, 
Leon ME, Neil Hayes D, Haigentz M Jr, Saba N, Nieva J, 
Bishop J, Sidransky D, Ravi R, Bedi A and Chung CH. A 
randomized phase II efficacy and correlative studies of ce-
tuximab with or without sorafenib in recurrent and/or 
metastatic head and neck squamous cell carcinoma. Oral 
Oncol 2015; 51: 376-382.

[31] Bedi A, Chang X, Noonan K, Pham V, Bedi R, Fertig EJ, 
Considine M, Califano JA, Borrello I, Chung CH, Sidransky 
D and Ravi R. Inhibition of TGF-β enhances the in vivo an-
titumor efficacy of EGF receptor-targeted therapy. Mol 
Cancer Ther 2012; 11: 2429-2439.

[32] Huang CY, Chung CL, Hu TH, Chen JJ, Liu PF and Chen CL. 
Recent progress in TGF-β inhibitors for cancer therapy. 
Biomed Pharmacother 2021; 134: 111046.

[33] Freihat O, Tóth Z, Pintér T, Kedves A, Sipos D, Cselik Z, 
Lippai N, Repa I and Kovács Á. Pre-treatment PET/MRI 
based FDG and DWI imaging parameters for predicting 
HPV status and tumor response to chemoradiotherapy in 
primary oropharyngeal squamous cell carcinoma (OPSCC). 
Oral Oncol 2021; 116: 105239.

[34] Connor S, Sit C, Anjari M, Lei M, Guerrero-Urbano T, Szysz-
ko T, Cook G, Bassett P and Goh V. The ability of post-
chemoradiotherapy DWI ADCmean and (18)F-FDG SUV-
max to predict treatment outcomes in head and neck 
cancer: impact of human papilloma virus oropharyngeal 
cancer status. J Cancer Res Clin Oncol 2021; 147: 2323-
2336.

[35] Mungai F, Verrone GB, Pietragalla M, Berti V, Addeo G, 
Desideri I, Bonasera L and Miele V. CT assessment of tu-
mor heterogeneity and the potential for the prediction of 
human papillomavirus status in oropharyngeal squamous 
cell carcinoma. Radiol Med 2019; 124: 804-811.

[36] Park YM, Lim JY, Koh YW, Kim SH and Choi EC. Machine 
learning and magnetic resonance imaging radiomics for 
predicting human papilloma virus status and prognostic 
factors in oropharyngeal squamous cell carcinoma. Head 
Neck 2022; 44: 897-903.

[37] Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie 
S, Rodman C, Luo CL, Mroz EA, Emerick KS, Deschler DG, 
Varvares MA, Mylvaganam R, Rozenblatt-Rosen O, Rocco 
JW, Faquin WC, Lin DT, Regev A and Bernstein BE. Single-



Radiomics prediction model of TGF-β1 expression in HNSCC

1 

Table S1. ICC between training and validation groups
ICC ≥ 0.8 0.5 ≤ ICC < 0.8 ICC < 0.5 ICC_Mean ICC_Median

Percentage 0.897 0.047 0.056 0.926 0.989
Number 96 5 6 NA NA

Table S2. Parameter characteristics of training and verification set in the prediction model constructed by mRMR-RFE 
and Repeat_LASSO

TGFB1_
cat_RS

Areas under 
the curve 

(AUC)

Confidence 
interval (CI)

Areas under 
the accuracy 

(ACC)
Sensitivity Specificity

Positive 
predictive 

value

Negative 
predictive 

value
BrierScore

mRMR-RFE Train 0.911 0.86-0.962 0.812 0.776 0.889 0.937 0.653 0.134
Test 0.849 0.701-0.997 0.815 0.737 1 1 0.615 0.168

Repeat_LASSO Train 0.733 0.628-0.838 0.759 0.882 0.5 0.788 0.667 0.192
Test 0.72 0.523-0.918 0.704 0.895 0.25 0.739 0.5 0.193
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Figure S1. Receiver operating characteristic curves, recall curve, calibration curves and decision curve analysis of the Repeat_LASSO_GBM model for predicting the TGF-β1 expression.
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Figure S2. Difference between groups of predicted values of Repeat_LASSO_GBM and mRMR_RFE_GBM models in high and low TGF-β1 
expression groups.


