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Abstract: Poly(ADP-Ribose) Polymerase 1 (PARP1) is a key DNA repair enzyme and therapeutic target in cancer, with overexpression
observed in several cancers, including basal cell carcinoma (BCC). Conventional diagnostic methods for BCC lack specificity and are
invasive, highlighting the need for noninvasive alternatives. PARP-targeted molecular imaging, particularly with fluorescence probes,
has shown strong potential for tumor detection and real-time visualization. PARPI-FL, a fluorescent derivative of Olaparib, enables rapid,
specific, and high-contrast imaging of BCC in preclinical and ex vivo human studies. Optimized application protocols confirm its safety
and translational promise for noninvasive diagnosis and image-guided surgery.
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Introduction

The Poly(ADP-Ribose) Polymerase (PARP) family, contain-
ing 18 nucleoprotein members, plays an essential role in
cellular processes, including DNA damage repair, genome
stability, and apoptosis regulation [1]. Among these, only
PARP1 and PARP2 contain DNA-binding domains capable
of recognizing damaged DNA and initiating repair via base
excision repair (BER) pathways [2]. As the predominant
member of the PARP family, PARP1 mediates over 90% of
its catalytic activity. PARP1 consists of six domains: three
zinc fingers (Znl, Zn2, Zn3), a BRCA1 C-terminus (BRCT)
domain, a WGR domain, and a catalytic (CAT) domain,
which together enable its function in single-strand break
repair [3]. Upon DNA damage, PARP1 first recognizes and
binds to the lesion through its zinc finger domains. This
binding activates PARP1, which catalyzes the transfer of
ADP-ribose units from NAD* to synthesize poly (ADP-
ribose) chains (PARylation). The modification serves as a
signal to recruit key repair proteins, including XRCC1, DNA
ligase lll, and DNA polymerase B, thereby facilitating effi-
cient DNA repair (Figure 1). PARP1 is recognized as a
promising therapeutic target based on the principle of
synthetic lethality. In homologous recombination (HR)-
deficient cancer cells, such as those harboring BRCA
mutations, PARP1 inhibition prevents BER, ultimately
inducing tumor cell death. At present, many inhibitors tar-
geting PARP have been developed and approved for the
treatment of various tumors, such as breast cancer, ovar-
ian cancer, and BRCA mutated associated cancer [4, 5].
Recent studies also indicate that PARP is overexpressed
in basal cell carcinoma (BCC), the most common form
of skin cancer. Current diagnostic approaches for BCC,
including dermoscopy and biopsy, are limited by low spec-
ificity, potential false positives, and invasive procedures.
Therefore, there is a pressing need for noninvasive and
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precise diagnostic methods. Molecular imaging has att-
racted increasing attention as it enables real-time, nonin-
vasive visualization with high spatiotemporal resolution
[6, 7]. Given the elevated expression of PARP in BCC com-
pared with nonmalignant lesions, PARP-targeted contrast
agents represent a promising approach for improving the
diagnosis of BCC.

Development PARP1-targeted probes

Positron emission tomography (PET) is a powerful molec-
ular imaging modality with excellent translational poten-
tial due to its real-time, quantitative, noninvasive capabili-
ties and relatively low radiation dose [8-10]. A number
of radiolabeled probes derived from FDA-approved PARP
inhibitors have been developed to assess PARP expres-
sion, stratify tumor stage, and monitor therapeutic res-
ponse. To name a few, examples include [*®F]Olaparib,
[*8F]Rucaparib, [*®F]Talazoparib, [*8F]Pamiparib, [*8F]FTT,
[*8F]F-PARPi and the most recent [*C]PyBic [11] and [*8F]
AZD9574 [12-15]. These discoveries highlight that PET
probes targeting PARP can achieve excellent tumor imag-
ing performance in both preclinical and clinical settings.
Nevertheless, challenges of PET imaging remain, includ-
ing limited spatial resolution, radiation exposure, and
the inability to provide intraoperative tumor guidance.
Fluorescence imaging offers an attractive complementa-
ry approach to overcome these drawbacks, enabling non-
radioactive, real-time, and high-resolution tumor visual-
ization. The prototypical PARP-targeted fluorescent probe,
PARPI-FL, was first synthesized in 2012 by conjugating
the FDA-approved inhibitor Olaparib to the BODIPY dye
[16]. In U87 glioblastoma xenografts, PARPi-FL demon-
strated strong nuclear accumulation within tumor cells
(mean AU/px = 20.49) compared to brain (0.13) and mus-
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Figure 1. Mechanism of PARP repair single-strand breaks. The
PARP protein first recognizes and binds to the damaged site at
high speed and affinity through zinc finger. Then, the activated
PARP1 catalyzes NAD* to synthesize poly ADP ribosylation (PARy-
lation) through the CAT, and finally recruits repair protein XRCC1,
DNA ligase Ill, and DNA polymerase B to the damaged site for
DNA repair. Panels reproduced with permission from ref 1 (Copy-
right 2017, American Association for the Advancement of Sci-
ence).

cle (3.45), resulting in a high tumor-to-background ratio
[17]. Preblocking with excess inhibitor or using U251 cells
with low PARP expression significantly reduced tumor sig-
nal, confirming specificity. Fluorescence microscopy fur-
ther revealed robust nuclear localization of PARPI-FL in
tumor tissue, consistent with the known subcellular dis-
tribution of PARPL1. In orthotopic glioblastoma models,
tumor-selective uptake was similarly observed, with sur-
rounding normal brain displaying only background sign-
al. Pharmacokinetic evaluation showed that 80.3% of
PARPI-FL remained intact within 5 minutes post-injection,
but more than 45% was metabolized by 30 minutes.
Despite this, PARPi-FL has demonstrated utility across
multiple tumor models. In oral squamous cell carcinoma,
which exhibits approximately 7.8-fold higher PARP1 ex-
pression than normal mucosa (confirmed by IHC) [18],
PARPi-FL accumulated strongly in tumor nuclei with a
Pearson correlation coefficient of 0.97 for colocalization.
Topical application studies revealed rapid and selective
tumor uptake, providing high-contrast visualization suit-
able for intraoperative use.

Literature highlight: PARPI-FL for the
diagnosis of BCC

In previous studies, PARP1 was found to be highly ex-
pressed in BCC, serving as a reliable tumor marker for
distinguishing BCC from normal tissue. The fluorescent
probe PARPi-FL has been shown to enhance diagnostic
accuracy by enabling real-time visualization of tumor mar-
gins and by permeating both ex vivo human tissue and in
vivo pig skin models [19]. Building upon these findings,
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further optimization of probe concentration and incuba-
tion time demonstrated improved diagnostic performan-
ce. Specifically, PARP1 expression was detected in more
than 87.7% of BCC lesions, a statistically significant differ-
ence compared with benign lesions (24.8%) (Figure 2A)
[20]. Ex vivo human skin samples exhibited a strong fluo-
rescence signal within 2-5 minutes of topical application
using 10 uM PARPI-FL. In vivo fluorescent confocal micros-
copy (FCM) imaging further confirmed bright, uniform
fluorescence in BCC tumor nodules, which appeared as
round-to-oval clusters within 5 minutes of topical appli-
cation. By contrast, benign lesions showed weaker and
more heterogeneous signals (Figure 2B). While some non-
specific binding to corneocytes was observed in both
malignant and benign lesions, the cellular morphology,
epidermal thickness, and basal layer architecture vis-
ualized with FCM were highly consistent with hematoxylin
and eosin (H&E)-stained sections. In transgenic B6 K5-
Gli2 mice, FCM imaging demonstrated comparable fluo-
rescence outcomes between 5 uM PARPI-FL applied for
15 minutes and 1 yM PARPI-FL applied for 30 minutes
(Figure 2C). Tumor-specific fluorescence was observed
within 70-100 pm beneath the skin surface, exceeding
background signal from basal epidermal nuclei and con-
trol groups. Importantly, no evidence of systemic or local
toxicity was detected: body weight remained stable, skin
morphology appeared normal, and both H&E histology
and serum biochemistry revealed no pathological chang-
es or organ damage. Moreover, systematic evaluation of
application parameters demonstrated that fluorescence
intensity correlated positively with dye concentration dur-
ing short application times (Figure 2D). These results
highlight the strong translational potential of PARPi-FL for
the non-invasive, rapid, and precise diagnosis of BCC.

Conclusion

PARP has emerged as a promising target for both tumor
imaging and therapy, particularly in the context of BCC.
Fluorescent probes derived from PARP inhibitors offer sig-
nificant advantages for noninvasive, high-contrast imag-
ing of BCC lesions, enabling more accurate detection and
characterization compared with conventional approach-
es. Beyond diagnostic applications, PARP-targeted fluo-
rescent agents hold great potential as transformative
technologies for preoperative lesion mapping and intra-
operative image-guided surgery, thereby improving surgi-
cal precision and patient outcomes. Despite these
advances, several challenges remain before broad clini-
cal adoption can be realized. In particular, optimization of
the imaging window is essential to ensure consistent and
reliable visualization across different clinical scenarios.
Furthermore, the development of next-generation probes
with emission in the near-infrared or shortwave infrared
range is expected to improve tissue penetration and sig-
nificantly enhance the signal-to-background ratio. These
improvements will be critical for achieving deeper in vivo
tumor visualization and maximizing the clinical utility of
PARP-targeted fluorescence imaging.
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Figure 2. Tumor imaging of basal cell carcinoma (BCC). A. Immunohistochemistry images of BCC and benign lesions. B. The FCM im-
ages and H&E images of excised human BCC lesions and benign lesions after topical application 5 min. C. The in vivo FCM images and
H&E images of transgenic B6 K5-Gli2 mice. D. The human skin FCM images treated with different concentrations of PARPI-FL for 5 min.
Panels A-D were reproduced with permission from ref 20 (Copyright 2025 by the Society of Nuclear Medicine and Molecular Imaging).
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