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Abstract: Meningiomas are the most common primary intracranial tumors, with treatment involving resection and radiation therapy.
However, therapeutic options are limited for recurrent or progressive disease, particularly in higher World Health Organization (WHO)
grade tumors. Somatostatin receptor (SSTR) expression in meningiomas has opened new therapeutic opportunities as the differential
SSTR2 overexpression permits molecular targeting using radiolabeled somatostatin analogs. PRRT offers promising therapeutic efficacy
in select meningioma patients, with clinical responses strongly correlated to WHO tumor grade and SSTR expression levels. Combining
SSTR PET imaging, to evaluate receptor density, with radiomic analysis can reveal tumor heterogeneity patterns and quantitative imaging
features that can guide clinical decision-making and monitor treatment response. Integrating machine learning and artificial intelligence
(Al) into clinical workflows offer novel approaches to apply quantitative SUV parameters, image texture features, and histopathologic data
in order to identify patients with WHO grade Il and lll meningiomas at greater risk of tumor recurrence. Given the heterogeneity in imag-
ing and treatment protocols across institutions and the limited number of PRRT-treated meningioma cohorts, future research should
prioritize prospective, multicenter studies that integrate histologic and molecular imaging data to refine patient selection strategies and
establish PRRT’s role within personalized, precision cancer treatment paradigms.
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Introduction

Meningiomas are the most common primary brain tumor,
accounting for approximately 36% of all central nervous
system neoplasms. These tumors arise from meningothe-
lial cells and show significant heterogeneity in location,
histological features, and molecular profiles [1, 2]. The
World Health Organization (WHO) classification divides
meningiomas into three grades: Grade | (benign, 80-85%
of cases), Grade Il (atypical, 10-15%), and Grade Il (ana-
plastic or malignant, 1-3%). Each classification level is
associated with distinct prognostic outcomes and guides
clinical decision making accordingly [3].

The clinical presentation of meningiomas is largely driven
by their anatomical location and resulting mass effect
rather than intrinsic tumor biology. Convexity meningio-
mas, for example, typically present with seizures (report-
ed in up to 50% of cases), headaches, focal neurological
deficits, and disturbances in visual fields [4]. Parasagittal
and falcine tumors often lead to bilateral lower extremity
weakness, cognitive impairment, and personality chang-
es due to compression of the parasagittal motor cortex
[5-7]. Sphenoid wing meningiomas produce a distinct
syndrome including proptosis, visual impairment, dimin-

ished facial sensation, and seizures originating from the
temporal lobe [8, 9]. Tumors which cause lesions at the
olfactory groove often follow a more insidious course, pre-
senting with anosmia and subtle neurocognitive defects.
In contrast, posterior fossa meningiomas may manifest
with cerebellar dysfunction, ataxia, and potentially life-
threatening obstructive hydrocephalus [10-12].

Seizures are reported in approximately 25-30% of all
meningioma cases, with the highest incidence rising to
nearly 50% in convexity tumors, particularly those locat-
ed adjacent to eloquent cortical regions [13-15]. The slow-
growing nature of most meningiomas, often seen with
doubling times ranging from 2-10 years, often delays diag-
nosis. This underscores the need for maintaining height-
ened clinical suspicion for intracranial pathology when
evaluating patients who present with new-onset focal
neurological deficits or seizures.

Maximal safe surgical resection remains the foundational
approach to meningioma treatment, with gross total
resection (GTR) achieving up to 90% five-year progre-
ssion-free survival for patients with WHO Grade | tumors
[14, 16]. The Simpson grading scale quantifies the extent
of resection and has a well-established association with
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recurrence risk. Simpson Grade | resection, which invol-
ves complete tumor excision along with resection of dural
attachment and any involved bone, is linked to the lowest
rates of recurrence [17-21]. Complete resection is fre-
quently limited by anatomical constraints, particularly in
skull based meningiomas located adjacent to vital neuro-
vascular structures, and this often requires use of adju-
vant therapies. External beam radiation therapy (EBRT)
is the primary adjuvant treatment for managing residual
tumor following subtotal resection, as well as for ma-
naging meningiomas of higher histologic grade. Meta-
analyses have indicated that adjuvant radiotherapy fol-
lowing GTR of atypical meningiomas can reduce five-year
recurrence rates from 50-71% to approximately 20-30%
[22-25]. Despite these multimodal approaches, treat-
ment failures remain a significant challenge. Grade |l
meningiomas recur in 50% of cases even after Simpson
Grade | resection, and in up to 71% after following subto-
tal resection [24-26]. Outcomes are more unfavorable for
Grade lll tumors, with five-year progression-free survival
rates of only 28% following GTR and 0% following sub-
total resection without adjuvant therapy [27]. A summary
of standardized treatment plans for meningiomas based
on WHO grade is described in Figure 1 [28].

Multiple challenges have hindered the development of
effective systemic therapies for meningiomas. Con-
ventional cytotoxic agents, such as temozolomide and
dacarbazine, have demonstrated poor efficacy, with ob-
jective response rates consistently below 10%. This limit-
ed efficacy is likely due to the inherently low proliferative
index of most meningiomas and the selective nature of
blood-brain barrier [29-31]. Efforts to implement target-
ed agents, including hydroxyurea, bevacizumab, and
mTOR inhibitors, have similarly failed to demonstrate clini-
cally meaningful benefits; Hydroxyurea offers limited dis-
ease stabilization, antiangiogenic agents like bevacizum-
ab show response rates below 15%, and mTOR inhibitors,
such as Everolimus, have failed to meaningfully impact
disease progression despite frequent PI3K/AKT pathway
activation in meningiomas [32-48]. Treatment resistance
in meningiomas is multifactorial. Tumor heterogeneity
enables resistant cellular subpopulations to persist and
drive tumor recurrence [49-53]. Anatomical constraints
often limit both surgical and radiation interventions,
especially in tumors near vital neurologic structures [54,
55]. Moreover, intrinsic resistance to radiation therapy is
reinforced by the inherently slow growth rate of these
tumors, robust DNA repair mechanisms, hypoxic tumor
microenvironments, and need to restrict radiation doses
to preserve surrounding neurologic tissue [56-59].

The discovery of elevated somatostatin receptor (SSTR)
expression in meningiomas has opened new opportuni-
ties for novel therapeutic strategies. Somatostatin recep-
tors (SSTRs) are seven-transmembrane G-protein-coupl-
ed receptors that normally bind the endogenous neuro-
peptide somatostatin, which regulates physiological pro-
cesses including hormone secretion and cell prolifera-
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tion. Although there are five SSTR subtypes (SSTR1-5),
SSTR2 is most commonly expressed in meningiomas.
Since SSTR2 is expressed in the vast majority of menin-
giomas, it makes a compelling target for peptide receptor
radionuclide therapy (PRRT) [60]. This high-density SSTR2
expression has made somatostatin receptor PET a highly
valuable imaging modality for diagnosing, prognosticat-
ing, and monitoring meningiomas [60-67]. The differen-
tial SSTR2 overexpression serves as a molecular target
for radiolabeled somatostatin analogs used in PET imag-
ing. The most used somatostatin tracers are the DOTA
peptides labeled with gallium-68, a positron-emitting
radioisotope that has a half-life of 68-minutes ([*®Gal]
Ga-DOTATATE, [®8Ga]Ga-DOTATOC, and [®8Ga]Ga-DOTAN-
0OC). This approach combines integrated molecular imag-
ing using ®8Ga-labeled somatostatin analogs with target-
ed therapies using B-emitting radionuclides, such as
lutetium-177 (*’Lu) or yttrium-90 (°°Y), conjugated to
somatostatin receptor-binding ligands [68] forming the
theranostic twins. Highly specific SSTR-targeted thera-
pies deliver concentrated radiation directly to meningio-
ma cells while sparing healthy tissue, offering a novel and
more efficacious approach to systemic treatment that
addresses some of the aforementioned limitations of con-
ventional therapies. We have highlighted a theranostic
workflow for SSTR2-targeted meningioma management
in Figure 2.

This comprehensive review synthesizes current evidence
for SSTR-targeted PET imaging and peptide receptor
radionuclide therapy (PRRT) in meningioma management,
with a focus on clinical efficacy across WHO grades,
patient selection criteria, and treatment optimization
strategies. We examine the role of quantitative SSTR PET
imaging biomarkers in predicting therapeutic response,
discuss technical considerations including combination
therapies and novel delivery methods, and explore the
emerging applications of artificial intelligence and ra-
diomics in enhancing patient selection and treatment
monitoring. Additionally, we highlight current limitations
including small cohort sizes, institutional variability in pro-
tocols, and the need for prospective validation, while out-
lining future directions for integrating Al-enhanced mo-
lecular imaging into personalized meningioma care.

SSTR peptide receptor radionuclide
therapy

Clinical efficacy and patient selection

The therapeutic potential of SSTR-targeted peptide re-
ceptor radionuclide therapy (PRRT) in meningiomas has
been established through systematic evaluation across
WHO grades (Table 1). The most comprehensive eviden-
ce comes from a meta-analysis, which evaluated 111
patients with treatment-refractory meningiomas and re-
ported disease control in 63% of cases following [°°Y]
Y-DOTATOC, [*7Lu]Lu-DOTATOC, [*"Lu]Lu-DOTATATE, or
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Figure 1. Summary of current treatment recommendations for management of meningiomas based on WHO tumor grade, extent of
surgical resection, and the incorporation of molecular data when available. Abbreviations: MRI, magnetic resonance imaging; SRS, ste-
reotactic radiosurgery; fRT, fractionated external beam radiotherapy; GTR, gross total resection; STR, subtotal resection. Adapted from
Wang J. et al. Neuro Oncol. 2024 Oct 3;26(10):1742-1780, with permission under Creative Commons Attribution 4.0 International Public
License (https://creativecommons.org/licenses/by/4.0/legalcode) [28].

combination regimens [69]. Figure 3 highlights the dura-
ble efficacy of [°°Y]Y-DOTATOC therapy, with follow-up MRI
at 72 months showing stable disease in a WHO grade |l
meningioma initially extending from the cerebellopontine

angle to the upper cervical spine [70].
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The study revealed a pronounced grade-dependent re-
sponse to therapy with six-month progression-free sur-
vival rates of 94% for Grade |, 48% for Grade I, and 0% for
Grade Ill meningiomas. The corresponding one-year over-

all survival rates were 88%, 71%, and 52%, respectively
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Figure 2. Integrated theranostic workflow for SSTR2-targeted meningioma management. The cycle encompasses patient identification
via SSTR PET imaging (Step 1), Al-enhanced radiomic analysis with deep learning segmentation (Step 2), peptide receptor radionuclide
therapy with *"Lu-DOTATATE/TOC + external beam radiotherapy (Step 3), and serial PET/CT response monitoring (Step 4). Central panel
displays meta-analysis outcomes showing 6-month progression-free survival of 94% (Grade 1) and 48% (Grade Il meningiomas). Progres-
sive disease triggers workflow re-initiation, establishing a continuous precision medicine feedback loop. Made with Claude Sonnet 4.5

(claude-sonnet-4-5-20250929) and R version 4.3.2.

[66]. These findings reinforce the importance of histolo-
gic grade as a predictor of therapeutic response and have
provided the foundation for subsequent studies that have
confirmed this pattern in separate cohorts. Another simi-
lar study reported a median progression-free survival of
32.2 months for Grade |, compared to 7.6 months for
Grade Il, and just 2.1 months for Grade Il tumors [71].
Adding to the body of evidence, Bartolomei et al. observed
a median progression-free survival of 61 months for
Grade | cases compared to 13 months for Grade Il and llI
tumors [72]. This consistent trend seen across studies
confirms that PRRT efficacy declines significantly as tumor
grade increases, likely due to greater biological aggres-
siveness and diminished somatostatin receptor expres-
sion in higher-grade meningiomas.

Variations in therapeutic response by tumor grade high-
light the need for imaging biomarkers to identify patients
who are optimal candidates for PRRT. Reflecting on this
need, SSTR imaging has emerged to be crucial for patient
selection. Higher SUV__ and SUV__  values on [**Ga]
Ga-DOTATOC PET were associated with prolonged pro-
gression-free survival, whereas early progression, within
six months, correlated with lower levels of radiotra-
cer uptake [71]. In the multicenter phase Il trial
(NCTO3971461) a reduction of greater than 25% uptake
of [*®Ga]Ga-DOTATATE PET was identified as a potential
therapeutic biomarker [73]. Further validation for using
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this approach, as this study demonstrated increased
SSTR-positive tumor volume on follow-up PET was a pre-
dictor of shorter progression-free survival [74].

Long-term outcomes and treatment optimization

Extended follow-up studies have demonstrated that
PRRT can achieve disease control (Table 1). Interestingly,
the longest-term outcomes to date were 65.6% of 32
patients achieving stable disease and a mean overall
survival of 8.6 years following initial PRRT [75]. High
tumor radionuclide uptake and stable disease response
emerged as significant predictors of survival benefit.
Notably, one study reported that the disease control rate
in a cohort of 42 patients was 57% with a median pro-
gression-free survival of 16 months and overall survival
of 36 months. Additionally, the study demonstrated the
feasibility of PRRT retreatment feasibility in six patients
[76]. Gerster-Gillieron et al. documented exceptionally
prolonged responses, including stable disease for 87
months in a Grade | skull base tumor [70]. Together, these
outcomes point to the long-term effectiveness of PRRT
indicate that timing of administration may influence
outcomes.

There is growing support to integrate PRRT earlier in clini-
cal management, ideally before patients experience sub-
stantial treatment failure. One study proposed initiating

Am J Nucl Med Mol Imaging 2025;15(6):223-235
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Table 1. Core clinical efficacy studies of peptide receptor radionuclide therapy in meningiomas

Author, Year o Disease . Median 0S/ -
’ n  WHO Grade Distribution Agent(s Median PFS . Key Findings
[Ref] gent(s) Control Rate Survival y g
Mirian et al., 111 Grade I-lll (meta-analysis of [°°Y]Y-DOTATOC, [*7Lu] 63% overall 6-mo PFS: Grade | 1-yr OS: Grade | Meta-analysis demonstrating pronounced grade-
2021 [69] treatment-refractory) Lu-DOTATOC, [*"Lu]Lu- 94%, Grade 1l 48%, 88%, Grade Il 71%, dependent response; established foundation for
DOTATATE Grade Il 0% Grade Il 52% patient selection
Seystahl et al., 16 Grade I: 31%, Grade II: 50%, [°8Ga]Ga-DOTATOC/-TOC Progressive Grade I: 32.2 mo, Not reported Higher SUV__/SUV __ on [°8Ga]Ga-DOTATOC PET
2016 [71] Grade Ill: 19% meningioma Grade II: 7.6 mo, Grade associated with prolonged PFS; lower uptake cor-
cohort Il: 2.1 mo related with early progression
Bartolomei et 26 Grade I-I: 77%, Grade lll: 23%  [*°Y]Y-DOTATOC Recurrent Grade I: 61 mo, Grade  Not reported Confirmed grade-dependent therapeutic response
al., 2009 [72] meningioma 1I-111: 13 mo pattern
Gerster-Gillieron 8  Complex recurrent/progressive [*°Y]Y-DOTATOC Not reported Stable disease up to Not reported Demonstrated exceptionally prolonged responses;
etal., 2015 [70] (includes Grade I and I1) 87 mo (Grade | skull Grade Il case showed stable disease at 72 mo
base) follow-up
Marincek etal., 32 Progressive meningioma [®°Y]Y-DOTATOC and [*""Lu] 65.6% stable Not reported Mean 0S: 8.6 Longest-term outcomes to date; high tumor
2015 [75] Lu-DOTATOC disease years uptake and stable disease response predicted
survival benefit
Severi et al., 42 Advanced refractory [*7Lu]Lu-DOTATATE 57% 16 mo 36 mo Demonstrated PRRT retreatment feasibility in 6
2024 [76] patients with long follow-up
Graillon et al., 15 Multirecurrent non-anaplastic  [*7Lu]Lu-DOTATATE with 86.7% disease  Not reported Not reported Supports earlier PRRT integration in slowly pro-
2024 [78] Lutathera stabilization gressing tumors rather than salvage-only use
Kreissl et al., 10 Advanced symptomatic [*7Lu]Lu-DOTATATE/DOTATOC 90% (1 CR, 8 Not reported Not reported Combination therapy achieved tumor volume re-
2012 [79] + EBRT (42-60 Gy) SD) duction 21-81%; demonstrated synergistic efficacy
Hartrampfetal.,, 10 Advanced symptomatic PRRT + fractionated EBRT Not reported Responders: 107.7 Not reported Long-term follow-up (median 105 mo) confirmed
2020 [80] mo, Non-responders: durability of combination approach without severe
26.2 mo toxicity
Kurz et al., 14 Progressive intracranial [*7Lu]Lu-DOTATATE Not reported Not reported Not reported Phase Il trial (NCT03971461): >25% reduction in
2024 [73] [°8Ga]Ga-DOTATATE uptake identified as potential
therapeutic biomarker
Hasenauer et 32 Relapsing/recurrent [*7Lu]Lu-DOTATATE/DOTATOC Not reported Not reported Not reported Increased SSTR-positive tumor volume on follow-
al., 2025 [74] up PET predicted shorter PFS
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Figure 3. MRI demonstrating treatment response in a patient with WHO grade Il me-
ningioma after [*°Y]Y-DOTATOC treatment. (A, B). Contrast-enhanced T1-weighted MR
images at initiation [*°Y]Y-DOTATOC therapy show enhancing tumor at the cerebel-
lopontine angle extending into the upper cervical spine, with intracranial (A) and ver-
tebral (B) involvement (arrows). (C, D) Follow-up MR imaging 72 months after [*°Y]
Y-DOTATOC therapy demonstrates sustained tumor control with stable appearance
of the treated lesions (arrows). This research was originally published in JNM. Ger-
ster-Gilliéron K et al. [*°Y]Y-DOTATOC as a Therapeutic Option for Complex Recurrent
or Progressive Meningiomas. J Nucl Med. November 2015, 56 (11) 1748-1751; ©

SNMMI [70].

PRRT in slowly progressing tumors may yield better patient
outcomes compared to reserving PRRT for salvage thera-
py [77]. Disease stabilization in 86.7% of patients for pro-
gressive, unresectable meningiomas, supports PRRT'’s
utility outside of salvage therapy [78].

Integrating PRRT with external beam radiation therapy
(EBRT) has shown enhanced, synergistic efficacy. In a
cohort of 10 patients, [*""Lu]lLu-DOTATATE/DOTATOC was
administered along with EBRT (42-60 Gy), with one pa-
tient achieving complete response and eight cases of
stable disease, with tumor volumes reduced by 21-81%
compared to baseline [79]. Long-term follow up further
supported the durability of combination therapy demon-
strated durability with median follow-up of 105 months
in 10 patients, reporting a median progression-free sur-
vival of 107.7 months among responders compared to
26.2 months in non-responders, without severe toxicity
or adverse effects throughout the follow-up period [79,
80].
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These studies reinforce the ability of
PRRT to achieve durable disease stabili-
zation in meningiomas, particularly when
applied in carefully selected patient po-
pulations. A consistent theme across
these studies is that high tumor uptake
along with early stage sustained stabili-
zation correlate with longer survival, how-
ever, this benefit varies across cohorts.
Differences in outcomes is likely due to
variations in timing of treatment and dis-
ease biology, with several reports sug-
gesting that earlier integration of PRRT,
rather than salvage use, may optimize
clinical responses. The ability to achie-
ve durable disease control, even with
retreatment in some cases, reinforces
PRRT’s value as a long-term treatment
option. Furthermore, combining PRRT
with EBRT enhances tumor control and
prolongs progression-free survival, with-
out the evidence of additional toxicity
reported in the studies.

Technical considerations and special ap-
plications of PRRT in meningiomas

Intra-arterial delivery has been investi-
gated to improve tumor-specific targeting
and radiotracer uptake (Table 2). In a
small cohort of patients (n=8) with high
grade meningiomas, intra-arterial PRRT
delivered a greater mean-absorbed dose
than intravenous administration (3.62
Gy vs. 2.86 Gy). Furthermore, the dose
per unit activity was greater in the intra-
arterial route compared to intravenous
administration (1.72 Gy/GBqg vs. 0.86 Gy/GBq) [81].
Similarly, Vonken et al. achieved 100% technical success
using intra-arterial delivery of [*"Lu]Lu-DOTATATE, result-
ing in increasing tracer accumulation without procedure-
related complications [82]. While technically viable, the
selection of therapeutic isotope is another key consider-
ation in PRRT. Among available isotopes, clinical experi-
ence favors [Y"Lu]Lu over [°°Y]Y for meningioma therapy
due to its dual beta and gamma emission, which allow for
post-treatment dosimetry, favorable toxicity profile, and
superior tumor-to-normal tissue dose distribution.
Treatment with [*"Lu]Lu is generally well-tolerated, with
hematologic toxicity being the most observed adverse
effect. Clinically meaningful benefits have also been
observed including improvements in quality of life, reduc-
tions in tumor-related pain, and enhanced performance
status.

PRRT has also shown promise in difficult to treat patient
populations. In a cohort of 11 individuals with neurofibro-
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Table 2. Special applications and technical considerations in PRRT for meningiomas

Author, Year

[Ref] Population/Application Agent(s) Route Key Findings
Puranik etal., 8 High-grade meningiomas [*7Lu]Lu-DOTATATE Intra-arterial Mean absorbed dose: 3.62 Gy (IA) vs. 2.86
2024 [81] vs. intravenous Gy (IV); Dose per unit activity: 1.72 Gy/GBq
(IA) vs. 0.86 Gy/GBq (IV); improved tumor-
specific targeting
Vonken etal., Salvage Treatment-refractory [*7Lu]Lu-HA-DOTATATE Intra-arterial 100% technical success; increased tracer
2022 [82] meningioma accumulation without procedure-related
patients complications
Kertelsetal.,, 11 Neurofibromatosis type 2 [*7Lu]Lu-DOTATATE ~ Standard 6 patients (55%) achieved disease stabili-
2021 [83] with multifocal meningiomas zation; demonstrated therapeutic activity
in difficult-to-treat NF2 population
Parghane et Cohort with  Neuroendocrine tumor [¥7Lu]Lu-DOTATATE ~ Standard Mean PFS: 26.25 months in treated cases;
al., 2019 [84] incidental patients with incidentally demonstrated proof-of-concept for dual-
findings detected meningiomas targeting approach
Minutolietal.,, 8 Unresectable meningiomas  [**!In]In-pentetreotide Standard Early proof-of-concept: 2 partial responses,
2014 [85] 5 stable disease; demonstrated feasibility

of SSTR-targeted therapy

A B

Figure 4. [*®Ga]Ga-DOTATATE PET/CT and treatment response in a patient with menin-
gioma. A. [®*Ga]Ga-DOTATATE PET/CT demonstrates tracer uptake in the primary thy-
mic neuroendocrine tumor and abnormal focal uptake at the right retrobulbar region
adjacent to the optic nerve (red arrows), subsequently confirmed as a meningioma
using MRI. B. Post-therapy [*7Lu]Lu-DOTATATE scan following four treatment cycles
shows radiotracer accumulation within the meningioma (red arrow). At 26-month
follow-up, the patient exhibited complete resolution of neurological symptoms with
durable disease control, highlighting the potential of peptide receptor radionuclide
therapy (PRRT) in meningioma management. Reproduced from Parghane RV et al.
World J Nucl Med. 2019 Apr-Jun;18(2):160-170 with permission [84].

dentally detected meningiomas, observ-
ing a mean progression-free survival of
26.25 months in treated cases [84].
Interestingly, there was evidence of early
proof-of-concept using [***In]In-pente-
treotide therapy in eight patients with
unresectable meningiomas. Treatment
with [**!In]In-pentetreotide led to partial
responses in two patients and disease
stabilization in five others [85]. Figure 4
below presents an example of meningio-
ma imaging using [°8Ga]Ga-DOTATATE
PET/CT and [*7Lu]Lu-DOTATATE, high-
lighting diagnostic utility SSTR2-directed
imaging.

Data reported supports using PRRT as
an effective treatment to manage pro-
gressive, treatment-refractory meningio-
mas, particularly in cases classified as
WHO Grades | and Il. When optimizing
patient recruitment future prospective
studies exploring this area should incor-
porate quantitative evaluation of SSTR
expression using functional imaging.
Early integration of PRRT in clinical man-
agement may lead to better clinical out-
comes, and concurrent treatment with
EBRM has shown potential value in se-
lect cases.

Artificial intelligence, ra-
diomics, and machine learn-
ing in SSTR PET

matosis type 2 (NF2) and multifocal meningiomas, PRRT The application of artificial intelligence in SSTR PET imag-
demonstrated therapeutic activity, with six patients ing addresses specific technical challenges in meningio-
achieving disease stabilization [83]. PRRT was applied in ma management while harnessing the unique properties
patients with neuroendocrine tumors, who also had inci- of somatostatin receptor targeting.
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Manual delineation of meningiomas on SSTR PET is sub-
ject to significant interobserver variability, especially in
cases involving complex skull-based tumors where ana-
tomical boundaries cannot be clearly defined. Deep le-
arning models have improved measures of consistency in
segmentation. SegResNet-based modelling in a cohort of
326 patients with meningiomas have demonstrated high
segmentation accuracy, achieving a mean Dice coeffi-
cient of 0.881 (95% Cl: 0.851-0.981). Additionally, ra-
diomic features derived from manual and automated con-
tours had strong agreement with an intraclass correlation
(ICC) reaching 0.804. Semi-automated, threshold-based
approaches, tailored to SSTR PET leverage its inherently
high tumor-to-background contrast. A study implemented
such methods in a cohort of 16 patients with meningio-
mas and identified SUV__ 14.0% to be the optimal thresh-
old, achieving a mean Dice coefficients of 0.50 + 0.19
compared to expert consensus, representing a practical
approach for clinical implementation given SSTR PET'’s
superior contrast compared to conventional imaging
[86-88].

Beyond segmentation, the grade-dependent response
patterns seen with PRRT, highlighted by six-month pro-
gression free survival rates of 94% Grade |, 48% for Gra-
de Il, and 0% for Grade Ill, provide a compelling basis to
develop predictive clinical algorithms. Machine learning
models have the potential to integrate pre-treatment
SUVmax, SUVmean, and volumetric SSTR uptake parameters
with clinical variables to refine patient selection. In a
lesion-based analysis of 16 patients diagnosed with tre-
atment-refractory meningiomas, elevated values of pre-
therapeutic SUV__ and SUV___on [*®Ga]Ga-DOTATOC PET
imaging correlated with absence of disease progression
at six months, whereas lower [(8Ga]Ga-DOTATOC uptake
was associated with early progression [71]. However, cur-
rent analyses are limited to simple univariate correlations.
Multi-parametric models that incorporate spatial uptake
heterogeneity, kinetic parameters, and tumor volume may
enhance predictive accuracy in identifying cases of Grade
Il meningiomas that are likely to demonstrate the pro-
longed responses typically seen in Grade | tumors. By
moving towards quantitative evaluation, these data-driv-
en approaches may allow for more accurate selection of
patients who are likely to respond favorably to PRRT.

Radiomic analysis of SSTR PET allows quantitative as-
sessment of tumor heterogeneity to identify patterns that
correlate with treatment resistance. Treatment failure
often results from resistant cellular subpopulations.
Automated evaluation of uptake variability within lesions
may identify tumors at higher risk for early progression
despite high overall SSTR expression. Hasenauer et al.
reported that, in a cohort of 32 patients with relapsing
meningioma, increased SSTR-positive tumor volume on
follow-up PET was associated with shorter progression-
free survival, suggesting that variability in SSTR expres-
sion may hold prognostic information in predicting dis-
ease course [74]. Algorithms designed to systematically
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analyze texture patterns may help identify heterogeneity
signatures associated with long-term benefit as seen in
studies like that of Marincek et al. where mean overall
survival in meningioma reached 8.6 years in 34 patients
[75].

Recent studies have started to link molecular tumor pro-
files with noninvasive imaging biomarkers. Radiomic mo-
dels using diffusion-weighted MRI can predict [*¥Ga]
Ga-DOTATOC PET uptake values (correlation coefficient
0.42, P<0.05), with SUV__ showing significant associa-
tions with specific SSTR subtypes 2A, 2B, and 5 [89].

Radiomic approaches show promise for risk stratification.
MRI-based radiomic models combined with clinicopatho-
logic variables outperform clinical variables alone for pre-
dicting Grade Il meningioma recurrence (AUC 0.78 vs.
0.67), with high-risk patients demonstrating improved
five-year progression-free survival when treated with adju-
vant radiotherapy [90]. However, several current models
remain limited by single-center designs and lack of key
histopathologic markers like MIB-1 and mitotic index,
highlighting the need for multicenter validation and stan-
dardized molecular profiling [90, 91].

Current assessment of PRRT response primarily relies
on anatomical imaging and subjective interpretation of
changes in SSTR uptake. Kurz et al. established, in their
cohort of 14 patient diagnosed with progressive menin-
gioma, that a >25% reduction in [*®*Ga]Ga-DOTATATE
uptake correlated with adequate therapeutic response
[73]. However, this binary threshold may overlook subtle
response patterns. Machine learning algorithms offer the
ability to detect complex changes in uptake distribution,
intensity, and spatial configurations, potentially identify-
ing treatment effects earlier than conventional criteria.
The delayed antitumor activity of PRRT, which typically
becomes evident at six months as noted by Graillon et al.
creates a window where predictive imaging biomarkers
can guide clinically adaptive treatment strategies [78].
Automated analysis of serial SSTR PET scans may iden-
tify specific patterns of response or treatment-resistance
patterns that precede clear changes in anatomy, enabling
timely intervention in complex meningioma cases.

Collectively, these investigations highlight the potential of
Al and radiomics to transform SSTR PET from mainly a
visual modality into a quantitative and predictive tool that
can be used to manage for meningiomas. Deep learning
models have shown promise in reducing interobserver
variability and delivering reliable volumetric assessments,
while threshold-based methods take advantage of the
intrinsically high tumor-to-background contrast of SSTR
imaging. Aside from image segmentation, radiomic and
machine learning approaches are starting to integrate
uptake metrics, spatial heterogeneity, and clinical vari-
ables to improve risk stratification and predict therapeu-
tic response for patients. Importantly, preliminary studies
that have linked imaging-derived features with histopath-
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ologic markers suggest that multiparametric models
could refine patient selection for PRRT, particularly in
Grade Il meningiomas where treatment outcomes are
variable and not as clear.

Existing Al applications in SSTR PET face several chal-
lenges. Most validation studies are limited by small sam-
ple sizes, which is an inherent challenge given the rarity of
PRRT-treated meningioma cohorts, as these cohorts typi-
cally include fewer than 50 patients. The heterogeneity in
SSTR tracers, imaging protocols, and treatment regimens
across institutions also limits generalizability of these
predictive models. Furthermore, the relationship between
SSTR PET findings and underlying molecular characteris-
tics remains poorly understood. Unlike other brain tumors,
where Al has successfully linked imaging features to
genetic profiles, the molecular drivers of SSTR expression
patterns in meningiomas are still not well characterized.
This lack of molecular insight limits the development of
truly personalized, precision-medicine approaches.

Aside from biological constraints, several practical barri-
ers curb broad clinical adoption of Al and machine learn-
ing in SSTR PET. Data standardization is critical, since
there is variability in scanners, reconstruction methods,
and radiotracers which all limit generalizability of compu-
tational models. Interpretation of Al models also remains
a significant challenge as deep learning models often
have the “black box” issue in which there is a lack of
transparent clinical rationale and input [92]. Further-
more, computational demands for model training further
restricts widespread use of Al and machine learning, as
advanced infrastructure may not be routinely available in
many centers due to financial constraints. Adopting con-
sistent imaging protocols, interpretable algorithms, and
scalable platforms are essential to routinely integrate Al
tools in meningioma care.

Limitations and future directions

The integration of Al, radiomics, and deep learning mod-
els with SSTR PET imaging offers promising avenues for
precision medicine approaches in meningioma mana-
gement. However, clinical implementation remains con-
strained by small cohort sizes, institutional variability in
imaging protocols, and limited molecular characterization
of SSTR expression patterns. There were limitations in
determining recurrence probabilities, and the benefit of
adjuvant radiotherapy was only evaluated in the test set
due to oversampling in the training set. which limited the
study’s statistical power.

Researchers have aimed to enhance PRRT outcomes,
which has led to the development of targeted alpha thera-
pies (TAT). These new radiopharmaceuticals emit high-
energy but short-range alpha particles, inducing cell
death by double-stranded DNA breaks, thereby minimiz-
ing systemic side effects [93]. There have been several
therapeutic radionuclides, such as Bismuth-213 (?'3Bi),
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Actinium-225 (??°Ac), Terbium-149 (**°Tb), and Lead-212
(*'2Pb) that have been investigated in other tumor types,
but not in meningiomas [94]. Recently, there has been
evidence from the phase Il LUMEN trial suggesting that
quantitative dosimetry and volumetric somatostatin
receptor PET imaging may have a role in helping to predict
outcomes of PRRT in 37 patients with gastroenteropan-
creatic neuroendocrine tumors. Notably, it was reported
that achieving a minimum absorbed dose of 35 Gy in the
first cycle and a reduction of more than 10% in soma-
tostatin receptor tumor volume after the first cycle were
both strongly associated with longer progression free sur-
vival. The major findings from the LUMEN trial suggest
that personalized, dosimetry-based therapies, in conjunc-
tion with, early PET based response approaches could
help optimize treatment strategies for patients with
meningiomas undergoing PRRT [95]. The promising pha-
se Il results from this study are foundational for novel
clinical trials that focus on [*7Lu]Lu-DOTATATE used to
treat meningioma, such as the currently on-going LUMEN-
1 study (NCT06326190) [96].

Future prospective, multicenter trials should be designed
with several key features to maximize clinical impact.
First, standardized imaging protocols across centers are
essential to ensure reproducibility of SSTR PET metrics
and facilitate pooled analyses. Second, integrating mo-
lecular profiling and histopathologic subtyping will help
enable correlative studies linking imaging phenotypes
with tumor biology. Third, Al-driven algorithms should be
prospectively validated as part of clinical trial endpoints,
both for automated lesion segmentation and for when
models are used to predict responses to treatment.
Finally, study designs should include predefined thera-
peutic sequencing arms, such as peptide receptor radio-
nuclide therapy versus external beam radiation, to better
clarify the role of SSTR-targeted approaches in relation to
current treatment standards. Collectively, these features
would provide high-quality evidence to inform standard-
ized clinical practice.

Conclusion

SSTR-targeted PRRT is an effective treatment option for
patients with progressive, treatment-refractory meningio-
mas, with efficacy directly related to WHO tumor grade
and SSTR expression levels. Grade | and Il meningiomas
respond favorably to PRRT, while Grade Ill tumors show
limited benefit, making patient selection using quantita-
tive SSTR PET imaging parameters essential, particularly
Suv_,, and SUV__ values which correlate with progres-
sion-free survival. Integrating of PRRT earlier into treat-
ment paradigms, rather than reserving PRRT solely for
salvage therapy, optimizes outcomes. Using combination
approaches with external beam radiation therapy enhan-
ce efficacy without increased toxicity and adverse side
effects. Incorporating artificial intelligence and radiomics
with SSTR PET imaging offers potential improvements in
patient stratification and treatment monitoring, though

Am J Nucl Med Mol Imaging 2025;15(6):223-235



Therapeutic utility in meningioma

current applications remain limited by small cohort sizes
and institutional protocol variability. Future prospective,
multicenter studies should incorporate standardized mo-
lecular imaging protocols with histopathologic character-
ization to establish PRRT’s role in personalized precision
medicine approaches for meningioma management.
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