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Abstract: Objective: To explore the connection between TGF-B1 expression and the survival of patients with head and neck squamous cell
carcinoma (HNSCC), as well as whether non-invasive CT-based Radiomics can predict TGF-B1 expression in HNSCC patients. Methods:
Data on transcriptional profiling and clinical information were acquired from the TCGA database and subsequently categorized based
on the TGF-B1 expression cutoff value. Based on the completeness of enhanced arterial phase CT scans, 139 HNSCC patients were
selected. The PyRadiomics package was used to extract radiomic features, and the 3D Slicer software was used for image segmentation.
Using the mRMR_RFE and Repeat LASSO algorithms, the optimal features for establishing the corresponding gradient enhancement
prediction models were identified. Results: A survival analysis was performed on 483 patients, who were divided into two groups based
on the TGF-B1 expression cut-off. The Kaplan-Meier curve indicated that TGF-B1 was a significant independent risk factor that reduced
patient survival. To construct gradient enhancement prediction models, we used the mRMR_RFE algorithm and the Repeat_LASSO algo-
rithm to obtain two features (glrlm and ngtdm) and three radiation features (glrim, first order_10percentile, and gldm). In both the train-
ing and validation cohorts, the two established models demonstrated strong predictive potential. Furthermore, there was no statistically
significant difference in the calibration curve, DCA diagram, or AUC values between the mRMR_RFE_GBM model and the LASSO_GBM
model, suggesting that both models fit well. Conclusion: Based on these findings, TGF-1 was shown to be significantly associated with
a poor prognosis and to be a potential risk factor for HNSCC. Furthermore, by employing the mMRMR_RFE_GBM and Repeat_LASSO_GBM

models, we were able to effectively predict TGF-B1 expression levels in HNSCC through non-invasive CT-based Radiomics.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is a
malignant tumor with a high incidence that develops in
the mucous epithelium of the mouth, pharynx, and larynx.
The standard treatment for HNSCC is currently a combi-
nation of surgery and chemoradiotherapy in clinics; how-
ever, patients’ survival rates within 5 years are still unsat-
isfactory, only reaching up to 34% [1-3]. Traditional prog-
nostic indicators of HNSCC, such as clinical stages, p16,
human papillomavirus (HPV) status, and Programmed cell
death ligand 1 (PD-L1) expression [4], can no longer meet
the clinical needs of precision medicine. As a result, more
research is required to identify new prognostic indicators
for personalized stratified patient care.

Due to the unsatisfactory outcomes of the standard treat-
ment options, immunotherapy has been observed as
another therapeutic strategy and has been widely used
for the treatment of HNSCC. However, only 15-20% of
patients have benefited from this treatment [5], highlight-
ing the need to investigate immune-resistant mecha-
nisms in the immune microenvironment and provide evi-
dence for HNSCC treatment. The transforming growth
factor beta (TGF-B) family is a key immunosuppressive
gene in HNSCC and is linked to a poor prognosis [6]. TGF-

signal dysfunction promotes tumor progression and
metastasis by regulating epithelial cell proliferation, inhib-
iting cell apoptosis, and inducing genomic instability of
tumor cells [7]. PD-L1 is a protein that is crucial to the
regulation of the immune system. Similar to TGF-3, PD-L1
is highly expressed in patients with HNSCC. PD-L1 can
inhibit lymphocyte activation and induce apoptosis by
binding to the PD-1 receptor on lymphocytes’ surfaces,
allowing tumor cells to escape the immune system. TGF-3
promotes tumorigenesis and contributes to drug resis-
tance against PD-L1 monoclonal antibodies. Blocking
both PD-L1 and TGF-B signals can enhance a synergistic
anti-tumor effect and response rate of PD-1 inhibitors [8].
TGF-B1 is highly expressed in the majority of HNSCCs [9],
however, whether it is an independent factor that can pre-
dict the survival of HNSCC patients remains unclear.

Radiomics is a high-throughput “image sequencing” that
can acquire a large number of image parameters by non-
invasive, dynamic, and quantitative detection of tumor
features [10]. Radiomics has been regarded as an effec-
tive technology in HNSCC for guiding early diagnosis and
classification, assessing tumor heterogeneity, and identi-
fying cell constituents in the tumor microenvironment
[141]. In addition, radiomics has a high potential for over-
coming the limitations of traditional tumor markers [12],
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Figure 1. The scheme of patients’ selection (A) and radiomics modeling (B). TCGA: The Cancer Genome Atlas, TCIA: The Cancer Imaging
Archive, HNSCC: Head and Neck squamous cell carcinoma, ICC: the intraclass correlation coefficient, GBM: Gradient Boosting Machine,
mMRM: maximum relevance minimum redundancy, RFE: recursive feature elimination.

because it provides complete three-dimensional infor-
mation about tumors and allows for non-invasive repeti-
tive analysis using follow-up images. In this study, we
used CT-based radiomics to determine the prognostic
value of TGF-B1 in HNSCC. We also investigated its
potential molecular mechanism and relationship with
immune cell constituents using integrated bioinformatics
analysis.

Methods

Sources of data & images

Transcriptome profiling data and clinical information of
528 HNSCC patients were collected from the TCGA data-
base (https://portal.gdc.cancer.gov/). About 211 arterial
enhanced CT images were obtained from TCIA-HNSC. All
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data and images are anonymous and public, so they are
exempt from ethics and informed consent once approved
by the unit ethics committee. TCIA images were used to
identify radiomic features and establish models, whereas
TCGA data was used for prognosis analysis. Sample selec-
tion criteria include preoperative samples, complete clini-
cal data (survival time greater than 30 days), transcrip-
tome sequencing data, arterial phase enhanced CT imag-
es, and TCGA-TCIA intersection data. Figure 1A shows a
brief flow chart.

Analysis of TGF-B1 expression and patients’ survival

The R package “survminer” was used to determine the
cut-off for TGF-B1 expression. Toil [13] processed RNA
sequencing data in FRKM format obtained from UCSC
XENA (https://xenaburowser.net/datapages/). The Wil-
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coxon test was used to compare TGF-B1 expression in
HNSC and normal tissue. Visualization was performed
using the R package “ggplot2”. TGF-B1 expression in
HNSC and normal tissue was compared using the R pack-
age “ggplot2”. Kaplan-Meier analysis was used to esti-
mate patients’ survival rates in the two groups. Univariate
and multivariate Cox regression analyses were used to
assess the prognostic value of variables such as sex, age,
HPV status, nerve invasion, grade, TNM stage, chemora-
diotherapy, primary tumor site, and gene expression. The
univariate Cox regression method was used to analyze
the relationship between TGF-B1 expression and patient
prognosis across various subgroups of covariates. The
interaction between TGF-B1 and other covariates was
analyzed using the likelihood ratio test. In addition,
Spearman rank correlation coefficient was used to ana-
lyze the correlation between the main variable TGF-1
and the clinical features of the tumor, and the results
were presented using a correlation thermogram. The infil-
tration of immune cells in TCGA-HNSC patients was
assessed using the CIBERSORT (HTTPS://cibersort.stan-
ford.edu/) algorithm to examine the correlation between
the infiltration of immune cells and various TGF-B1 ex-
pression groups. The Wilcoxon test was applied to analyze
the difference in infiltrated immune cells between the
high- and low-score groups. The infiltration difference of
some functional cells in different score groups was also
evaluated with the same method. To predict the gene
function and calculate the functional category distribution
frequency, Gene Ontology (GO) and enriched Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
were identified using the KOBAS2.0 server (kobas.cbi.
pku.edu.cn/). GO (BP, CC, MF) and KEGG enrichment
analyses were carried out on the differential genes found
in different TGF-B1 expression groups, and the results
were illustrated using a bubble diagram. The top 10 sig-
nificantly enriched pathways were visualized by BP, CC,
and MF enrichment analysis, and the top 30 significantly
enriched pathways were visualized by KEGG enrichment
analysis.

Cohort design, tumor segmentation & radiomic feature
determination

The diagrammatic scheme is shown in Figure 1B. About
139 images obtained from the TCIA database were
grouped randomly (training or validation) according to
the ratio of 8:2. Images segmentation was performed by
3D Slicer software (version 4.10.2; https://www.slicer.
org/). Before tumor segmentation, the images were pre-
processed using the isotropic voxel resampling techni-
que of linear interpolation to achieve the geometric
normalization of CT images. All images were visually eval-
uated independently by an imaging specialist with 10
years of radiology department experience using the
double-blind method. Pyradiomics (https://pyradiomics.

241

readthedocs.io/en/latest/index.html) containing 107 fea-
tures was used for radiomics analysis. Four features in
total - texture features, wavelet transform features,
volume, and shape features - were obtained. The prePro-
cess function in the R package “caret” was used to
standardize the eigenvalues in the training set by z-score.
The resulting mean and standard deviation were then
used to standardize the characteristic values in the vali-
dation set.

Evaluation of consistency

The consistency of the image omics features was evalu-
ated with intraclass correlation efficiency (ICC) based on
two doctors’ descriptions of VOI [14, 15]. The former
described the cases and 20 samples were randomly
selected by “random number table”. Another radiologist
with 8 years of working experience described the cases
again and determined radiomics features for consistency
evaluation. Generally, ICC > 0.8 is considered as good
consistency, 0.51-0.79 is regarded as average consisten-
¢y, and less than 0.50 is considered poor consistency.

Determination of radiomic features

Over-fitted model with redundant features can affect the
result for predicting TGF-B1 expression. Thus, to eliminate
redundant features or select optimal features, the maxi-
mum correlation-redundancy (MRMR) algorithm and
recursive feature elimination (RFE) algorithm were used
[16]. Using the maximum correlation minimum redundan-
cy algorithm (or “mRMR” package in the R language), fea-
tures were first ranked according to their significance.
This algorithm maximizes mutual information (MI) with
classification labels and minimizes Ml with other features.
Then, the features that contribute the least to the model
were continuously eliminated using the recursive feature
elimination (RFE) algorithm, until the necessary number
of features remained. Finally, 20 features obtained by the
mRMR algorithm and 20 features selected by the RFE
algorithm were used for identification of paired and cor-
related features. Using the R package “caret” and the
“ebm” method, the predicted probability scores were
ranked using the Gradient Boosting Machine (GBM). Using
a set of weak classifiers - typically decision trees - and
the cross-validation technique, the GBM algorithm modi-
fies the super-parameters for model establishment. The
MmRMR_RFE_GBM model was established based on a few
radiomic features and the GBM algorithm [17]. The “gIm-
net” package was used to perform 1000 iterations of
Lasso regression on the radiomic features. The top N fea-
tures with the highest frequency were then chosen as the
final subset using the repeat lasso (Least Absolute
Shrinkage and Selection Operator) technique [18]. The
repeat_LASSO_GBM model in this study was established
based on the radiomic features with the top two frequen-
cies and the GBM algorithm.
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Evaluation of mMRMR_RFE_GBM model and Repeat_
LASSO_GBM model

The receiver operating characteristic (ROC) curves, accu-
racy (ACC), specificity (SPE), sensitivity (sen), positive pre-
dictive value (PPV), and negative predictive value (NPV)
were used to assess the predictive efficacy of the mRMR_
RFE_GBM model and the Repeat_LASSO_GBM model.
The Hosmer-Leme show goodness-of-fit test was used to
evaluate the calibration curve and determine the degree
of calibration of the image omics prediction model. The
comprehensive performance of the image ensemble pre-
diction model is determined by the Brier score (measures
package). Moreover, the Wilcoxon test was used to com-
pare the TGF-B1 expression predicted by the mRMR_
RFE_GBM model and the Repeat_LASSO_GBM model.
The area under the curve (AUC) value in the training and
validation set was compared using Delong test.

Statistical analysis

SPSS 26.0 software and the R packages (version 4.2.2;
http://www.r-project.org/) were used for statistical analy-
sis. The qualitative variables were displayed as numbers
(percentages), means * standard deviations, medians,
and interquartile ranges for all the data. The evaluation of
gender, age, and other baseline characteristics differing
between the training and validation sets was evaluated
using independent sample ttests, Wilcoxon tests, X2
tests, chi-square tests, or Fisher’'s exact tests. Time-to-
event data were estimated using the Kaplan-Meier meth-
od, and group comparisons were made using the log-rank
test. The Cox regression model was used to estimate the
HRs and 95% confidence intervals. Risk factor evaluation
was assessed with both univariate and multivariate Cox
regression analysis.

Results
Clinical features

About 483 HNSCC patients were split into two groups
based on the TGF-B1 cut-off (5.208). The clinical informa-
tion of patients is shown in Table 1. There were no signifi-
cant differences in age, sex, histological grade, TNM stag-
ing, and chemoradiotherapy therapy among the two
groups (P = 0.847). There were significant differences in
HPV status, nerve invasion, and primary tumor location
between the two groups.

The correlation analysis of high TGF-B1 expression and
poor prognosis

Based on the Toil process transformation analysis, it was
found that patients express TGF-B1 at a higher level than
normal individuals (Figure 2A), with a median expression
difference of 1.784 (P < 0.001). The correlation between
TGF-B1 expression and the survival of patients was ana-
lyzed using the Log-Rank test. Kaplan-Meier survival
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curve showed that the median survival time of patients in
the low expression group was 69.43 months, and 46.46
months in the high expression group. These data demon-
strated that high TGF-B1 expression was significantly cor-
related with a poor prognosis (P < 0.01) (Figure 2B).

The potential prognostic factors were identified using the
methods of univariate and multivariate Cox regression.
The results of the univariate analysis showed that TGF-1
was a risk factor for overall survival (HR = 1.876, 95% CI
= 1.335-2.635, P < 0.001), other hazardous variables
include nerve invasion (HR = 2.207, 95% CI 1.552-3.139,
P < 0.001), T stage (HR = 1.842, 95% Cl 1.348-2.516, P
< 0.001), sex (HR = 0.001, 95% CI 1.362-2.623, P <
0.001) and radiotherapy (HR = 0.477, 95% Cl 0.36-0.633,
P < 0.001) (Table 2). The results of multivariate analysis
showed that TGF-B1 (HR = 1.773, 95% Cl = 1.231-2.555,
P = 0.002), nerve invasion (HR = 1.676, 95% CIl = 1.155-
2.433, P = 0.007), N stage (HR = 1.943, 95% CI 1.37-
2.755, P < 0.001) and radiotherapy (HR = 0.364, 95% Cl
0.265-0.501, P < 0.001) were all independent risk fac-
tors for the overall survival (Table 2). The results remained
statistically significant even after the most stringent
Bonferroni multiple tests were applied to correct it, P =
0.002 < 0.05/15 = 0.0033.

The comparison analysis in high and low TGF-B1 expres-
sion groups

According to subgroup analysis, TGF-B1 was a risk factor
in cohorts under 60 years old (HR = 1.891, 95% CI =
1.111-3.218, P = 0.019) and older than 60 years old (HR
=1.878, 95% Cl = 1.235-2.865, P = 0.003). Furthermore,
there was no correlation found between TGF-B1 expres-
sion and age (P = 0.97), TGF-B1, various HPV statuses,
nerve invasion, and the primary tumor site subgroup. In
addition, the correlation between TGF-B1 expression and
clinical features was analyzed by the Spearman grade
correlation coefficient. The heatmap showed that TGF-31
was significantly correlated with tumor grade and nerve
invasion (P < 0.01) (Figure 2C). The violin chart demon-
strated that the group with high TGF-B1 expression had a
significantly decreased number of infiltrated CD8 T cells,
naive B cells, and MO macrophages (P < 0.001) (Figure
2F). GO enrichment analysis indicated that genes show-
ing differential expression between high and low TGF-1
expression were significantly enriched in pathways asso-
ciated with DNA-binding transcription factor binding, GTP
enzyme binding, and transcription auxiliary regulator
activity (Figure 2E). Similarly, the KEGG enrichment analy-
sis showed that these genes were significantly enriched in
the tumor necrosis factor signaling pathway as well as in
other cell cycle or apoptotic-related pathways (Figure 2D).

The comparison of clinical characteristics and consis-
tency in the HNSCC cohort

There was no difference in the clinical characteristics
between the training and validation set (P > 0.05) (Table
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Table 1. Clinical characteristics of HNSC patients in TGF-B1 high and low expression group

Variables Total (n = 483) Low (n = 150) High (n = 333) p-value

Gender, n (%) 0.343
Female 128 (27) 35(23) 93 (28)

Male 355 (73) 115 (77) 240 (72)

Age, n (%) 0.847
~59 211 (44) 67 (45) 144 (43)
60~ 272 (56) 83 (55) 189 (57)

HPV_status, n (%) <0.001
Negative 68 (14) 17 (12) 51 (15)

Positive 30 (6) 19 (13) 11 (3)
Unknown 385 (80) 114 (76) 271 (81)

Perineural_invasion, n (%) <0.001
NO 181 (37) 64 (43) 117 (35)

Unknown 141 (29) 56 (37) 85 (26)
YES 161 (33) 30 (20) 131 (39)

Grade, n (%) 0.011
G1/G2 348 (72) 96 (64) 252 (76)

G3/G4/GX 135 (28) 54 (36) 81 (24)

T_stage, n (%) 0.328
T1/T2 173 (36) 59 (39) 114 (34)

T3/T4/TX/Unknown 310 (64) 91 (61) 219 (66)

N_stage, n (%) 0.476
NO 164 (34) 47 (31) 117 (35)
N1/N2/N3/NX/Unknown 319 (66) 103 (69) 216 (65)

M_satge, n (%) 0.257
MO 174 (36) 48 (32) 126 (38)

M1/MX/Unknown 309 (64) 102 (68) 207 (62)

Chemotherapy, n (%) 0.251
NO 322 (67) 94 (63) 228 (68)

YES 161 (33) 56 (37) 105 (32)

Radiotherapy, n (%) 0.309
NO 234 (48) 67 (45) 167 (50)

YES 249 (52) 83 (55) 166 (50)

Primary_tumor_site, n (%) <0.001
Larynx 109 (23) 40 (27) 69 (21)

Oral Cavity 297 (61) 69 (46) 228 (68)
Oropharynx/Hypopharynx 77 (16) 41 (27) 36 (11)

HNSCC: Head and Neck squamous cell carcinoma, TGF-B1: The Transforming growth factor-1, HPV: human papilloma virus.

3). The ICC data showed that there were 96 radiomics fea-
tures with a value greater than 0.8, and these features
accounted for approximately 89.7% of all features, with a
median ICC value of 0.926. The radiomics features identi-
fied by both methods had ICC values greater than 0.8
(Table _S1), indicating good consistency in the HNSCC
cohort.

Identification of radiomics features for constructing mod-
els

The top 20 features from the mRMR algorithm and the
remaining 20 features from the RFE algorithm were ana-
lyzed in conjunction to yield three mutual features: origi-
nal_glrim_RunVariance, original_first order_10percentile,
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and original_gldm_dependence_nonuniformity_normal-
ized. The three features used for constructing the mRMR_
RFE_GBM model are shown in Figure 3. The two optimal
features with top frequencies including original_glrim_
RunVariance and original_ngtdm_Complexity were ob-
tained using the repeat LASSO algorithm (Figure 4). The
two selected features used for constructing the Repeat
LASSO_GBM model are shown in Figure 5.

Evaluation of mMRMR_RFE_GBM model and Repeat_
LASSO_GBM model

We have added the acc, sensitivity, specificity, positive
predictive value, negative predictive value, and brierScore
of the training set and verification set in the prediction
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Figure 2. The comparison analysis of high vs. low TGF-B1 expression groups. A: The expression of TGF-B1 in tumor and normal tissues.
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model constructed by mRMR-RFE and Repeat_LASSO in S1) were evaluated by the ROC curve. In the training set,
Table S2. The predictive efficacy of the mRMR_RFE_GBM the ROC curve showed that the AUC value of the mRMR_
model (Figure 6) and Repeat_LASSO_GBM model (Figure RFE_GBM model was 0.911, and the Repeat_LASSO_

244 Am J Nucl Med Mol Imaging 2024;14(4):239-252



Radiomics prediction model of TGF-B1 expression in HNSCC

Table 2. Univariate and multivariate logistic analysis in TCGA-HNSC

Univariate analysis

Multivariate analysis

Variable

HR (95% ClI) P value

HR (95% ClI) P value

TGFB1: High vs. Low
Gender: Male vs. Female

Age: 60~ vs. ~59 1.262

HPV_status: Positive vs. Negative
HPV_status: Unknown vs. Negative
Perineural_invasion: Unknown vs. NO
Perineural_invasion: YES vs. NO

Grade: G3/G4/GX vs. G1/G2

T_stage: T3/T4/TX/Unknown vs. T1/T2
N_stage: N1/N2/N3/NX/Unknown vs. NO
M_satge: M1/MX/Unknown vs. MO
Chemotherapy: YES vs. NO

Radiotherapy: YES vs. NO
Primary_tumor_site: Oral Cavity vs. Larynx
Primary_tumor_site: Oropharynx/Hypopharynx vs. Larynx

1.876 (1.335-2.635
0.737 (0.549-0.989
0.952-1.674) 0.106
0.349 (0.105-1.161
1.117 (0.726-1.717
1.836 (1.263-2.67) 0.001*

2.207 (1.552-3.139) < 0.001*
0.913 (0.673-1.24) 0.561

1.842(1.348-2.516) < 0.001*
1.897 (1.372-2.623) < 0.001*
1.345 (0.989-1.828) 0.059

0.989 (0.735-1.33) 0.939

0.477 (0.36-0.633)
1.146 (0.822-1.598) 0.422
0.832 (0.504-1.373) 0.471

<0.001*
0.042*

1.773 (1.231-2.555) 0.002*
0.928 (0.673-1.278) 0.646
1.197 (0.879-1.631) 0.253
0.086 0.394 (0.111-1.399) 0.15
0.615 1.13 (0.715-1.786) 0.6
1.444 (0.976-2.137) 0.066
1.676 (1.155-2.433) 0.007*
0.929 (0.676-1.275) 0.648
2.03 (1.45-2.842) <0.001*
1.943 (1.37-2.755) <0.001*
0.943 (0.681-1.306) 0.726
1.208 (0.85-1.717) 0.293
0.364 (0.265-0.501) < 0.001*
1.153 (0.798-1.667) 0.448
1.371 (0.779-2.413) 0.274

)
)

)
)

<0.001*

*reflected the significant difference with the P value < 0.05.

GBM model was 0.733. In the validation set, the AUC
value of the mRMR_RFE_GBM model was 0.849 and the
Repeat_LASSO_GBM model was 0.72. When comparing
the two cohorts (training set and validation set), we found
that the AUC value of the mRMR_RFE_GBM model in the
training set (P = 0.443, P = 0.912) was not statistically
different from that in the validation set. Similarly, the AUC
value of the Repeat_LASSO_GBM model in the training
set (P = 0.443, P = 0.912) was not statistically different
from the validation set. These data suggested that the
two models fit well. When comparing the two models
(MRMR_RFE_GBM model and Repeat_LASSO_GBM
model), we observed that the AUC value of the mRMR_
RFE_GBM model was significantly higher than the
Repeat_LASSO_GBM model in the training cohort (P <
0.001), whereas no difference was observed in the valida-
tion cohort (P = 0.212). In addition, the calibration curve
shows that the predictive result of TGF-B1 expression
using a radiomics-based model was consistent with the
real value. The DCA diagram demonstrated the strong
clinical applicability of the models. Finally, we found that
the rad score distribution in the mRMR_RFE_GBM model
differed significantly between the training and validation
sets, and that the high TGF-B1 expression group displayed
a higher rad score (Figure S2C, S2D). The distribution of
rad score differed significantly in the training set (P <
0.001) of the Repeat_LASSO_GBM model (Figure S2B),
but there was no difference in the validation set (P > 0.05)
between the high and low TGF-B1 expression groups
(Figure S2A). In summary, the mRMR_RFE_GBM model
and the Repeat_LASSO_GBM model both have great
potential in predicting TGF-B1 expression, and the
MRMR_RFE_GBM model is relatively better in clinical
applicability based on their predictive performance.

245

Discussion

The two primary factors that decreased the overall medi-
an survival time (0S) in patients with advanced HNSCC
were high recurrence and metastasis [19]. Therefore, it is
imperative to enhance the precancerous diagnosis and
prognostic assessment of HNSCC. Previous research has
indicated that the expression level of the Combined
Positive Score (CPS) and the immunohistochemical p16
status of oropharyngeal squamous cell carcinoma
(OPSCC) serve as the diagnostic biomarkers in HNSCC,
while tumor mutational burden (TMB) and tumor-infiltrat-
ing lymphocytes (TILs) serve as the prognostic biomark-
ers for immunotherapy [4]. However, there is still a limita-
tion in the ability to detect these documented biomarkers,
therefore it is necessary to find novel biomarkers or tech-
nologies. Numerous cancer types exhibit elevated expres-
sion of TGF-B, which plays a crucial role in several biologi-
cal processes such as extracellular matrix synthesis, cell
growth, and differentiation [20]. These processes ulti-
mately result in tumor progression, invasion, and metas-
tasis [21]. Moreover, KIM et al. [22] identified TGF-B as a
marker linked to the prognosis of patients with HNSCC
[23-25]. TGF-B1, the most prevalent type in the TGF-3
family [21], has been linked to a poor prognosis in several
cancers, including HNSCC [21, 26-29]. For instance, there
is a significant increase in TGF-B1 expression in the inter-
stitial tissue of HNSCC [9], and the prognosis of HNSCC
patients treated with cetuximab is negatively correlated
with an elevated TGF-1 level in plasma [30]. In this inves-
tigation, we confirmed that TGF-B1 expression was nega-
tively correlated with patient prognosis (P < 0.01) and that
it was an independent prognostic marker in HNSCC. TGF-3
inhibition has demonstrated great promise in the treat-
ment of tumors in recent years. According to earlier
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Table 3. Clinicopathologic features in training and validation groups

Variables Total (n = 139) Train (n = 112) Validation (n = 27) p-value

TGF-B1, n (%) 0.983
Low 44 (32) 36 (32) 8 (30)

High 95 (68) 76 (68) 19 (70)

Age, n (%) 0.207
~59 64 (46) 55 (49) 9 (33)
60~ 75 (54) 57 (51) 18 (67)

Gender, n (%) 0.582
Female 34 (24) 29 (26) 5(19)

Male 105 (76) 83 (74) 22 (81)

HPV_status, n (%) 0.735
Negative 15 (11) 13 (12) 2(7)

Positive/Unknown 124 (89) 99 (88) 25 (93)

Grade, n (%) 0.439
G1/G2 97 (70) 76 (68) 21 (78)

G3/G4/GX 42 (30) 36 (32) 6 (22)

T_stage, n (%) 0.759
T1/T2 42 (30) 35(31) 7 (26)

T3/T4/TX/Unknown 97 (70) 77 (69) 20 (74)

N_stage, n (%) 0.996
NO 54 (39) 43 (38) 11 (41)
N1/N2/N3/NX/Unknown 85 (61) 69 (62) 16 (59)

M_satge, n (%) 0.77
MO 66 (47) 52 (46) 14 (52)

M1/MX/Unknown 73 (53) 60 (54) 13 (48)

Radiotherapy, n (%) 0.464
NO 68 (49) 57 (51) 11 (41)

YES 71 (51) 55 (49) 16 (59)

Primary_tumor_site, n (%) 0.061
Larynx 34 (24) 24 (21) 10 (37)

Oral Cavity 84 (60) 73 (65) 11 (41)
Oropharynx/Hypopharynx 21 (15) 15 (13) 6 (22)

Chemotherapy, n (%) 0.945
NO 96 (69) 78 (70) 18 (67)

YES 43 (31) 34 (30) 9 (33)

Perineural_invasion, n (%) 0.286
NO 48 (35) 36 (32) 12 (44)

Unknown 49 (35) 39 (35) 10 (37)
YES 42 (30) 37 (33) 5 (19)

0S, n (%) 0.249
Alive 88 (63) 74 (66) 14 (52)

Dead 51 (37) 38 (34) 13 (48)
0S time, Median (Q1, Q3) 29.63 (14.42, 49.07) 29.7 (13.51, 48.97) 25.13 (17.87, 49.27) 0.994

TGF-B1: The transforming growth factor-B1, HPV: human papilloma virus, OS: overall survival.

research, tumors that express TGF-B can increase the
anti-tumor activity of EGF receptor-targeted therapy. On
the other hand, another study shows that TGF-( inhibi-
tion can improve the anti-tumor activity of targeted thera-
py in vivo [31]. Numerous RCT clinical trials are investigat-
ing the use of different TGF-B inhibitors in tumors to
establish their role in the treatment of cancer. Currently,
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TGF-B vaccines Lucanix (NCTO0676507, NCT02346747)
and gemenovatuc (NCT03495921) target antisense oligo-
nucleotides (ASO): AP12009 (NCT00844064, NCTOO-
761280) and ISTHOO36 (NCT02406833) and TGF-B
inhibitors that are small molecules: Galunisertib (NCT-
01582269, NCT02160106) and numerous other kinds
are under numerous clinical RCT studies. Some of the tri-
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als have progressed to phase lll clinical trials, offering
excellent potential for clinical application [32]. Unfor-
tunately, current TGF-B detection methods are typically
invasive, costly, and dependent on local tumor tissue,
which not only fails to accurately reflect the tumor’s over-
all state but also presents challenges for dynamic obser-
vation. Consequently, this study builds a noninvasive
imaging prediction model of TGF-3 based on the tumor as
a whole, which can forecast the prognosis of patients.
Non-invasive prediction makes it possible to track TGF-3
dynamically, gives rise to the ability to forecast TGF-§3-
related treatment, and can identify patients who may ben-
efit from TGF-[3 targeted therapy in the future.

Positron emission tomography/computed tomography
(PET-CT) [33] or positron emission tomography/magnetic
resonance imaging (PET-MR) [34] is a rare imaging modal-
ity used in radiomics studies for HNSCC. The most com-
mon imaging modality is computed tomography (CT) [35],
followed by magnetic resonance imaging (MRI) [36-39].
Gray level co-occurrence matrix (GLCM), gray level run-
length matrix (GLRLM), gray level size-area matrix (GLZM),
and gray level distance-area matrix (GLDZM) are the fea-
tures that are most frequently seen [38]. For instance,
Francesco Mungai et al. found that a model for predicting
human papillomavirus in oropharyngeal squamous cell
carcinoma can be created using GLRLM [35]. Wenwu et
al. found that GLCM can distinguish the differentiation
degree of HNSCC based on CT radiation characteristics
[40]. In our study, 20 radiomics features were obtained
using the mRMR and RFE algorithms. The optimal feature
subset obtained by the mRMR_RFE algorithm included
one first-order feature and two second-order features. All
the optimal feature subset obtained by the Repeat_
LASSO algorithm are second-order features. In all these
features, the gray run-length matrix (GLRLM) was the best
one for both the mRMR_RFE_GBM model and the
Repeat_LASSO_GBM model.

The radiomics studies of HNSCC encompass a wide range
of topics, such as prognostic marker identification, molec-
ular subtype classification, pathological feature discrimi-
nation, stages and risk stratification, and prediction of
anti-tumor therapy side effects [36]. One model that can
effectively distinguish the differentiation degree of HNSCC
is the random forest classifier model, which is based on
CT radiomics features [40]. With the help of a random for-
est classifier model built using CT radiomics features,
Tanzhu et al. predicted the TP53 and HPV mutation status
in patients with HNSCC [41]. Dang M et al. used the sub-
set size forward selection algorithm to establish a
radiomics model, and the accuracy of this model in pre-
dicting p53 status was 81.3% [42]. In Radiomics models
currently, feature selection techniques such as mRMR_
RFE and Repeat_LASSO, along with other embedding and
packaging methods, are frequently employed to lower the
risk of overfitting. Numerous high-quality radiomics [43-
48] employ the mRMR_RFE and Repeat_LASSO algo-
rithms as feature screening techniques. The purpose of
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feature screening is to get the best image omics features
and build an image omics mode. The radiomics model in
this study was constructed using mRMR-RFE and LASSO,
the two most popular feature screening techniques. When
the models constructed by the two feature screening
techniques were compared, it was discovered that the
radiomics model created by mRMR-RFE outperformed
LASSO (Training AUC: 0.911 vs. 0.733, Validation AUC:
0.849 vs. 0.72). Additionally, the calibration curve demon-
strates the good degree of calibration of the mRMR-RFE
model, which also has a good prediction effect. The DCA
display model has a high degree of clinical applicability
and can demonstrate the suitability of the construction
model’s features as determined by mRMR-RFE screening.
Using these features, which include GLRLM, NGTDM, and
GLDM, we constructed two GBM models in this study:
the mMRMR_RFE_GBM model and the Repeat_LASSO_
GBM model. Furthermore, we discovered that gradient-
enhanced CT imaging features can accurately predict
TGF-B1 expression in HNSCC, which is strongly correlated
with patient prognosis.

Despite its excellent performance, the non-invasive pre-
diction model based on enhanced CT-based radiomics
still has limitations. First of all, the outcome of the progno-
sis analysis could be impacted by data that is sourced
from publicly available datasets because of image quality
fluctuations. Second, only one radiomics biomarker -
TFA1, KMT2D, NSD1, and CD8+ T cells - was employed for
prognosis analysis in this work; additional research is
necessary on these and other radiomics biomarkers.
Third, the predictive value of MRI sequences and PET-CT
images is still unknown, and this study only included 128
enhanced CT images. Consequently, more prognostic bio-
markers and a larger sample size are required for the sta-
bility of the prognostic model, which is crucial in paving
the way for future radiomics research on HNSCC.

In summary, TGF-B1 expression is negatively related to
the prognosis of HNSCC patients. Based on the gradient
enhancement algorithm, CT radiomics offers an alterna-
tive image that can accurately and non-invasively predict
TGF-B1 expression in HNSCC. Additionally, the Repeat_
LASSO_GBM model and the mRMR_RFE_GBM model
both have a lot of potential for predicting TGF-B1 expres-
sion, but when comparing their predictive performances,
the mMRMR_RFE_GBM model performs better.
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Table S1. ICC between training and validation groups

ICC>0.8 0.5<1CC<0.8 ICC<0.5 ICC_Mean ICC_Median
Percentage 0.897 0.047 0.056 0.926 0.989
Number 96 5 6 NA NA

Table S2. Parameter characteristics of training and verification set in the prediction model constructed by mRMR-RFE
and Repeat_LASSO

Areas under ) Areas under Positive Negative
TGFB1_ Confidence e s - " .
cat RS the curve interval (Cl) the accuracy Sensitivity Specificity predictive predictive BrierScore
- (AUC) (ACC) value value
MRMR-RFE Train 0.911 0.86-0.962 0.812 0.776 0.889 0.937 0.653 0.134
Test 0.849 0.701-0.997 0.815 0.737 1 1 0.615 0.168
Repeat_LASSO Train 0.733 0.628-0.838 0.759 0.882 0.5 0.788 0.667 0.192

Test 0.72 0.523-0.918 0.704 0.895 0.25 0.739 0.5 0.193
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Figure S1. Receiver operating characteristic curves, recall curve, calibration curves and decision curve analysis of the Repeat_LASSO_GBM model for predicting the TGF-B1 expression.
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Figure S2. Difference between groups of predicted values of Repeat_LASSO_GBM and mRMR_RFE_GBM models in high and low TGF-1
expression groups.



