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Abstract: Meningiomas are the most common primary intracranial tumors, with treatment involving resection and radiation therapy. 
However, therapeutic options are limited for recurrent or progressive disease, particularly in higher World Health Organization (WHO) 
grade tumors. Somatostatin receptor (SSTR) expression in meningiomas has opened new therapeutic opportunities as the differential 
SSTR2 overexpression permits molecular targeting using radiolabeled somatostatin analogs. PRRT offers promising therapeutic efficacy 
in select meningioma patients, with clinical responses strongly correlated to WHO tumor grade and SSTR expression levels. Combining 
SSTR PET imaging, to evaluate receptor density, with radiomic analysis can reveal tumor heterogeneity patterns and quantitative imaging 
features that can guide clinical decision-making and monitor treatment response. Integrating machine learning and artificial intelligence 
(AI) into clinical workflows offer novel approaches to apply quantitative SUV parameters, image texture features, and histopathologic data 
in order to identify patients with WHO grade II and III meningiomas at greater risk of tumor recurrence. Given the heterogeneity in imag-
ing and treatment protocols across institutions and the limited number of PRRT-treated meningioma cohorts, future research should 
prioritize prospective, multicenter studies that integrate histologic and molecular imaging data to refine patient selection strategies and 
establish PRRT’s role within personalized, precision cancer treatment paradigms.
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Introduction

Meningiomas are the most common primary brain tumor, 
accounting for approximately 36% of all central nervous 
system neoplasms. These tumors arise from meningothe-
lial cells and show significant heterogeneity in location, 
histological features, and molecular profiles [1, 2]. The 
World Health Organization (WHO) classification divides 
meningiomas into three grades: Grade I (benign, 80-85% 
of cases), Grade II (atypical, 10-15%), and Grade III (ana-
plastic or malignant, 1-3%). Each classification level is 
associated with distinct prognostic outcomes and guides 
clinical decision making accordingly [3].

The clinical presentation of meningiomas is largely driven 
by their anatomical location and resulting mass effect 
rather than intrinsic tumor biology. Convexity meningio-
mas, for example, typically present with seizures (report-
ed in up to 50% of cases), headaches, focal neurological 
deficits, and disturbances in visual fields [4]. Parasagittal 
and falcine tumors often lead to bilateral lower extremity 
weakness, cognitive impairment, and personality chang-
es due to compression of the parasagittal motor cortex 
[5-7]. Sphenoid wing meningiomas produce a distinct  
syndrome including proptosis, visual impairment, dimin-

ished facial sensation, and seizures originating from the 
temporal lobe [8, 9]. Tumors which cause lesions at the 
olfactory groove often follow a more insidious course, pre-
senting with anosmia and subtle neurocognitive defects. 
In contrast, posterior fossa meningiomas may manifest 
with cerebellar dysfunction, ataxia, and potentially life-
threatening obstructive hydrocephalus [10-12].

Seizures are reported in approximately 25-30% of all 
meningioma cases, with the highest incidence rising to 
nearly 50% in convexity tumors, particularly those locat- 
ed adjacent to eloquent cortical regions [13-15]. The slow-
growing nature of most meningiomas, often seen with 
doubling times ranging from 2-10 years, often delays diag-
nosis. This underscores the need for maintaining height-
ened clinical suspicion for intracranial pathology when 
evaluating patients who present with new-onset focal 
neurological deficits or seizures.

Maximal safe surgical resection remains the foundational 
approach to meningioma treatment, with gross total 
resection (GTR) achieving up to 90% five-year progre- 
ssion-free survival for patients with WHO Grade I tumors 
[14, 16]. The Simpson grading scale quantifies the extent 
of resection and has a well-established association with 
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tion. Although there are five SSTR subtypes (SSTR1-5), 
SSTR2 is most commonly expressed in meningiomas. 
Since SSTR2 is expressed in the vast majority of menin-
giomas, it makes a compelling target for peptide receptor 
radionuclide therapy (PRRT) [60]. This high-density SSTR2 
expression has made somatostatin receptor PET a highly 
valuable imaging modality for diagnosing, prognosticat-
ing, and monitoring meningiomas [60-67]. The differen-
tial SSTR2 overexpression serves as a molecular target 
for radiolabeled somatostatin analogs used in PET imag-
ing. The most used somatostatin tracers are the DOTA 
peptides labeled with gallium-68, a positron-emitting 
radioisotope that has a half-life of 68-minutes ([68Ga]
Ga-DOTATATE, [68Ga]Ga-DOTATOC, and [68Ga]Ga-DOTAN- 
OC). This approach combines integrated molecular imag-
ing using 68Ga-labeled somatostatin analogs with target-
ed therapies using β-emitting radionuclides, such as  
lutetium-177 (177Lu) or yttrium-90 (90Y), conjugated to 
somatostatin receptor-binding ligands [68] forming the 
theranostic twins. Highly specific SSTR-targeted thera-
pies deliver concentrated radiation directly to meningio-
ma cells while sparing healthy tissue, offering a novel and 
more efficacious approach to systemic treatment that 
addresses some of the aforementioned limitations of con-
ventional therapies. We have highlighted a theranostic 
workflow for SSTR2-targeted meningioma management  
in Figure 2.

This comprehensive review synthesizes current evidence 
for SSTR-targeted PET imaging and peptide receptor 
radionuclide therapy (PRRT) in meningioma management, 
with a focus on clinical efficacy across WHO grades, 
patient selection criteria, and treatment optimization 
strategies. We examine the role of quantitative SSTR PET 
imaging biomarkers in predicting therapeutic response, 
discuss technical considerations including combination 
therapies and novel delivery methods, and explore the 
emerging applications of artificial intelligence and ra- 
diomics in enhancing patient selection and treatment 
monitoring. Additionally, we highlight current limitations 
including small cohort sizes, institutional variability in pro-
tocols, and the need for prospective validation, while out-
lining future directions for integrating AI-enhanced mo- 
lecular imaging into personalized meningioma care.

SSTR peptide receptor radionuclide 
therapy

Clinical efficacy and patient selection

The therapeutic potential of SSTR-targeted peptide re- 
ceptor radionuclide therapy (PRRT) in meningiomas has 
been established through systematic evaluation across 
WHO grades (Table 1). The most comprehensive eviden- 
ce comes from a meta-analysis, which evaluated 111 
patients with treatment-refractory meningiomas and re- 
ported disease control in 63% of cases following [90Y]
Y-DOTATOC, [177Lu]Lu-DOTATOC, [177Lu]Lu-DOTATATE, or 

recurrence risk. Simpson Grade I resection, which invol- 
ves complete tumor excision along with resection of dural 
attachment and any involved bone, is linked to the lowest 
rates of recurrence [17-21]. Complete resection is fre-
quently limited by anatomical constraints, particularly in 
skull based meningiomas located adjacent to vital neuro-
vascular structures, and this often requires use of adju-
vant therapies. External beam radiation therapy (EBRT)  
is the primary adjuvant treatment for managing residual 
tumor following subtotal resection, as well as for ma- 
naging meningiomas of higher histologic grade. Meta-
analyses have indicated that adjuvant radiotherapy fol-
lowing GTR of atypical meningiomas can reduce five-year 
recurrence rates from 50-71% to approximately 20-30% 
[22-25]. Despite these multimodal approaches, treat-
ment failures remain a significant challenge. Grade II 
meningiomas recur in 50% of cases even after Simpson 
Grade I resection, and in up to 71% after following subto-
tal resection [24-26]. Outcomes are more unfavorable for 
Grade III tumors, with five-year progression-free survival 
rates of only 28% following GTR and 0% following sub- 
total resection without adjuvant therapy [27]. A summary 
of standardized treatment plans for meningiomas based 
on WHO grade is described in Figure 1 [28].

Multiple challenges have hindered the development of 
effective systemic therapies for meningiomas. Con- 
ventional cytotoxic agents, such as temozolomide and 
dacarbazine, have demonstrated poor efficacy, with ob- 
jective response rates consistently below 10%. This limit-
ed efficacy is likely due to the inherently low proliferative 
index of most meningiomas and the selective nature of 
blood-brain barrier [29-31]. Efforts to implement target- 
ed agents, including hydroxyurea, bevacizumab, and 
mTOR inhibitors, have similarly failed to demonstrate clini-
cally meaningful benefits; Hydroxyurea offers limited dis-
ease stabilization, antiangiogenic agents like bevacizum-
ab show response rates below 15%, and mTOR inhibitors, 
such as Everolimus, have failed to meaningfully impact 
disease progression despite frequent PI3K/AKT pathway 
activation in meningiomas [32-48]. Treatment resistance 
in meningiomas is multifactorial. Tumor heterogeneity 
enables resistant cellular subpopulations to persist and 
drive tumor recurrence [49-53]. Anatomical constraints 
often limit both surgical and radiation interventions, 
especially in tumors near vital neurologic structures [54, 
55]. Moreover, intrinsic resistance to radiation therapy is 
reinforced by the inherently slow growth rate of these 
tumors, robust DNA repair mechanisms, hypoxic tumor 
microenvironments, and need to restrict radiation doses 
to preserve surrounding neurologic tissue [56-59].

The discovery of elevated somatostatin receptor (SSTR) 
expression in meningiomas has opened new opportuni-
ties for novel therapeutic strategies. Somatostatin recep-
tors (SSTRs) are seven-transmembrane G-protein-coupl- 
ed receptors that normally bind the endogenous neuro-
peptide somatostatin, which regulates physiological pro-
cesses including hormone secretion and cell prolifera-
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Figure 1. Summary of current treatment recommendations for management of meningiomas based on WHO tumor grade, extent of 
surgical resection, and the incorporation of molecular data when available. Abbreviations: MRI, magnetic resonance imaging; SRS, ste-
reotactic radiosurgery; fRT, fractionated external beam radiotherapy; GTR, gross total resection; STR, subtotal resection. Adapted from 
Wang J. et al. Neuro Oncol. 2024 Oct 3;26(10):1742-1780, with permission under Creative Commons Attribution 4.0 International Public 
License (https://creativecommons.org/licenses/by/4.0/legalcode) [28].

combination regimens [69]. Figure 3 highlights the dura-
ble efficacy of [90Y]Y-DOTATOC therapy, with follow-up MRI 
at 72 months showing stable disease in a WHO grade II 
meningioma initially extending from the cerebellopontine 
angle to the upper cervical spine [70].

The study revealed a pronounced grade-dependent re- 
sponse to therapy with six-month progression-free sur-
vival rates of 94% for Grade I, 48% for Grade II, and 0% for 
Grade III meningiomas. The corresponding one-year over-
all survival rates were 88%, 71%, and 52%, respectively 
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Figure 2. Integrated theranostic workflow for SSTR2-targeted meningioma management. The cycle encompasses patient identification 
via SSTR PET imaging (Step 1), AI-enhanced radiomic analysis with deep learning segmentation (Step 2), peptide receptor radionuclide 
therapy with 177Lu-DOTATATE/TOC ± external beam radiotherapy (Step 3), and serial PET/CT response monitoring (Step 4). Central panel 
displays meta-analysis outcomes showing 6-month progression-free survival of 94% (Grade I) and 48% (Grade II meningiomas). Progres-
sive disease triggers workflow re-initiation, establishing a continuous precision medicine feedback loop. Made with Claude Sonnet 4.5 
(claude-sonnet-4-5-20250929) and R version 4.3.2.

[66]. These findings reinforce the importance of histolo- 
gic grade as a predictor of therapeutic response and have 
provided the foundation for subsequent studies that have 
confirmed this pattern in separate cohorts. Another simi-
lar study reported a median progression-free survival of 
32.2 months for Grade I, compared to 7.6 months for 
Grade II, and just 2.1 months for Grade III tumors [71]. 
Adding to the body of evidence, Bartolomei et al. observed 
a median progression-free survival of 61 months for 
Grade I cases compared to 13 months for Grade II and III 
tumors [72]. This consistent trend seen across studies 
confirms that PRRT efficacy declines significantly as tumor 
grade increases, likely due to greater biological aggres-
siveness and diminished somatostatin receptor expres-
sion in higher-grade meningiomas.

Variations in therapeutic response by tumor grade high-
light the need for imaging biomarkers to identify patients 
who are optimal candidates for PRRT. Reflecting on this 
need, SSTR imaging has emerged to be crucial for patient 
selection. Higher SUVmax and SUVmean values on [68Ga]
Ga-DOTATOC PET were associated with prolonged pro-
gression-free survival, whereas early progression, within 
six months, correlated with lower levels of radiotra- 
cer uptake [71]. In the multicenter phase II trial 
(NCT03971461) a reduction of greater than 25% uptake 
of [68Ga]Ga-DOTATATE PET was identified as a potential 
therapeutic biomarker [73]. Further validation for using 

this approach, as this study demonstrated increased 
SSTR-positive tumor volume on follow-up PET was a pre-
dictor of shorter progression-free survival [74].

Long-term outcomes and treatment optimization

Extended follow-up studies have demonstrated that  
PRRT can achieve disease control (Table 1). Interestingly, 
the longest-term outcomes to date were 65.6% of 32 
patients achieving stable disease and a mean overall  
survival of 8.6 years following initial PRRT [75]. High  
tumor radionuclide uptake and stable disease response 
emerged as significant predictors of survival benefit. 
Notably, one study reported that the disease control rate 
in a cohort of 42 patients was 57% with a median pro-
gression-free survival of 16 months and overall survival  
of 36 months. Additionally, the study demonstrated the 
feasibility of PRRT retreatment feasibility in six patients 
[76]. Gerster-Gillieron et al. documented exceptionally 
prolonged responses, including stable disease for 87 
months in a Grade I skull base tumor [70]. Together, these 
outcomes point to the long-term effectiveness of PRRT 
indicate that timing of administration may influence 
outcomes.

There is growing support to integrate PRRT earlier in clini-
cal management, ideally before patients experience sub-
stantial treatment failure. One study proposed initiating 
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Table 1. Core clinical efficacy studies of peptide receptor radionuclide therapy in meningiomas
Author, Year 
[Ref] n WHO Grade Distribution Agent(s) Disease  

Control Rate Median PFS Median OS/ 
Survival Key Findings

Mirian et al., 
2021 [69]

111 Grade I-III (meta-analysis of 
treatment-refractory)

[90Y]Y-DOTATOC, [177Lu]
Lu-DOTATOC, [177Lu]Lu-
DOTATATE

63% overall 6-mo PFS: Grade I 
94%, Grade II 48%, 
Grade III 0%

1-yr OS: Grade I 
88%, Grade II 71%, 
Grade III 52%

Meta-analysis demonstrating pronounced grade-
dependent response; established foundation for 
patient selection

Seystahl et al., 
2016 [71]

16 Grade I: 31%, Grade II: 50%, 
Grade III: 19%

[68Ga]Ga-DOTATOC/-TOC Progressive 
meningioma 
cohort

Grade I: 32.2 mo, 
Grade II: 7.6 mo, Grade 
III: 2.1 mo

Not reported Higher SUVmax/SUVmean on [68Ga]Ga-DOTATOC PET 
associated with prolonged PFS; lower uptake cor-
related with early progression

Bartolomei et 
al., 2009 [72]

26 Grade I-II: 77%, Grade III: 23% [90Y]Y-DOTATOC Recurrent  
meningioma

Grade I: 61 mo, Grade 
II-III: 13 mo

Not reported Confirmed grade-dependent therapeutic response 
pattern

Gerster-Gillieron 
et al., 2015 [70]

8 Complex recurrent/progressive 
(includes Grade I and II)

[90Y]Y-DOTATOC Not reported Stable disease up to 
87 mo (Grade I skull 
base)

Not reported Demonstrated exceptionally prolonged responses; 
Grade II case showed stable disease at 72 mo 
follow-up

Marincek et al., 
2015 [75]

32 Progressive meningioma [90Y]Y-DOTATOC and [177Lu]
Lu-DOTATOC

65.6% stable 
disease

Not reported Mean OS: 8.6 
years

Longest-term outcomes to date; high tumor 
uptake and stable disease response predicted 
survival benefit

Severi et al., 
2024 [76]

42 Advanced refractory [177Lu]Lu-DOTATATE 57% 16 mo 36 mo Demonstrated PRRT retreatment feasibility in 6 
patients with long follow-up

Graillon et al., 
2024 [78]

15 Multirecurrent non-anaplastic [177Lu]Lu-DOTATATE with 
Lutathera

86.7% disease 
stabilization

Not reported Not reported Supports earlier PRRT integration in slowly pro-
gressing tumors rather than salvage-only use

Kreissl et al., 
2012 [79]

10 Advanced symptomatic [177Lu]Lu-DOTATATE/DOTATOC 
+ EBRT (42-60 Gy)

90% (1 CR, 8 
SD)

Not reported Not reported Combination therapy achieved tumor volume re-
duction 21-81%; demonstrated synergistic efficacy

Hartrampf et al., 
2020 [80]

10 Advanced symptomatic PRRT + fractionated EBRT Not reported Responders: 107.7 
mo, Non-responders: 
26.2 mo

Not reported Long-term follow-up (median 105 mo) confirmed 
durability of combination approach without severe 
toxicity

Kurz et al., 
2024 [73]

14 Progressive intracranial [177Lu]Lu-DOTATATE Not reported Not reported Not reported Phase II trial (NCT03971461): >25% reduction in 
[68Ga]Ga-DOTATATE uptake identified as potential 
therapeutic biomarker

Hasenauer et 
al., 2025 [74]

32 Relapsing/recurrent [177Lu]Lu-DOTATATE/DOTATOC Not reported Not reported Not reported Increased SSTR-positive tumor volume on follow-
up PET predicted shorter PFS
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Figure 3. MRI demonstrating treatment response in a patient with WHO grade II me-
ningioma after [90Y]Y-DOTATOC treatment. (A, B). Contrast-enhanced T1-weighted MR 
images at initiation [90Y]Y-DOTATOC therapy show enhancing tumor at the cerebel-
lopontine angle extending into the upper cervical spine, with intracranial (A) and ver-
tebral (B) involvement (arrows). (C, D) Follow-up MR imaging 72 months after [90Y]
Y-DOTATOC therapy demonstrates sustained tumor control with stable appearance 
of the treated lesions (arrows). This research was originally published in JNM. Ger-
ster-Gilliéron K et al. [90Y]Y-DOTATOC as a Therapeutic Option for Complex Recurrent 
or Progressive Meningiomas. J Nucl Med. November 2015, 56 (11) 1748-1751; © 
SNMMI [70].

PRRT in slowly progressing tumors may yield better patient 
outcomes compared to reserving PRRT for salvage thera-
py [77]. Disease stabilization in 86.7% of patients for pro-
gressive, unresectable meningiomas, supports PRRT’s 
utility outside of salvage therapy [78].

Integrating PRRT with external beam radiation therapy 
(EBRT) has shown enhanced, synergistic efficacy. In a 
cohort of 10 patients, [177Lu]Lu-DOTATATE/DOTATOC was 
administered along with EBRT (42-60 Gy), with one pa- 
tient achieving complete response and eight cases of  
stable disease, with tumor volumes reduced by 21-81% 
compared to baseline [79]. Long-term follow up further 
supported the durability of combination therapy demon-
strated durability with median follow-up of 105 months  
in 10 patients, reporting a median progression-free sur-
vival of 107.7 months among responders compared to 
26.2 months in non-responders, without severe toxicity  
or adverse effects throughout the follow-up period [79, 
80].

These studies reinforce the ability of 
PRRT to achieve durable disease stabili-
zation in meningiomas, particularly when 
applied in carefully selected patient po- 
pulations. A consistent theme across 
these studies is that high tumor uptake 
along with early stage sustained stabili-
zation correlate with longer survival, how-
ever, this benefit varies across cohorts. 
Differences in outcomes is likely due to 
variations in timing of treatment and dis-
ease biology, with several reports sug-
gesting that earlier integration of PRRT, 
rather than salvage use, may optimize 
clinical responses. The ability to achie- 
ve durable disease control, even with 
retreatment in some cases, reinforces 
PRRT’s value as a long-term treatment 
option. Furthermore, combining PRRT 
with EBRT enhances tumor control and 
prolongs progression-free survival, with-
out the evidence of additional toxicity 
reported in the studies.

Technical considerations and special ap-
plications of PRRT in meningiomas

Intra-arterial delivery has been investi-
gated to improve tumor-specific targeting 
and radiotracer uptake (Table 2). In a 
small cohort of patients (n=8) with high 
grade meningiomas, intra-arterial PRRT 
delivered a greater mean-absorbed dose 
than intravenous administration (3.62  
Gy vs. 2.86 Gy). Furthermore, the dose 
per unit activity was greater in the intra-
arterial route compared to intravenous 

administration (1.72 Gy/GBq vs. 0.86 Gy/GBq) [81]. 
Similarly, Vonken et al. achieved 100% technical success 
using intra-arterial delivery of [177Lu]Lu-DOTATATE, result-
ing in increasing tracer accumulation without procedure-
related complications [82]. While technically viable, the 
selection of therapeutic isotope is another key consider-
ation in PRRT. Among available isotopes, clinical experi-
ence favors [177Lu]Lu over [90Y]Y for meningioma therapy 
due to its dual beta and gamma emission, which allow for 
post-treatment dosimetry, favorable toxicity profile, and 
superior tumor-to-normal tissue dose distribution. 
Treatment with [177Lu]Lu is generally well-tolerated, with 
hematologic toxicity being the most observed adverse 
effect. Clinically meaningful benefits have also been 
observed including improvements in quality of life, reduc-
tions in tumor-related pain, and enhanced performance 
status.

PRRT has also shown promise in difficult to treat patient 
populations. In a cohort of 11 individuals with neurofibro-
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Table 2. Special applications and technical considerations in PRRT for meningiomas
Author, Year 
[Ref] n Population/Application Agent(s) Route Key Findings

Puranik et al., 
2024 [81]

8 High-grade meningiomas [177Lu]Lu-DOTATATE Intra-arterial 
vs. intravenous

Mean absorbed dose: 3.62 Gy (IA) vs. 2.86 
Gy (IV); Dose per unit activity: 1.72 Gy/GBq 
(IA) vs. 0.86 Gy/GBq (IV); improved tumor-
specific targeting

Vonken et al., 
2022 [82]

Salvage 
meningioma 
patients

Treatment-refractory [177Lu]Lu-HA-DOTATATE Intra-arterial 100% technical success; increased tracer 
accumulation without procedure-related 
complications

Kertels et al., 
2021 [83]

11 Neurofibromatosis type 2 
with multifocal meningiomas

[177Lu]Lu-DOTATATE Standard 6 patients (55%) achieved disease stabili-
zation; demonstrated therapeutic activity 
in difficult-to-treat NF2 population

Parghane et 
al., 2019 [84]

Cohort with 
incidental 
findings

Neuroendocrine tumor 
patients with incidentally 
detected meningiomas

[177Lu]Lu-DOTATATE Standard Mean PFS: 26.25 months in treated cases; 
demonstrated proof-of-concept for dual-
targeting approach

Minutoli et al., 
2014 [85]

8 Unresectable meningiomas [111In]In-pentetreotide Standard Early proof-of-concept: 2 partial responses, 
5 stable disease; demonstrated feasibility 
of SSTR-targeted therapy

Figure 4. [68Ga]Ga-DOTATATE PET/CT and treatment response in a patient with menin-
gioma. A. [68Ga]Ga-DOTATATE PET/CT demonstrates tracer uptake in the primary thy-
mic neuroendocrine tumor and abnormal focal uptake at the right retrobulbar region 
adjacent to the optic nerve (red arrows), subsequently confirmed as a meningioma 
using MRI. B. Post-therapy [177Lu]Lu-DOTATATE scan following four treatment cycles 
shows radiotracer accumulation within the meningioma (red arrow). At 26-month 
follow-up, the patient exhibited complete resolution of neurological symptoms with 
durable disease control, highlighting the potential of peptide receptor radionuclide 
therapy (PRRT) in meningioma management. Reproduced from Parghane RV et al. 
World J Nucl Med. 2019 Apr-Jun;18(2):160-170 with permission [84].

matosis type 2 (NF2) and multifocal meningiomas, PRRT 
demonstrated therapeutic activity, with six patients 
achieving disease stabilization [83]. PRRT was applied in 
patients with neuroendocrine tumors, who also had inci-

dentally detected meningiomas, observ-
ing a mean progression-free survival of 
26.25 months in treated cases [84]. 
Interestingly, there was evidence of early 
proof-of-concept using [111In]In-pente- 
treotide therapy in eight patients with 
unresectable meningiomas. Treatment 
with [111In]In-pentetreotide led to partial 
responses in two patients and disease 
stabilization in five others [85]. Figure 4 
below presents an example of meningio-
ma imaging using [68Ga]Ga-DOTATATE 
PET/CT and [177Lu]Lu-DOTATATE, high-
lighting diagnostic utility SSTR2-directed 
imaging.

Data reported supports using PRRT as  
an effective treatment to manage pro-
gressive, treatment-refractory meningio-
mas, particularly in cases classified as 
WHO Grades I and II. When optimizing 
patient recruitment future prospective 
studies exploring this area should incor-
porate quantitative evaluation of SSTR 
expression using functional imaging. 
Early integration of PRRT in clinical man-
agement may lead to better clinical out-
comes, and concurrent treatment with 
EBRM has shown potential value in se- 
lect cases.

Artificial intelligence, ra-
diomics, and machine learn-
ing in SSTR PET

The application of artificial intelligence in SSTR PET imag-
ing addresses specific technical challenges in meningio-
ma management while harnessing the unique properties 
of somatostatin receptor targeting.
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analyze texture patterns may help identify heterogeneity 
signatures associated with long-term benefit as seen in 
studies like that of Marincek et al. where mean overall 
survival in meningioma reached 8.6 years in 34 patients 
[75].

Recent studies have started to link molecular tumor pro-
files with noninvasive imaging biomarkers. Radiomic mo- 
dels using diffusion-weighted MRI can predict [68Ga]
Ga-DOTATOC PET uptake values (correlation coefficient 
0.42, P<0.05), with SUVmax showing significant associa-
tions with specific SSTR subtypes 2A, 2B, and 5 [89].

Radiomic approaches show promise for risk stratification. 
MRI-based radiomic models combined with clinicopatho-
logic variables outperform clinical variables alone for pre-
dicting Grade II meningioma recurrence (AUC 0.78 vs. 
0.67), with high-risk patients demonstrating improved 
five-year progression-free survival when treated with adju-
vant radiotherapy [90]. However, several current models 
remain limited by single-center designs and lack of key 
histopathologic markers like MIB-1 and mitotic index, 
highlighting the need for multicenter validation and stan-
dardized molecular profiling [90, 91].

Current assessment of PRRT response primarily relies  
on anatomical imaging and subjective interpretation of 
changes in SSTR uptake. Kurz et al. established, in their 
cohort of 14 patient diagnosed with progressive menin-
gioma, that a >25% reduction in [68Ga]Ga-DOTATATE 
uptake correlated with adequate therapeutic response 
[73]. However, this binary threshold may overlook subtle 
response patterns. Machine learning algorithms offer the 
ability to detect complex changes in uptake distribution, 
intensity, and spatial configurations, potentially identify-
ing treatment effects earlier than conventional criteria. 
The delayed antitumor activity of PRRT, which typically 
becomes evident at six months as noted by Graillon et al. 
creates a window where predictive imaging biomarkers 
can guide clinically adaptive treatment strategies [78]. 
Automated analysis of serial SSTR PET scans may iden- 
tify specific patterns of response or treatment-resistance 
patterns that precede clear changes in anatomy, enabling 
timely intervention in complex meningioma cases.

Collectively, these investigations highlight the potential of 
AI and radiomics to transform SSTR PET from mainly a 
visual modality into a quantitative and predictive tool that 
can be used to manage for meningiomas. Deep learning 
models have shown promise in reducing interobserver 
variability and delivering reliable volumetric assessments, 
while threshold-based methods take advantage of the 
intrinsically high tumor-to-background contrast of SSTR 
imaging. Aside from image segmentation, radiomic and 
machine learning approaches are starting to integrate 
uptake metrics, spatial heterogeneity, and clinical vari-
ables to improve risk stratification and predict therapeu-
tic response for patients. Importantly, preliminary studies 
that have linked imaging-derived features with histopath-

Manual delineation of meningiomas on SSTR PET is sub-
ject to significant interobserver variability, especially in 
cases involving complex skull-based tumors where ana-
tomical boundaries cannot be clearly defined. Deep le- 
arning models have improved measures of consistency in 
segmentation. SegResNet-based modelling in a cohort of 
326 patients with meningiomas have demonstrated high 
segmentation accuracy, achieving a mean Dice coeffi-
cient of 0.881 (95% CI: 0.851-0.981). Additionally, ra- 
diomic features derived from manual and automated con-
tours had strong agreement with an intraclass correlation 
(ICC) reaching 0.804. Semi-automated, threshold-based 
approaches, tailored to SSTR PET leverage its inherently 
high tumor-to-background contrast. A study implemented 
such methods in a cohort of 16 patients with meningio-
mas and identified SUVmax 14.0% to be the optimal thresh-
old, achieving a mean Dice coefficients of 0.50 ± 0.19 
compared to expert consensus, representing a practical 
approach for clinical implementation given SSTR PET’s 
superior contrast compared to conventional imaging 
[86-88].

Beyond segmentation, the grade-dependent response 
patterns seen with PRRT, highlighted by six-month pro-
gression free survival rates of 94% Grade I, 48% for Gra- 
de II, and 0% for Grade III, provide a compelling basis to 
develop predictive clinical algorithms. Machine learning 
models have the potential to integrate pre-treatment 
SUVmax, SUVmean, and volumetric SSTR uptake parameters 
with clinical variables to refine patient selection. In a 
lesion-based analysis of 16 patients diagnosed with tre- 
atment-refractory meningiomas, elevated values of pre-
therapeutic SUVmax and SUVmean on [68Ga]Ga-DOTATOC PET 
imaging correlated with absence of disease progression 
at six months, whereas lower [68Ga]Ga-DOTATOC uptake 
was associated with early progression [71]. However, cur-
rent analyses are limited to simple univariate correlations. 
Multi-parametric models that incorporate spatial uptake 
heterogeneity, kinetic parameters, and tumor volume may 
enhance predictive accuracy in identifying cases of Grade 
II meningiomas that are likely to demonstrate the pro-
longed responses typically seen in Grade I tumors. By 
moving towards quantitative evaluation, these data-driv-
en approaches may allow for more accurate selection of 
patients who are likely to respond favorably to PRRT. 

Radiomic analysis of SSTR PET allows quantitative as- 
sessment of tumor heterogeneity to identify patterns that 
correlate with treatment resistance. Treatment failure 
often results from resistant cellular subpopulations. 
Automated evaluation of uptake variability within lesions 
may identify tumors at higher risk for early progression 
despite high overall SSTR expression. Hasenauer et al. 
reported that, in a cohort of 32 patients with relapsing 
meningioma, increased SSTR-positive tumor volume on 
follow-up PET was associated with shorter progression-
free survival, suggesting that variability in SSTR expres-
sion may hold prognostic information in predicting dis-
ease course [74]. Algorithms designed to systematically 
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Actinium-225 (225Ac), Terbium-149 (149Tb), and Lead-212 
(212Pb) that have been investigated in other tumor types, 
but not in meningiomas [94]. Recently, there has been 
evidence from the phase II LUMEN trial suggesting that 
quantitative dosimetry and volumetric somatostatin 
receptor PET imaging may have a role in helping to predict 
outcomes of PRRT in 37 patients with gastroenteropan-
creatic neuroendocrine tumors. Notably, it was reported 
that achieving a minimum absorbed dose of 35 Gy in the 
first cycle and a reduction of more than 10% in soma-
tostatin receptor tumor volume after the first cycle were 
both strongly associated with longer progression free sur-
vival. The major findings from the LUMEN trial suggest 
that personalized, dosimetry-based therapies, in conjunc-
tion with, early PET based response approaches could 
help optimize treatment strategies for patients with 
meningiomas undergoing PRRT [95]. The promising pha- 
se II results from this study are foundational for novel 
clinical trials that focus on [177Lu]Lu-DOTATATE used to 
treat meningioma, such as the currently on-going LUMEN-
1 study (NCT06326190) [96].

Future prospective, multicenter trials should be designed 
with several key features to maximize clinical impact. 
First, standardized imaging protocols across centers are 
essential to ensure reproducibility of SSTR PET metrics 
and facilitate pooled analyses. Second, integrating mo- 
lecular profiling and histopathologic subtyping will help 
enable correlative studies linking imaging phenotypes 
with tumor biology. Third, AI-driven algorithms should be 
prospectively validated as part of clinical trial endpoints, 
both for automated lesion segmentation and for when 
models are used to predict responses to treatment. 
Finally, study designs should include predefined thera-
peutic sequencing arms, such as peptide receptor radio-
nuclide therapy versus external beam radiation, to better 
clarify the role of SSTR-targeted approaches in relation to 
current treatment standards. Collectively, these features 
would provide high-quality evidence to inform standard-
ized clinical practice.

Conclusion

SSTR-targeted PRRT is an effective treatment option for 
patients with progressive, treatment-refractory meningio-
mas, with efficacy directly related to WHO tumor grade 
and SSTR expression levels. Grade I and II meningiomas 
respond favorably to PRRT, while Grade III tumors show 
limited benefit, making patient selection using quantita-
tive SSTR PET imaging parameters essential, particularly 
SUVmax and SUVmean values which correlate with progres-
sion-free survival. Integrating of PRRT earlier into treat-
ment paradigms, rather than reserving PRRT solely for 
salvage therapy, optimizes outcomes. Using combination 
approaches with external beam radiation therapy enhan- 
ce efficacy without increased toxicity and adverse side 
effects. Incorporating artificial intelligence and radiomics 
with SSTR PET imaging offers potential improvements in 
patient stratification and treatment monitoring, though 

ologic markers suggest that multiparametric models 
could refine patient selection for PRRT, particularly in 
Grade II meningiomas where treatment outcomes are 
variable and not as clear.

Existing AI applications in SSTR PET face several chal-
lenges. Most validation studies are limited by small sam-
ple sizes, which is an inherent challenge given the rarity of 
PRRT-treated meningioma cohorts, as these cohorts typi-
cally include fewer than 50 patients. The heterogeneity in 
SSTR tracers, imaging protocols, and treatment regimens 
across institutions also limits generalizability of these 
predictive models. Furthermore, the relationship between 
SSTR PET findings and underlying molecular characteris-
tics remains poorly understood. Unlike other brain tumors, 
where AI has successfully linked imaging features to 
genetic profiles, the molecular drivers of SSTR expression 
patterns in meningiomas are still not well characterized. 
This lack of molecular insight limits the development of 
truly personalized, precision-medicine approaches.

Aside from biological constraints, several practical barri-
ers curb broad clinical adoption of AI and machine learn-
ing in SSTR PET. Data standardization is critical, since 
there is variability in scanners, reconstruction methods, 
and radiotracers which all limit generalizability of compu-
tational models. Interpretation of AI models also remains 
a significant challenge as deep learning models often 
have the “black box” issue in which there is a lack of 
transparent clinical rationale and input [92]. Further- 
more, computational demands for model training further 
restricts widespread use of AI and machine learning, as 
advanced infrastructure may not be routinely available in 
many centers due to financial constraints. Adopting con-
sistent imaging protocols, interpretable algorithms, and 
scalable platforms are essential to routinely integrate AI 
tools in meningioma care.

Limitations and future directions

The integration of AI, radiomics, and deep learning mod-
els with SSTR PET imaging offers promising avenues for 
precision medicine approaches in meningioma mana- 
gement. However, clinical implementation remains con-
strained by small cohort sizes, institutional variability in 
imaging protocols, and limited molecular characterization 
of SSTR expression patterns. There were limitations in 
determining recurrence probabilities, and the benefit of 
adjuvant radiotherapy was only evaluated in the test set 
due to oversampling in the training set. which limited the 
study’s statistical power.

Researchers have aimed to enhance PRRT outcomes, 
which has led to the development of targeted alpha thera-
pies (TAT). These new radiopharmaceuticals emit high-
energy but short-range alpha particles, inducing cell 
death by double-stranded DNA breaks, thereby minimiz-
ing systemic side effects [93]. There have been several 
therapeutic radionuclides, such as Bismuth-213 (213Bi), 
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