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Abstract: Poly(ADP-Ribose) Polymerase 1 (PARP1) is a key DNA repair enzyme and therapeutic target in cancer, with overexpression 
observed in several cancers, including basal cell carcinoma (BCC). Conventional diagnostic methods for BCC lack specificity and are 
invasive, highlighting the need for noninvasive alternatives. PARP-targeted molecular imaging, particularly with fluorescence probes, 
has shown strong potential for tumor detection and real-time visualization. PARPi-FL, a fluorescent derivative of Olaparib, enables rapid, 
specific, and high-contrast imaging of BCC in preclinical and ex vivo human studies. Optimized application protocols confirm its safety 
and translational promise for noninvasive diagnosis and image-guided surgery.
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Introduction
The Poly(ADP-Ribose) Polymerase (PARP) family, contain-
ing 18 nucleoprotein members, plays an essential role in 
cellular processes, including DNA damage repair, genome 
stability, and apoptosis regulation [1]. Among these, only 
PARP1 and PARP2 contain DNA-binding domains capable 
of recognizing damaged DNA and initiating repair via base 
excision repair (BER) pathways [2]. As the predominant 
member of the PARP family, PARP1 mediates over 90% of 
its catalytic activity. PARP1 consists of six domains: three 
zinc fingers (Zn1, Zn2, Zn3), a BRCA1 C-terminus (BRCT) 
domain, a WGR domain, and a catalytic (CAT) domain, 
which together enable its function in single-strand break 
repair [3]. Upon DNA damage, PARP1 first recognizes and 
binds to the lesion through its zinc finger domains. This 
binding activates PARP1, which catalyzes the transfer of 
ADP-ribose units from NAD+ to synthesize poly (ADP-
ribose) chains (PARylation). The modification serves as a 
signal to recruit key repair proteins, including XRCC1, DNA 
ligase III, and DNA polymerase β, thereby facilitating effi-
cient DNA repair (Figure 1). PARP1 is recognized as a 
promising therapeutic target based on the principle of 
synthetic lethality. In homologous recombination (HR)-
deficient cancer cells, such as those harboring BRCA 
mutations, PARP1 inhibition prevents BER, ultimately 
inducing tumor cell death. At present, many inhibitors tar-
geting PARP have been developed and approved for the 
treatment of various tumors, such as breast cancer, ovar-
ian cancer, and BRCA mutated associated cancer [4, 5]. 
Recent studies also indicate that PARP is overexpressed 
in basal cell carcinoma (BCC), the most common form  
of skin cancer. Current diagnostic approaches for BCC, 
including dermoscopy and biopsy, are limited by low spec-
ificity, potential false positives, and invasive procedures. 
Therefore, there is a pressing need for noninvasive and 

precise diagnostic methods. Molecular imaging has att- 
racted increasing attention as it enables real-time, nonin-
vasive visualization with high spatiotemporal resolution 
[6, 7]. Given the elevated expression of PARP in BCC com-
pared with nonmalignant lesions, PARP-targeted contrast 
agents represent a promising approach for improving the 
diagnosis of BCC.

Development PARP1-targeted probes

Positron emission tomography (PET) is a powerful molec-
ular imaging modality with excellent translational poten-
tial due to its real-time, quantitative, noninvasive capabili-
ties and relatively low radiation dose [8-10]. A number  
of radiolabeled probes derived from FDA-approved PARP 
inhibitors have been developed to assess PARP expres-
sion, stratify tumor stage, and monitor therapeutic res- 
ponse. To name a few, examples include [18F]Olaparib, 
[18F]Rucaparib, [18F]Talazoparib, [18F]Pamiparib, [18F]FTT, 
[18F]F-PARPi and the most recent [11C]PyBic [11] and [18F]
AZD9574 [12-15]. These discoveries highlight that PET 
probes targeting PARP can achieve excellent tumor imag-
ing performance in both preclinical and clinical settings. 
Nevertheless, challenges of PET imaging remain, includ-
ing limited spatial resolution, radiation exposure, and  
the inability to provide intraoperative tumor guidance. 
Fluorescence imaging offers an attractive complementa-
ry approach to overcome these drawbacks, enabling non-
radioactive, real-time, and high-resolution tumor visual-
ization. The prototypical PARP-targeted fluorescent probe, 
PARPi-FL, was first synthesized in 2012 by conjugating 
the FDA-approved inhibitor Olaparib to the BODIPY dye 
[16]. In U87 glioblastoma xenografts, PARPi-FL demon-
strated strong nuclear accumulation within tumor cells 
(mean AU/px = 20.49) compared to brain (0.13) and mus-
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cle (3.45), resulting in a high tumor-to-background ratio 
[17]. Preblocking with excess inhibitor or using U251 cells 
with low PARP expression significantly reduced tumor sig-
nal, confirming specificity. Fluorescence microscopy fur-
ther revealed robust nuclear localization of PARPi-FL in 
tumor tissue, consistent with the known subcellular dis- 
tribution of PARP1. In orthotopic glioblastoma models, 
tumor-selective uptake was similarly observed, with sur-
rounding normal brain displaying only background sign- 
al. Pharmacokinetic evaluation showed that 80.3% of 
PARPi-FL remained intact within 5 minutes post-injection, 
but more than 45% was metabolized by 30 minutes. 
Despite this, PARPi-FL has demonstrated utility across 
multiple tumor models. In oral squamous cell carcinoma, 
which exhibits approximately 7.8-fold higher PARP1 ex- 
pression than normal mucosa (confirmed by IHC) [18], 
PARPi-FL accumulated strongly in tumor nuclei with a 
Pearson correlation coefficient of 0.97 for colocalization. 
Topical application studies revealed rapid and selective 
tumor uptake, providing high-contrast visualization suit-
able for intraoperative use.

Literature highlight: PARPi-FL for the 
diagnosis of BCC
In previous studies, PARP1 was found to be highly ex- 
pressed in BCC, serving as a reliable tumor marker for 
distinguishing BCC from normal tissue. The fluorescent 
probe PARPi-FL has been shown to enhance diagnostic 
accuracy by enabling real-time visualization of tumor mar-
gins and by permeating both ex vivo human tissue and in 
vivo pig skin models [19]. Building upon these findings, 

further optimization of probe concentration and incuba-
tion time demonstrated improved diagnostic performan- 
ce. Specifically, PARP1 expression was detected in more 
than 87.7% of BCC lesions, a statistically significant differ-
ence compared with benign lesions (24.8%) (Figure 2A) 
[20]. Ex vivo human skin samples exhibited a strong fluo-
rescence signal within 2-5 minutes of topical application 
using 10 μM PARPi-FL. In vivo fluorescent confocal micros-
copy (FCM) imaging further confirmed bright, uniform  
fluorescence in BCC tumor nodules, which appeared as 
round-to-oval clusters within 5 minutes of topical appli- 
cation. By contrast, benign lesions showed weaker and 
more heterogeneous signals (Figure 2B). While some non-
specific binding to corneocytes was observed in both 
malignant and benign lesions, the cellular morphology, 
epidermal thickness, and basal layer architecture vis- 
ualized with FCM were highly consistent with hematoxylin 
and eosin (H&E)-stained sections. In transgenic B6 K5- 
Gli2 mice, FCM imaging demonstrated comparable fluo-
rescence outcomes between 5 μM PARPi-FL applied for 
15 minutes and 1 μM PARPi-FL applied for 30 minutes 
(Figure 2C). Tumor-specific fluorescence was observed 
within 70-100 μm beneath the skin surface, exceeding 
background signal from basal epidermal nuclei and con-
trol groups. Importantly, no evidence of systemic or local 
toxicity was detected: body weight remained stable, skin 
morphology appeared normal, and both H&E histology 
and serum biochemistry revealed no pathological chang-
es or organ damage. Moreover, systematic evaluation of 
application parameters demonstrated that fluorescence 
intensity correlated positively with dye concentration dur-
ing short application times (Figure 2D). These results 
highlight the strong translational potential of PARPi-FL for 
the non-invasive, rapid, and precise diagnosis of BCC.

Conclusion

PARP has emerged as a promising target for both tumor 
imaging and therapy, particularly in the context of BCC. 
Fluorescent probes derived from PARP inhibitors offer sig-
nificant advantages for noninvasive, high-contrast imag-
ing of BCC lesions, enabling more accurate detection and 
characterization compared with conventional approach-
es. Beyond diagnostic applications, PARP-targeted fluo-
rescent agents hold great potential as transformative 
technologies for preoperative lesion mapping and intra-
operative image-guided surgery, thereby improving surgi-
cal precision and patient outcomes. Despite these 
advances, several challenges remain before broad clini-
cal adoption can be realized. In particular, optimization of 
the imaging window is essential to ensure consistent and 
reliable visualization across different clinical scenarios. 
Furthermore, the development of next-generation probes 
with emission in the near-infrared or shortwave infrared 
range is expected to improve tissue penetration and sig-
nificantly enhance the signal-to-background ratio. These 
improvements will be critical for achieving deeper in vivo 
tumor visualization and maximizing the clinical utility of 
PARP-targeted fluorescence imaging.

Figure 1. Mechanism of PARP repair single-strand breaks. The 
PARP protein first recognizes and binds to the damaged site at 
high speed and affinity through zinc finger. Then, the activated 
PARP1 catalyzes NAD+ to synthesize poly ADP ribosylation (PARy-
lation) through the CAT, and finally recruits repair protein XRCC1, 
DNA ligase III, and DNA polymerase β to the damaged site for 
DNA repair. Panels reproduced with permission from ref 1 (Copy-
right 2017, American Association for the Advancement of Sci-
ence).
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