
 

 

Introduction 
 
Rheumatoid arthritis (RA) is a chronic, systemic 
inflammatory disease of unknown etiology that 
affects 0.5-1.0% of the general population [1]. 
Although heterogeneous, RA is primarily charac-
terized by symmetric, erosive synovitis, which, if 
uncontrolled, can lead to joint and cartilage 
damage, multiple co-morbidities, significant 
disability, and reduction in quality of life, Figure 
1 [2, 3]. That being said, recent advances in 
therapeutic interventions have greatly improved 
the outlook of this disease. In particular, the 
introduction and widespread adoption of bio-
logic agents, which target specific molecules 
critical for the sustenance of RA, has revolution-
ized the clinical management of patients [4-6]. 
Several studies have demonstrated that biologic 
agents in combination with conventional dis-
ease-modifying antirheumatic drugs (DMARDs), 
such as methotrexate (MTX), significantly re-
duce clinical symptoms, slow or arrest erosive 
changes, and allow for disease remission [7-9].  
 
Optimal patient outcomes greatly depend on 
aggressive and efficacious treatment that is 

initiated early in the disease course [10]. This 
not only requires timely diagnoses, but also ob-
jective measures for monitoring disease activity 
and therapeutic response. Currently, rheuma-
tologists primarily rely on clinical examination, 
laboratory parameters, and conventional radiog-
raphy (CR) for patient evaluation. While this ap-
proach is a mainstay of rheumatology, the utility 
of such testing is limited in many respects. Clini-
cal measures of pain and swelling are subjec-
tive and have been shown to have moderate 
sensitivity and specificity. Similarly, laboratory 
parameters, such as erythrocyte sedimentation 
rate (ESR) and C-reactive protein (CRP) serum 
concentrations, are unreliable and highly unspe-
cific. While CR clearly delineates bone erosions 
and joint space narrowing, it does not provide 
any information about disease activity or non-
osseous components of RA, and it has low sen-
sitivity in early disease. 
 
In light of these shortcomings, advanced imag-
ing strategies are assuming an increasingly 
prominent role in the investigation and routine 
assessment of RA patients. Central to this para-
digm shift in disease management has been the 
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rapid emergence of new imaging technologies 
(for a review see [11]) and the field of molecular 
imaging, which utilizes target-specific probes to 
non-invasively visualize molecular, cellular, and 
physiological perturbations in response to the 
underlying pathology [12]. As more is learned 
about the pathophysiological changes indicative 
of RA, imaging agents that specifically react with 
discrete aspects of inflammatory and destruc-
tive pathways are being constructed primarily 
for nuclear medicine imaging modalities, such 
as positron emission tomography (PET), single 
photon emission computed tomography 
(SPECT), and scintigraphy. These targeted 
probes relay information about molecules driv-
ing RA and thus enable a more fundamental 
understanding of critical pathophysiological 
processes, the development of new molecular 
therapies, an earlier and more reliable progno-
sis, assessment of disease activity and severity, 
and treatment response [12]. Additionally, as 
evidence suggests there is a subclinical phase 
of RA, in which cellular and molecular changes 
precede any anatomic, physiological, or meta-
bolic alterations, molecular imaging may allow 
for diagnoses early in the disease course prior 
to the appearance of irreversible erosions [12-
14]. While mostly experimental, molecular imag-
ing has recently been applied to magnetic reso-

nance imaging (MRI) as well. Through the ad-
vent of new sequences and targeted contrast 
agents, MRI not only provides high-resolution 
images with good soft tissue contrast at the 
anatomical level, but is now also capable of 
offering more ‘physiological’ data about disease 
pathways. This paper will explore the advances 
in both nuclear medicine and MRI strategies for 
imaging RA with a particular emphasis on mo-
lecular imaging. 
 
RA pathophysiology: targets for treatment and 
molecular imaging 
 
While the etiology of this disease is currently 
unknown, a number of pathophysiological proc-
esses and molecules specific to RA have been 
identified and well characterized. Genetically 
pre-disposed individuals are believed to develop 
RA through a number of inflammatory pathways 
triggered in response to endogenous and/or 
exogenous antigens that resemble self-
determinants. Critical to the initiation of the 
disease, HLA-DR-positive antigen-presenting 
cells (APCs) are thought to present these anti-
gens to auto-reactive CD4+ T Helper (TH) cells in 
secondary lymphoid organs. A linkage of RA to 
“the shared epitope” of the HLA-DRB1*04 clus-
ter has been determined and is in support of 

Figure 1. A joint (the place where two bones meet) is surrounded by a capsule that protects and supports it. The joint 
capsule is lined with a type of tissue called synovium, which produces synovial fluid that lubricates and nourishes 
joint tissues. In rheumatoid arthritis, the synovium becomes inflamed, causing warmth, redness, swelling, and pain. 
As the disease progresses, the inflamed synovium invades and damages the cartilage and bone of the joint. Sur-
rounding muscles, ligaments, and tendons become weakened. Rheumatoid arthritis also can cause more generalized 
bone loss that may lead to osteoporosis (fragile bones that are prone to fracture) (Image courtesy of the National 
Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) (http://www.niams.nih.gov/Health_Info/
Rheumatic_Disease/default.asp - last accessed February 2012)). 
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this hypothesis [15]. CD4+ TH cells are subse-
quently stimulated through interactions be-
tween their T-cell receptor (TCR)-CD3 complex 
and CD4 molecule and the type II major histo-
compatibility complex (MHC-II) with the anti-
genic determinant on the surface of the APCs. T 
cell activation additionally needs a co-
stimulatory signal from the recognition of CD80 
or CD86 by its CD28 cell-surface molecule [16, 
17].  
 
Activated TH cells proliferate and infiltrate into 
the synovial tissue, where they release inter-
feron-γ (IFN-γ), interleukin-2 (IL-2), and inter-
leukin-4 (IL-4) [18]. These pro-inflammatory cy-
tokines not only activate other TH cells, but also 
macrophages, fibroblasts, osteoclasts, and 
chondrocytes [19, 20]. Similar to TH cells, 
macrophages, when activated, increasingly mi-
grate into synovial tissue. This is consistent with 
the finding that macrophages and TH cells make 
up the majority of inflammatory cell infiltrates in 
early and late RA [13, 14]. Stimulated macro-
phages and fibroblasts, in turn, produce other 
pro-inflammatory cytokines, including tumor 
necrosis factor-α (TNF-α), interleukin-1 (IL-1), 
and interleukin-6 (IL-6), as well as chemokines, 
prostaglandins, proteases, and growth factors 
[21-23]. From the multitude of released im-
mune mediators, B lymphocytes are stimulated 
to produce autoantibodies such as rheumatoid 
factor (RF), which is present in >80% of RA pa-
tients. Neutrophils are recruited as well to the 
synovial joints, but they are more prevalent in 
the synovial fluid than lining.  
 
Activated endothelial vasculature helps coordi-
nate and perpetuate this mass infiltration of 
mononuclear cells into inflamed synovium. In 
the presence of IL-1β and TNF-α, endothelial 
cells in postcapillary venules upregulate cell 
adhesion molecules (CAMs), which assist in the 
rolling, binding, and transendothelial migration 
of leukocytes [24]. Increased microvascular 
permeability and hyperemia, non-specific 
mechanisms of the acute inflammatory re-
sponse, may add to the accumulation of leuko-
cytes in inflamed synovium; moreover, these 
processes, in addition to locally expanded diffu-
sion space, account for the enhanced extrava-
sation of macromolecules and small proteins 
into the interstitial space during the acute 
phase of the disease [25]. As RA becomes 
chronic, synovial proliferation, supported by 
neovascularization, leads to pannus formation. 

This hypertrophic and hyperplastic synovial tis-
sue is highly invasive, particularly at the inter-
face between the synovium and juxta-articular 
bone and cartilage, and is responsible for mar-
ginal erosions and joint space narrowing. The 
destructive nature of this tissue is likely the re-
sult of fibroblast-like synoviocyte and chondro-
cyte production and release of metallopro-
teinases, which degrade proteoglycans and col-
lagen [26-28]. Bone resorption due to activation 
of osteoclasts, however, appears to be the main 
mechanism through which bone erosions occur 
[27]. Over time, these destructive forces cou-
pled with mechanical stress cause variable 
changes in peri-articular bone and soft tissue 
structures. These changes manifest clinically as 
chronic joint swelling, tenderness, pain, and 
eventual destruction. Overall, RA can be viewed 
as a series of coordinated events in the syno-
vial, vascular, and bone compartments. The 
mechanisms that both initiate and perpetuate 
this disease within and between these compart-
ments all represent potential targets for molecu-
lar imaging and therapeutic intervention and will 
be discussed in detail below. 
 
Nuclear medicine imaging strategies 
 
Role of nuclear medicine in the management of 
RA 
 
While more established imaging techniques 
focus on morphological changes, nuclear medi-
cine provides functional data about disease 
activity, which is critical for therapy decision-
making and patient follow-up. In particular, by 
measuring long-term alterations in imaging pa-
rameters that serve as surrogates for synovitis, 
nuclear imaging allows for the objective moni-
toring of treatment response in RA patients. As 
current drug regimens are relatively expensive, 
determining patient response early in the treat-
ment course is a cost-effective solution. Addi-
tionally, it is important to determine which pa-
tients are likely to develop high-risk lesions or a 
more severe disease course, as it may call for 
more aggressive treatment or more frequent 
monitoring. As nuclear probes visualize disease 
processes that are active even prior to irreversi-
ble anatomic changes, imaging with these 
probes may allow for the early prediction of dis-
ease outcomes.  
 
Furthermore, nuclear imaging has the potential 
to accurately select patients that are likely to 
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respond to a particular treatment based on the 
articular presence of the drug target. Due to the 
high intra- and inter-individual variation in these 
target molecules in the joints of RA patients, a 
pre-treatment scan with a radiotracer that local-
izes the therapeutic target in inflamed tissues 
may be useful in predicting treatment efficacy 
and planning appropriate therapies. This ap-
proach could also provide an explanation for the 
failure of any targeted therapy or a justification 
for the use of a specific treatment. As a logical 
extension, nuclear imaging can allow for a more 
personalized therapeutic program tailored to 
the specific perturbations in inflammatory and 
destructive pathways that are active in the 
joints of each patient. Individualized patient 
management is particularly important, consider-
ing RA has heterogeneous clinical manifesta-
tions and is often thought of as a collection of 
disorders. While still mostly experimental, the 
clinical role of nuclear medicine in imaging RA is 
greatly expanding, particularly as this field takes 
advantage of new imaging technologies for PET 
and SPECT and targeted molecular probes. We 
are gradually seeing this shift to molecular im-
aging in nuclear medicine, but note that non-
specific agents are still widely available for im-
aging RA as well. 
 
Positron emission tomography (PET) imaging 
 
[18F]FDG 
 
2-[18F]Fluoro-2-deoxy-D-glucose ([18F]FDG) is a 
well-characterized radiolabeled glucose analog 
that when used in conjunction with PET reflects 
metabolic changes in tissues. Increased uptake 
of [18F]FDG is mediated through glucose trans-
porter type 1 (GLUT1) and glucose transporter 
type 3 (GLUT3) cell-surface proteins, which are 
overexpressed in hypermetabolic cells [29]. 
Upon entering the cell, [18F]FDG is rapidly phos-
phorylated to [18F]FDG-6-phosphate by the pri-
mary glycolytic enzyme, hexokinase, whose 
upregulation additionally accounts for the en-
hanced [18F]FDG uptake observed in rapidly 
proliferating cells [29]. Unlike phosphorylated 
glucose, [18F]FDG-6-phosphate cannot undergo 
further metabolism, effectively trapping this 
molecule intracellularly. Due to the inclination 
toward anaerobic glycolysis and consequently 
the elevated metabolic demand for glucose in 
cancerous cells, [18F]FDG PET has been widely 
employed in the field of oncology for tumor stag-
ing, diagnosis, and therapeutic evaluation. [18F]

FDG accumulation, however, is not specific for 
neoplastic tissue. For example, macrophages, 
neutrophils, and young granulation tissue in-
creasingly take up glucose, and thus, [18F]FDG, 
as a consequence of activation and respiratory 
(oxidative) burst [30-32]. Due to the involve-
ment of these cells in the maintenance of in-
flammatory processes, it was hypothesized that 
[18F]FDG PET may serve as a useful tool for the 
study of RA. [18F]FDG PET has since been em-
ployed in a number of pre-clinical and clinical 
RA studies (reviewed in [33]). 
 
Recently, Matsui and co-workers provided the 
proof-of-mechanism for this imaging approach 
in a murine collagen-induced arthritis (CIA) 
model and in vitro [3H]FDG uptake study [34]. 
[18F]FDG PET was shown to accurately delineate 
swollen joints in vivo. As confirmed histologi-
cally, moderate [18F]FDG uptake was noted in 
regions of interstitial inflammatory cell recruit-
ment, synovial cell hyperplasia, and edema 
early in the disease course. In comparison, later
-developing sites of pannus formation and bone 
destruction demonstrated high levels of [18F]
FDG accumulation, highlighting the capacity of 
this imaging strategy to reflect the progression 
of arthritis. Within these inflammatory regions, 
proliferating fibroblasts were determined to ex-
hibit the highest levels of [3H]FDG uptake, fol-
lowed by neutrophils. Furthermore, while resting 
macrophages were not shown to significantly 
contribute to [3H]FDG accumulation, hypoxic 
conditions and the presence of pro-
inflammatory cytokines such as TNF-α (a micro-
environment common in rheumatoid joints) 
greatly enhanced [3H]FDG uptake in these cells 
as well as fibroblasts, but not neutrophils. Con-
trastingly, [3H]FDG uptake was considerably 
lower for T lymphocytes, indicating that these 
inflammatory cells only play a negligible role in 
[18F]FDG accumulation in vivo. Altogether, these 
findings suggest that proliferating fibroblasts 
and macrophages, particularly when in a hy-
poxic, pro-inflammatory cytokine-rich microenvi-
ronment, are the primary contributors to re-
gional [18F]FDG uptake in vivo in pannus and 
interstitial inflammatory cell infiltrates. This 
study supports the notion set forth by a number 
of clinical studies (as discussed below) that 
[18F]FDG PET accurately reflects the disease 
activity of RA. 
 
Palmer and colleagues were the first to evaluate 
the validity of quantifying joint inflammation and 
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changes in metabolic activity in response to 
treatment in RA patients using [18F]FDG PET 
[35]. In this pivotal work, Gadolinium-enhanced 
MRI and [18F]FDG PET images of wrist lesions 
were acquired for 12 patients with inflammatory 
arthritis (6 RA patients and 3 patients with pso-
riatic arthritis) undergoing anti-inflammatory 
therapy. Clinical examination and imaging stud-
ies were conducted at 3 intervals: baseline, af-
ter 2 weeks of treatment with prednisone or 
NSAIDs, and after 12-14 weeks of low-dose 
methotrexate (MTX) treatment. For each ses-
sion, volume of enhancing pannus (VEP) was 
calculated from axial, fat-suppressed MR im-
ages for correlation with [18F]FDG PET parame-
ters (total uptake value (TUV) and regional up-
take value (RUV)) and clinical findings. Visual 
comparison of images revealed that regions of 
greatest PET signal corresponded to areas of 
enhancing pannus on MRI [35]. While de-
creases in pannus volume and [18F]FDG uptake 
in response to treatment paralleled clinical im-
provement (in terms of pain, tenderness, and 
swelling) of the imaged wrist, none of the [18F]
FDG PET or MRI parameters was associated 
with overall treatment outcome. The authors 
suggested that this lack of correlation with treat-
ment outcome could be the result of a small 
patient population or the strict cut-offs imposed 
by the Paulus index as to what qualifies as a 
treatment response (need 20% improvement in 
each of 4 of 6 possible measures). Palmer and 
co-workers concluded that Gadolinium-
enhanced MRI and [18F]FDG PET allow for the 
quantification of volumetric and metabolic 
changes in synovitis and the comparison of effi-
cacies of anti-inflammatory treatments [36].  
 
Expanding on this previous study, Beckers and 
co-workers investigated the ability of [18F]FDG 
PET to detect synovitis and quantify its meta-
bolic activity in 21 RA patients, as compared to 
standard measures of disease activity [37]. In a 
joint-by-joint analysis, PET findings were found 
to significantly correlate with those of regional 
clinical (swelling and tenderness) and sono-
graphic assessments. Furthermore, both the 
degree of PET positivity (visual analysis) and 
mean standardized uptake values (SUVs) were 
found to increase with synovial thickness in all 
joints (except metatarsophalangeal-1 joints), as 
measured by ultrasound (US), and the number 
of clinical or US parameters present simultane-
ously. On an individual patient level, strong cor-
relations were additionally cited for PET-derived 

parameters (number of PET-positive joints and 
cumulative SUV) and disease duration as well 
as global measures of disease activity, including 
clinical joint counts for swelling and tenderness, 
erythrocyte sedimentation rate (ESR) and C-
reactive protein (CRP) serum levels, the patient 
and physician global assessments, the disease 
activity score and the simplified disease activity 
index, and US-derived. Based upon these find-
ings, the authors suggest that [18F]FDG PET of-
fers unique information concerning the meta-
bolic activity of synovitis specific to each pa-
tient. 
 
According to Brenner et al., these findings, while 
promising, do not necessarily procure a role for 
[18F]FDG PET in the routine clinical assessment 
of RA patients [38]. As a relatively costly tech-
nique, [18F]FDG PET must provide clinically rele-
vant data that cannot be obtained from stan-
dard clinical and laboratory measures of dis-
ease activity to have a broader application in 
the study of RA. Consequently, evidencing the 
capacity of [18F]FDG PET to monitor disease 
activity and response to treatment is of particu-
lar importance. In another study by Beckers et 
al., 16 RA patients underwent clinical and bio-
logical evaluation, dynamic Gadolinium-
enhanced MRI, US, and [18F]FDG PET imaging of 
knee joints at baseline and after 4 weeks of anti
-TNF-α treatment [39]. Consistent with previous 
studies, SUVs were significantly correlated with 
all MRI-derived parameters, synovial thickness, 
and serum levels of matrix metalloproteinase 
(MMP) 3 and CRP [35, 37]. PET-positive knee 
joints were determined to have higher SUVs, 
MRI parameters, and greater synovial thickness 
as measured by US than PET-negative knee 
joints. 
 
While a number of studies have shown that [18F]
FDG PET is capable of detecting treatment-
related changes in disease activity, very few 
have investigated whether PET findings can pre-
dict clinical outcomes early in the course of 
treatment [36, 39, 40]. In a small explorative 
study with 16 RA patients, Elzinga and col-
leagues demonstrated that early changes in 
regional [18F]FDG uptake in the joints of RA pa-
tients undergoing anti-TNF-α (infliximab) treat-
ment were representative of later changes in 
global disease activity, as assessed clinically 
[41]. While these findings support the notion 
that [18F]FDG PET allows for the sensitive detec-
tion of early changes in disease activity that are 
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highly predictive of subsequent responses to 
treatment, larger studies are needed to confirm. 
 
Although these results are already promising, 
new advances in PET technology, including mul-
timodal image co-registration, may serve to en-
hance the utility of this imaging technique in the 
study of RA. In particular, PET/CT hybrid acquisi-
tion offers higher spatial resolution and simulta-
neous integration of morphologic and functional 
data and thus has rapidly become standard 
clinic protocol. Despite these advantages, only a 
limited number of studies have evaluated this 
technology in RA patients. For example, in a 
case study by Vogel et al., [18F]FDG PET/CT was 
reported to not only have the capability of calcu-
lating the degree of inflammation in the tarsus 
of an RA patient, but also precisely localizing the 
disease activity to the particular joints causing 
the complaints [42]. Contrastingly, neither 
physical examination nor conventional radiogra-
phy could offer this information. Due to the in-
volvement of multiple joints, as visualized by 
[18F]FDG PET/CT, a triple arthrodesis of the tar-
sus was performed, with successful pain reduc-
tion, demonstrating that this imaging technique 
provides clinically relevant information that can 
be utilized in patient management. Additional 
case studies have demonstrated that [18F]FDG 
PET/CT accurately detects extra-articular inflam-
matory sites such as subcutaneous nodules and 
hypermetabolic lymph nodes and synovitis of 
the atlanto-axial and knee joints [43-45]. Fur-
thermore, although not substantiated, it is plau-
sible that PET/CT allows for improved discrimi-
nation between juxta-articular disease and ar-
ticular processes. Goerres et al. did note that 
PET imaging alone was able to delineate inflam-
mation of the tendon sheaths and bursae [40], 
but mild cases may not be apparent due to the 
low spatial resolution of dedicated PET scan-
ners. Having an anatomic framework, as is pro-
vided with PET/CT, may help in the evaluation of 
these cases. 
 
Of particular interest, Kubota and colleagues 
reported that whole-body [18F]FDG PET/CT imag-
ing accurately and sensitively reflected the 
metabolic disease activity and joint anatomy in 
14 patients with active RA and 4 patients in 
remission [46, 47]. More specifically, [18F]FDG 
joint uptake, total joint score, global SUVmax, and 
the mean number of joints with at least a mod-
erate uptake of [18F]FDG were significantly 
higher for patients with active disease as com-
pared to those in remission. Additionally, pain-

ful/swollen joints had a higher [18F]FDG uptake 
score and SUVmax than did clinically uninvolved 
joints. A representative [18F]FDG PET/CT image 
of a patient with recurrent RA can be seen in 
Figure 2, showing increased radiotracer uptake 
in multiple large joints and clearly delineating 
inflammatory foci (Figure 2A). While the wrist, 
elbow, and knee joints could be easily inter-
preted as PET positive, more complicated large 
joints such as the hip and shoulder require PET 
images with anatomical correlation to CT find-
ings, as increased FDG uptake by enthe-
sopathies must be differentiated from synovitis 
arising from RA (Figures 2B and 2C). To com-
pare, a conventional bone scan only showed 
mild arthritic changes in the large joints of the 
same patient, suggesting that this modality is 
not as sensitive as [18F]FDG PET/CT (Figure 2D). 
 
CT correlation was also necessary for interpreta-
tion of findings in the atlanto-axial joint. As com-
pression of the spinal cord and brainstem are 
potentially serious complications of the involve-
ment of the atlanto-axial joint in RA patients, 
early detection of this high-risk lesion is clini-
cally important. In this study, 28% (5/18) of the 
RA patients exhibited increased [18F]FDG up-
take in the atlanto-axial joint, but most were 
asymptomatic. The authors speculated that 
these hypermetabolic lesions are most likely 
indicative of active subclinical synovitis. This 
finding is consistent with that of other studies, 
which have found that there is a high preva-
lence of asymptomatic cervical spine subluxa-
tion in this patient population [44, 48]. [18F]FDG 
PET/CT may thus allow for the early identifica-
tion of patients at risk for developing subluxa-
tion of the atlanto-axial joint. In addition, this 
imaging technique may have prognostic value 
for a more severe disease course in RA pa-
tients, as it has been reported that the presence 
of arthritis in large joints, particularly arthritis in 
the knee joint, is predictive of a destructive dis-
ease course [49]. Overall, whole-body [18F]FDG 
PET/CT has the advantage of allowing for the 
accurate assessment of the extent and severity 
of the disease even at subclinical levels. 
 
In addition to PET/CT, PET/MRI technology has 
also been studied in RA patients. As this tech-
nology has only recently been developed, the 
distribution of dedicated PET/MRI scanners is 
fairly limited. Co-registered PET/MRI hybrid ac-
quisition, however, is rapidly becoming an im-
portant nuclear medicine strategy. Chaudhari 
and colleagues showed that this technology 
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could be employed to monitor the early re-
sponse to anti-TNF-α therapy in the wrist joint of 
an RA patient [50]. This study, however, did not 
use a fully integrated PET/MRI system. Instead, 
the patient underwent extremity [18F]FDG PET/
CT imaging separately following MR image ac-
quisition; the CT image was used for post-
acquisition PET/MRI image co-registration. 
While this study demonstrates the capability of 
this technology, it does not showcase its com-
plete range of advantages. Since using separate 
PET/CT and MRI scanners does not allow for 
simultaneous acquisition of image data, there is 
room for spatial and temporal misalignment 
between PET and MRI images. In comparison, 
dedicated PET/MRI scanners greatly reduce 
these artifacts through simultaneous acquisi-
tion of PET and MRI data without sacrificing 
sensitivity or spatial resolution. While they did 
not specifically evaluate an RA patient, El-
Haddad and co-workers used a fully integrated 
PET/MRI scanner in a case study to accurately 
delineate a meniscal tear associated with syno-
vitis [51].  
 
To date, there has only been one study that has 
successfully performed a true hybrid PET/MRI 

examination of an RA patient. In a recent study 
by Miese et al., a patient with early RA under-
went simultaneous PET/MRI scanning of the 
hand using a prototype of an APD-based mag-
neto-insensitive Brain PET detector (Siemens 
Healthcare, Erlangen, Germany) operated within 
a standard 3T MR scanner (MAGNETOM Trio, 
Siemens) [52]. Increased [18F]FDG uptake was 
noted surrounding the metacarpophalangeal 
(MCP) II and III joints, which corresponded to 
sites of synovitis and tenovaginitis as identified 
on contrast-enhanced MRI (Figure 3). A maxi-
mum SUV of 3.1 was measured for the palmar 
portion of MCP II, which was shown to correlate 
with marked synovial thickening and contrast 
enhancement on MRI. No significant [18]FDG 
uptake was seen within the joint spaces or bony 
structures. Contrastingly, conventional radio-
graphic evaluation was determined to be nega-
tive. These results suggest that [18F]FDG PET/
MRI is a potentially useful tool in the early diag-
nosis of RA. 
 
[11C]Choline 
 
Choline is a water-soluble essential nutrient that 
functions as a neurotransmitter (upon acetyla-

Figure 2. A 74-year-old woman with 3.5-year history of RA who experienced a recurrence and was being considered 
for infliximab therapy. (A) Anterior and RAO MIP image obtained using FDG-PET/CT shows typical RA lesions in the 
large joints. (B and C) Axial PET/CT fusion image of the hip joint in the same patient. The large arrows indicate synovi-
tis in the acetabulum and femoral head. The small arrows indicate enthesopathies at the ischium and greater tro-
chanter (D) Bone scan of the same patient shows mild changes in the joints. (Reprinted from Kubota K, Ito K, 
Morooka M, Minamimoto R, Miyata Y, Yamashita H, Takahashi Y and Mimori A. FDG PET for rheumatoid arthritis: 
basic considerations and whole-body PET/CT. Ann NY Acad Sci 2011; 1228: 29-38; by permission of John Wiley and 
Sons). 
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tion to acetylcholine in cholinergic nerve end-
ings), a methyl group donor (through degrada-
tion to its primary metabolite, betaine), and a 
precursor to phospholipids (the main constitu-
ent of all eukaryotic cell membranes) [53]. Free 
choline is taken up by dividing cells and pre-
dominantly phosphorylated by choline kinase to 
phosphorylcholine, in the first step of the 
cytidine diphosphocholine (CDP) pathway [53]. 
This commits choline to the biosynthesis of 
phospholipids, particularly phosphatidylcholine 
(lecithin), and integration into eukaryotic cell 
membranes. Previous studies have determined 
that rapidly dividing cells, and their greater need 
for cell membrane components as compared to 
normal tissues, result in increased choline up-
take through energy-dependent choline specific 
transport mechanisms and simple diffusion sec-
ondary to hyperemia and hyperperfusion [54-
56]. Consequently, choline, when radiolabeled 
with carbon-11, can serve as an in vivo bio-
marker of cellular proliferation.  
 
[11C]Choline PET imaging has been shown to 
clearly delineate various brain tumors, lymph 
node metastases of esophageal cancer, and 
lung carcinoma [57-62]. Due to the minimal 
renal excretion of [11C]choline, the primary indi-

cation for this imaging procedure is the detec-
tion and staging of prostate cancer and other 
cancers of the urogenital tract (bladder and 
uterine cancer) [63, 64]. Non-neoplastic appli-
cations are currently under investigation, as the 
rate of [11C]choline uptake in tissues solely cor-
relates with the level of cellular growth, irrespec-
tive of histologic grade [59]. Since arthritic pan-
nus and nearby vessels undergo similar prolif-
erative changes to those exhibited during malig-
nant transformation, it was hypothesized that 
[11C]choline PET could be utilized in the assess-
ment of RA and other arthritic diseases. 
 
Roivainen and co-workers evaluated the capac-
ity of [11C]choline PET to detect and quantify 
arthritic synovial proliferation by imaging the 
joints of 10 patients with synovitis and compar-
ing the results with [18F]FDG PET and Gadolin-
ium-DTPA (Gd-DTPA)-enhanced MRI findings 
[65]. In particular, maximum standardized up-
take values (SUVmax) and kinetic influx constants 
(Ki), as obtained from the graphic analysis de-
scribed by Patlak et al., were calculated for both 
PET radiotracers and compared to MRI parame-
ters (synovial volume and rate of enhancement) 
[66]. In all patients, the PET signal intensities 
for [11C]choline and[18F]FDG were significantly 

Figure 3. Hybrid 18F-FDG PET–MRI 
of the hand in early RA. a axial 
and coronal display of PET co-
registered with b axial and coronal 
T1-weighted MRI. c True hybrid 
18F-FDG PET–MRI of the hand. 
(Reprinted with kind permission 
from Springer Science+Business 
Media: Miese F, Scherer A, Osten-
dorf B, Heinzel A, Lanzman RS, 
Kropil P, Blondin D, Hautzel H, 
Wittsack HJ, Schneider M, Antoch 
G, Herzog H and Shah NJ. Hybrid 
18F-FDG PET-MRI of the hand in 
rheumatoid arthritis: initial re-
sults. Clin Rheumatol 2011; 30: 
1247-1250, Figure 1). 
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increased in diseased synovia, in contrast to 
clinically unaffected joints. Similarly, when visu-
ally compared to coronal Gd-DTPA-enhanced T1-
weighted MR images, regions of highest [18F]
FDG and [11C]choline signal on PET coincided 
well with contrast-enhanced hypertrophic syno-
vial tissue (pannus). From these findings, the 
authors suggested a possible role for [11C]
choline PET in the functional imaging of RA.  
 
A clear advantage of [11C]choline PET is the abil-
ity to quantitatively measure reproducible dis-
ease activity parameters through SUVmax and/or 
graphic analysis. Similar standardized uptake 
values of [11C]choline to those measured in 
Roivainen et al. [65] were obtained in a later 
study by the same group [67]. Moreover, due to 
the short half-life of carbon-11, [11C]choline de-
livers a relatively low radiation burden to the 
patient [68]. Finally, as [11C]choline can only be 
synthesized at facilities equipped with on-site 
cyclotrons, effectively limiting its broader distri-
bution and application, [18F]choline is currently 
under development. To date, however, there 
have not been any pre-clinical or clinical studies 
that have evaluated its efficacy in imaging RA or 
other arthritic diseases [69]. 
 
(R)-[11C]PK11195 
 
While both [18F]FDG and [11C]choline are sensi-
tive to changes in cellular proliferation, their 
uptake is not specific to inflammation; normal 
physiologic variants, malignancy, infection, and 
other benign pathological processes can result 
in hypermetabolic PET lesions. For this reason, 
there is an increasing need for PET radiotracers 
that allow for more specific visualization of 
rheumatoid synovial tissue through direct tar-
geting of underlying inflammatory pathways. 
Due to the cardinal role of macrophage infiltra-
tion in the propagation and extension of RA, 
radiotracers that target this process are of spe-
cial interest. (R)-[11C]PK11195 is a recently de-
veloped isoquinolone carboxamide PET radio-
tracer that targets cells of the monocyte-
macrophage lineage by selectively binding as an 
antagonist to the peripheral benzodiazepine 
receptor (PBR), or newly renamed translocator 
protein (TSPO) [70-73]. TSPO is an 18 kDa pro-
tein that is expressed on the outer mitochon-
drial membrane- and to a lesser extent nucleus 
and plasma membrane- of mononuclear phago-
cytes, other leukocyte subsets, peripheral or-
gans, and neuronal, hematopoietic, and lym-

phatic tissues [71, 73-76]. While TSPO was 
originally discovered as a second high-affinity 
binding site for benzodiazepines, particularly 
diazepam, it has since been determined that 
this transmembrane protein serves many func-
tions; more specifically, TSPO is thought to be a 
component of the trimeric mitochondrial perme-
ability transition pore (MPTP) and play a role in 
the regulation of steroidogenesis and apoptosis, 
heme biosynthesis, cell proliferation, and im-
mune regulation [73, 75-79]. 
 
Since activated macrophages and polymononu-
clear cells upregulate TSPO during inflamma-
tion, TSPO-targeting radiotracers can serve as 
surrogate markers for disease activity and 
macrophage recruitment to inflammatory foci. 
This imaging technique has been validated for 
the assessment of various inflammatory neuro-
logical disorders; in particular, (R)-[11C]
PK11195 PET imaging allows for the differentia-
tion of neuroinflammatory lesions from normal 
tissues by mapping out glial cell activation and 
recruitment [80-82]. van der Laken and co-
workers were the first to extend the application 
of (R)-[11C]PK11195 PET to the study of RA by 
comparing the imaging findings for 11 RA pa-
tients and 8 healthy controls to clinical data and 
immunohistochemical analysis of excised syno-
vial tissue samples [83]. (R)-[11C]PK11195 up-
take correlated well with clinical severity of 
synovitis. Severely inflamed joints exhibited the 
highest accumulation of (R)-[11C] followed by 
mild to moderately inflamed joints. Uptake val-
ues for these joints were, on average, signifi-
cantly higher than those for clinically unin-
flamed and control joints, which intimates that 
(R)-[11C]PK11195 imaging is sensitive in its de-
tection of both severe and moderate inflamma-
tion. The increased PET signal in inflamed joints 
was determined to be a consequence of specific 
PBR-mediated uptake of (R)-[11C]PK11195 by 
activated macrophages, as confirmed by immu-
nohistochemical staining of synovial tissues. 
Accordingly, severely inflamed joints demon-
strated the highest degree of macrophage re-
cruitment and PBR expression. In comparison, 
control knee joints of healthy volunteers dis-
played minimal PBR expression and macro-
phage infiltration, and, concomitantly, no signifi-
cant accumulation of radioactivity on PET.  
 
Of interest, though not confirmed in this study, 
van der Laken and colleagues conjectured that 
(R)-[11C]PK11195 PET imaging may detect sub-
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clinical synovitis [83]. In support of this hypothe-
sis, mean SUV ratios for clinically uninflamed 
joints in RA patients were noted to be approxi-
mately 50% higher (P<0.05) than those of con-
trol joints in healthy volunteers. These findings 
are consistent with those of previous studies 
that have established that macrophage infiltra-
tion into synovial joints is a common feature of 
asymptomatic synovitis in early RA [13, 14]. 
Furthermore, as the presence and number of 
macrophages in rheumatoid synovia correlate 
with the progression of radiographic joint ero-
sions, the application of (R)-[11C]PK11195 im-
aging to RA may prove to be relevant to patient 
management.  
 
Gent and co-workers recently confirmed that (R)
-[11C]PK11195 PET can observe subclinical 
synovitis in arthralgia patients [84]. In this pro-
spective pilot study, high resolution (R)-[11C]
PK11195 images of the metacarpophalangeal 
(MCP), proximal interphalangeal (PIP), and wrist 
joints of 29 seropositive arthralgia patients, 6 
healthy volunteers (negative controls), and 3 
patients with established RA (positive controls) 
were acquired and subsequently scored semi-
quantitatively for joint uptake minus back-
ground activity by 2 independent readers. Pa-
tients were followed prospectively for 24 
months to determine progression to RA. Four of 
29 arthralgia patients (i.e. 4 of the 9 arthralgia 
patients that progressed to RA) were deter-
mined to have PET positive scans with moder-
ate to high radiotracer uptake in the joints of 3 
of these patients. To compare, healthy volun-
teers did not exhibit any PET positive joints 
while significant (R)-[11C]PK11195 accumula-
tion was noted in all clinically involved joints of 
RA patients. During the follow-up period, all four 
subjects with PET positive scans showed pro-
gression and developed clinical arthritis in at 
least 1 MCP, PIP, and/or wrist joint(s). Unex-
pectedly, five patients with negative scans de-
veloped clinical synovitis within 24 months. In-
congruent PET and clinical findings in 3 of these 
patients were easily explained by the fact that 
the newly diagnosed arthritic lesions were not 
present in the hands and wrists. Since the re-
searchers used a small animal and human 
brain 3D PET scanner for image acquisition, the 
field of view (FOV) was not large enough to allow 
visualization of joints beyond the hands and 
wrists. The remaining 2 arthralgia patients that 
developed arthritis, despite having negative PET 
scans, only showed subtle signs of disease ac-

tivity throughout the follow-up period, and 1 of 
these patients even entered remission sponta-
neously at 10 months. 
 
There are also drawbacks to using (R)-[11C]
PK11195 however. Although the absolute stan-
dardized uptake values of (R)-[11C]PK11195 in 
arthritic joints are comparable to those reported 
for [18F]FDG, high non-specific binding of this 
radiotracer in hand muscles, soft tissues sur-
rounding the nails, and bone marrow greatly 
reduces signal-to-noise ratios [83, 84]. High 
physiologic uptake has also been noted in the 
kidneys, lungs, liver, and heart [85-87]. This, in 
turn, could limit the detection of mild arthritic 
lesions. Although not evaluated in the trial of 
Gent et al. [84], it is important to note that co-
registration of PET and CT scan images, which is 
the current standard clinical protocol, may allow 
for the accurate differentiation between articu-
lar and peri-articular uptake of (R)-[11C]
PK11195 by providing accurate anatomic local-
ization. In addition, this radiopharmaceutical is 
not ideal for imaging, as it has low bioavailabil-
ity, high plasma protein binding, high lipophilic-
ity, and a relatively low binding affinity (Ki=1-4 
nM) [85, 88, 89]. Consequently, numerous 
TPSO-targeting radiotracers with improved imag-
ing properties are currently under development 
[90]. Such probes that have entered pre-clinical 
and clinical trials include [11C]DPA-713, [11C]
DAA1106, [11C]PBR28, [11C]AC-5216, [18F]
PBR06, [18F]DPA-714, and [18F]FEDAA1106 [89, 
91-100]. As ligands labeled with fluorine-18 
have a longer half-life than their carbon-11 la-
beled counterparts, they are favored moving 
forward with this imaging strategy. 
 
Scintigraphy and SPECT imaging 
 
Non-specific Imaging Agents 
 
[67Ga]Citrate 
 
[67Ga]citrate (Neoscan®) is a well-characterized 
non-conjugated γ-emitting radiotracer that local-
izes in acute and chronic inflammatory, infec-
tious, and neoplastic lesions. Upon intravenous 
administration, cationic 67Ga3+, similar in behav-
ior to the ferric ion, binds to circulating blood 
plasma proteins, such as transferrin and fer-
ritin, and to a minority of leukocytes [101-103]. 
The resultant 67Ga-bound protein complex, and 
to a minor extent, free and neutrophil-
associated [67Ga]citrate, extravascates increas-
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ingly at sites of inflammation due to locally aug-
mented microvascular permeability and ex-
panded extracellular diffusion space [102, 104-
107]. As there is limited reabsorption of macro-
molecules at these sites, [67Ga]citrate progres-
sively accumulates in inflammatory foci, includ-
ing rheumatoid synovia. Following the trapping 
of 67Ga-bound macromolecules in the inflamma-
tory interstitial space, transchelation of 67Ga to 
lactoferrin, ferritin, and/or bacterial sideropho-
res may occur [101, 102, 108, 109]. The en-
hanced neutrophil secretion of lactoferrin in 
synovial fluid, and expression of ferritin in in-
flamed synovia are additional mechanisms by 
which [67Ga]citrate concentrates in these tis-
sues [102]. Although not as well-supported in 
the literature, transferrin receptor-mediated 
endocytosis of the [67Ga]citrate-transferrin com-
plex by synovial macrophages may play a partial 
role in the localization of this radiotracer in af-
fected joints of RA patients [103, 110]. This 
mechanism is currently under review, serving as 
the rationale for the development of new 99mTc-
labeled conjugated transferrin probes [111]. 
 
While it is well-documented that [67Ga]citrate 
scintigraphy is a sensitive imaging technique for 
inflammation, there are several disadvantages 
that preclude its widespread use in the evalua-
tion of RA patients. In particular, due to its re-
lease of high-energy γ radiation (91-393 keV) 
and long physical half-life (t1/2= 78.3 hours), 
67Ga imposes a relatively high radiation burden 
on patients [112]. Moreover, similar to other 
radiolabeled macromolecules, [67Ga]citrate has 
a slow plasma clearance when bound to serum 
proteins. Slow blood clearance is unfavorable 
because it results in high background activity 
and longer acquisition times so as to attain opti-
mal target-to-background ratios [103, 113]. 
Further limiting the clinical application of [67Ga]
citrate is its lack of specificity. Although [67Ga]
citrate imaging is able to sensitively detect RA 
disease activity and extent, it cannot accurately 
distinguish active inflammation from infection 
or even neoplasm [103, 114-116]. Therefore, 
[67Ga]citrate scintigraphy has been relegated to 
a secondary role in imaging patients with RA as 
well as other inflammatory and infectious dis-
eases.  
 
[99mTc]- and [111In]HIG 
 
Polyclonal human immunoglobulin G (HIG) is a 
non-antigen IgG antibody that when labeled with 

either 99mTc or 111In behaves as a biomarker for 
infection and inflammation. HIG scintigraphy is 
an inexpensive, accessible tool that allows visu-
alization of inflammatory foci, and thus, its use 
has been widely explored in RA. A number of 
studies have indicated that this imaging tech-
nique detects local joint inflammation in RA pa-
tients with a higher sensitivity than that of clini-
cal examination, conventional bone scanning, 
and leukocyte scintigraphy [117-119]. Pons and 
co-workers found a correlation between articu-
lar HIG uptake, as assessed visually and quanti-
tatively, and clinical scores for swelling, suggest-
ing that HIG scintigraphic findings accurately 
reflect disease severity [120]. Furthermore, 
highlighting its prognostic value, a study by de 
Bois et al. demonstrated that this imaging strat-
egy is able to predict progression to RA in ar-
thralgia patients [121]. Similar to [67Ga]citrate, 
however, HIG is a non-specific marker for in-
flammation. It accumulates at sites of inflam-
mation due to a local increase in vascular per-
meability and diffusion space, and hyperemia 
[122]. Consequently, HIG scintigraphy is only of 
limited clinical relevance. For example, it is inca-
pable of distinguishing between joints with ac-
tive disease and those with inflammation from 
secondary joint destruction. It also has no utility 
in evidence-based biologic therapy. HIG imaging 
is sensitive, but its non-specificity has greatly 
diminished its clinical role, as newer radiophar-
maceuticals with higher specificity have been 
developed. 
 
[99mTc]Diphosphonates 
 
Unlike previous radiotracers, 99mTc-labeled di-
phosphonate analogs, such as methylene di-
phosphonate (MDP), hydroxy methylene diphos-
phonate (HDP), and dicarboxy propane diphos-
phonate (DPD), are not primarily inflammation-
seeking agents. Instead, their uptake reflects 
alterations in bone metabolism, especially in-
creased obsteoblastic activity occurring in re-
sponse to underlying pathology. Conventional 
bone scintigraphy has shown some utility in the 
evaluation of RA, as it allows localization of ar-
thritic joints and provides functional and quanti-
tative information about disease activity [123-
125]. Three-phase bone scanning (blood flow 
phase, immediate blood pool phase, and de-
layed imaging phase) may allow detection of 
acute RA. Blood flow and blood pooling phases 
typically exhibit increased uptake secondary to 
hyperemia and augmented microvascular per-
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meability (same vascular changes as those in 
surrounding inflamed synovium) during the 
acute phase of RA [126]. In addition, delayed 
images demonstrate higher radiotracer deposi-
tion in diseased juxta-articular bone, reflecting 
increased bone turnover and remodeling in re-
sponse to joint inflammation and cartilage de-
struction [126]. This technique, while a sensi-
tive tool in identifying osseous changes, is not 
specific for RA and lacks the spatial resolution 
of radiography or MRI [127]. Moreover, as 99mTc
-labeled diphosphonates accumulate to a vari-
able degree in all joints, differentiation between 
normal bone and juxta-articular physiologic up-
take and mild arthritic changes is difficult [128]. 
As a further disadvantage, bone scintigraphy 
cannot reliably differentiate between active dis-
ease and inflammation in chronically damaged 
joints [128, 129]. 
 
To improve the sensitivity, spatial resolution, 
and overall image quality of this approach, Os-
tendorf and colleagues evaluated and com-
pared [99mTc]DPD multi-pinhole SPECT (MPH-
SPECT) to conventional bone scintigraphy and 
MRI for the detection of bone changes in 13 
patients with early RA and 9 patients with early 
osteoarthritis (OA) [130]. Recently developed 
MPH-SPECT systems have been previously 
shown to have a 50-fold increased sensitivity 
and spatial resolution of less than 1 mm as a 
consequence of their inclusion of collimators 
that have up to 20 pinholes [131, 132]. In the 
Ostendorf et al. study, MPH-SPECT, in compari-
son to conventional bone scanning, demon-
strated better radiotracer localization and spa-
tial resolution and was able to detect a greater 
number of diseased joints [130]. As 10 of 13 RA 
patients had a central tracer distribution and 7 
of 9 OA patients had an eccentric pattern, the 
authors suggested that this distinction may 
have relevance to our understanding of RA 
pathogenesis. Furthermore, the sensitivity of 
this technique was found to be comparable to 
that of MRI. Hybrid SPECT/CT also allows for 
fusion of functional and anatomic information, 
but despite these advancements in tomo-
graphic technology, bone scanning has mainly 
been superseded by other imaging techniques 
for the assessment of RA patients. 
 
[99mTc]- and [111In]-labeled Leukocytes 
 
Directly labeling autologous leukocytes with 
[99mTc]hexamethylpropylene amine oxime 

([99mTc]HMPAO) or [111In]oxine, radiolabeled 
complexes that easily penetrate cell mem-
branes and become trapped intracellularly as a 
result of their high lipophilicity and charge neu-
trality, is in wide clinical use for the evaluation 
of a number of infectious and inflammatory dis-
eases [133, 134]. As mononuclear cells and 
neutrophils are highly recruited to inflamed 
synovial tissue and fluid, respectively, leukocyte 
imaging has been described for use in RA. In a 
preliminary study, Gaál and co-workers found a 
significant correlation (P<0.01) between the 
global scores for [99mTc]HMPAO-labeled neutro-
phil accumulation in the hands and feet of 21 
RA patients and the number of clinically swollen 
joints [135]. The authors concluded that leuko-
cyte scintigraphy or SPECT is an inexpensive 
and widely available tool that can be utilized in 
the localization and estimation of synovitis in 
RA. Al-Janabi and co-workers additionally dem-
onstrated that this imaging technique is sensi-
tive to alterations in disease activity following 
treatment with intra-articular steroid injections 
[136]. Autologous monocytes have also been 
successfully labeled with [99mTc]HMPAO and 
assessed in RA [134, 137]. Thurlings and col-
leagues reported that [99mTc]HMPAO-labeled 
monocyte scintigrahpic findings positively corre-
late with the swollen joint count and number of 
macrophages, as confirmed by immunohisto-
chemical staining, in biopsied synovial tissue 
from 8 RA patients [138]. While it is clear that 
radiolabeled leukocyte joint scintigraphy allows 
delineation of inflammation and distribution of 
disease with high sensitivity, it lacks specificity 
for RA, ultimately limiting its clinical utility. 
 
Specific imaging agents 
 
[99mTc]J001X 
 
To improve specificity, receptor-specific radio-
labeled probes that indirectly track leukocyte 
migration and recirculation in chronic inflamma-
tory diseases have been developed. As dis-
cussed earlier, radiotracers that target macro-
phages are of interest because this cell sub-
population is highly recruited to rheumatoid 
synovia and plays a critical role in the inflamma-
tory process. In vitro studies have shown that 
macrophages specifically bind to bacterial pro-
teoglycans, providing a rationale for the use of 
radiolabeled proteoglycan derivatives in macro-
phage scintigraphy [139-141]. J001X, a 34 kDa 
acylated poly-(1,3)-D-galactoside isolated from 
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membrane proteoglycans of a non-pathogenic 
strain of Klebsiella pneumoniae, is a newly de-
signed probe that when coupled with 99mTc al-
lows the visualization of mononuclear phago-
cyte trafficking [142, 143]. Although similar in 
structure to the immunogenic bacterial lipopoly-
saccharide (LPS), J001X has been greatly modi-
fied to not trigger phagocytic activation, while 
still retaining its specificity for cells of the mono-
cyte-macrophage lineage [139, 140, 144]. 
CD14 (a glycosylphosphoinositol-anchored LPS 
receptor found on macrophages and neutro-
phils) and CD11b (the α-chain of the comple-
ment receptor-3 (CD11b/CD18) β2 leukocyte 
integrin expressed on mononuclear phagocytes, 
granulocytes, and NK cells) mediate this spe-
cific receptor-ligand interaction [143, 145]. 
 
The imaging potential of [99mTc]J001X scintigra-
phy has been widely explored for numerous tu-
moral, inflammatory, and infectious processes 
in both human patients and experimental ani-
mal models. [99mTc]J001X scintigraphy has suc-
cessfully delineated alveolitis and mediastinal 
berylliotic lymph nodes in baboons; acute local-
ized radiation changes in pigs; pyrogranulomas 
in sheep; and osteoarthritic lesions induced by 
severance of cruciate ligaments in rabbits [146-
150]. Similarly in humans, macrophage imaging 
with [99mTc]J001X, administered as an aerosol, 
was able to localize inflammatory lesions in sar-
coidosis and scleroderma [151]. The assess-
ment of pulmonary involvement in RA patients 
was explored as a possible application of [99mTc]
J001X scintigraphy, but with mixed results 
[152]; scintigraphic findings were incompatible 
with those from high-resolution CT, pulmonary 
function tests, and bronchoalveolar lavage.  
 
Of interest for purposes of studying RA, this nu-
clear medicine technique has been investigated 
in an antigen-induced arthritis model in rabbits 
[153]. Scintigraphic images demonstrated 
[99mTc]J001X focal uptake in active arthritic le-
sions with high contrast to normal tissues. In 
comparison, these same inflammatory lesions 
could not be clearly discerned with [99mTc]O4- 
and [99mTc]albumin nanocolloids due to a lower 
scintigraphic contrast, despite the increased 
uptake of these non-specific agents in the acute 
phase of the disease. Furthermore, at the ad-
vanced disease stage when non-specific inflam-
matory processes were normalized, uptake of 
radiolabeled nanocolloids was minimal while 
[99mTc]J001X scans remained positive for 

macrophage infiltration. These results support 
previous conclusions that [99mTc]J001X scinti-
graphy can serve as a functional imaging strat-
egy that directly reflects the extent of macro-
phage recruitment and thus evolves with dis-
ease activity. To justify the use of this imaging 
technique in future RA clinical trials, the authors 
optimized the labeling procedure for the intrave-
nously injectable formulation of [99mTc]J001X 
[153, 154]. While this study offers promising 
results, no clinical trials have been performed to 
determine the efficacy of [99mTc]J001X scintigra-
phy in diagnosing early RA and monitoring dis-
ease activity and treatment response to date. 
 
[99mTc]RP128 
 
Like [99mTc]J001X, [99mTc]RP128 scintigraphy 
visualizes leukocyte recruitment, a process criti-
cal for sustaining RA and other inflammatory 
diseases. RP128, a bifunctional peptide che-
late, specifically targets neutrophils and mono-
nuclear phagocytes by binding to receptors ex-
pressed on the surface of these cell subpopula-
tions [155]. As a general mechanism, the tar-
geting domain of [99mTc]RP128, an antagonistic 
pentapeptide tuftsin analogue (TKPPR), medi-
ates the receptor-specific interaction and binds 
to tuftsin receptors with a fourfold greater affin-
ity than does their endogenous ligand, tuftsin 
[156]. Tuftsin is a tetrapeptide (TKPR) derived 
from proteolytic cleavage of the Fc domain of 
the heavy chain of IgG that promotes chemo-
taxis and phagocytosis of its target cells [157]. 
Tuftsin receptors, as mediators of these key 
immune functions, represent important molecu-
lar targets, and their upregulation in activated 
macrophages serves as the basis for [99mTc]
RP128 imaging. 
 
Despite promising pre-clinical studies that have 
cited a positive correlation between [99mTc]
RP128 uptake and quantitative measures of 
inflammation, there has only been one study 
that investigated the utility of [99mTc]RP128 
scintigraphy in imaging RA patients. In a Phase I 
study, Caveliers and co-workers simultaneously 
evaluated the safety, normal biodistribution, 
and dosimetry in 8 healthy controls, and the 
validity of employing [99mTc]RP128 as a probe to 
delineate inflamed synovia in 10 RA patients 
[155]. The biodistribution study favorably re-
vealed low radiotracer uptake in all major or-
gans, except in the kidneys and bladder and, to 
a lesser extent, the synovia of several joints. 
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Due to the slower washout of articular activity 
and low background noise, synovial joints in all 
subjects could be clearly discerned. The accu-
mulation of [99mTc]RP128 in normal joints, how-
ever, was moderate in comparison to the mark-
edly increased uptake observed in a large num-
ber of clinically affected joints in RA patients. 
Consequently, [99mTc]RP128 scintigraphy was 
able to detect inflammatory lesions in RA pa-
tients with a sensitivity of 69% for swollen 
joints, 76% for painful joints, and 73% for joints 
with bone erosions. Unfortunately, as synovial 
biopsies were not performed in this study, accu-
racy of the results could not be confirmed and 
further evaluation of this radiotracer is needed. 
 
[99mTc]- and [111In]anti-E-selectin 
 
Another strategy to visualize the continuous 
leukocyte recruitment and infiltration into in-
flamed synovium involves targeting cell adhe-
sion molecules (CAMs). CAMs are responsible 
for the binding of leukocytes to activated endo-
thelial vasculature as well as their subsequent 
transendothelial migration [158, 159]. While 
various adhesion molecules have served as 
targets for therapeutic intervention and imaging 
in other inflammatory diseases, E-selectin is the 
only one to be successfully described in the mo-
lecular imaging of RA. E-selectin (CD62E, ELAM-
1) is a transmembrane glycoprotein that is tran-
siently expressed on the luminal surface of acti-
vated vascular endothelium during a normal 
inflammatory response [24]. Following induction 
by interleukin-1 (IL-1), tumor necrosis factor-α 
(TNF-α), and bacterial LPS, E-selectin mediates 
the initial tethering and rolling of granulocytes, 
monocytes, and some lymphocytes, via specific 
interactions with its carbohydrate-based ligands 
[24, 158-161]. E-selectin is a potentially useful 
target for the detection of synovitis, because 
while this molecule is not expressed in resting 
endothelium, there is increasing evidence that 
its upregulation in postcapillary venules helps 
promote the sustained influx of leukocytes into 
inflamed tissues in RA [162-167]. As an added 
advantage, E-selectin is directly accessible to 
intravenously administered agents due to its 
location on the luminal surface of blood vessels. 
 
[111In]1.2B6 monoclonal antibody (mAb), an 
indium-labeled murine IgG1 antibody that recog-
nizes human E-selectin, was first validated for in 
vivo imaging of synovitis in porcine models of 
arthritis in 1994 [168, 169]. [111In]1.2B6 mAb 

was shown to immunolocalize to activated en-
dothelial venules in inflamed synovia and re-
gional draining lymph nodes with better sensitiv-
ity and specificity than radiolabeled control IgG1 
antibody. Although these early, preclinical stud-
ies offered promising results, concerns were 
raised over the immunogenicity of this radio-
pharmaceutical. Due to its murine origin, 1.2B6 
mAb has the potential to elicit a human anti-
mouse antibody (HAMA) response, limiting long-
term repeat follow-up imaging with this radio-
tracer. Furthermore, 1.2B6 mAb has intact Fc 
regions, which are thought to generate host 
immunity through non-specific activation of Fc-γ 
receptor-bearing effector cells. To reduce the 
likelihood of these clinical complications, re-
searchers elected to study F(ab’)2 fragments of 
1.2B6 mAb, devoid of its Fc portions. A number 
of animal studies have validated this substitu-
tion [170, 171]. Preliminary clinical studies cor-
roborated these earlier works, demonstrating 
that [111In]1.2B6 F(ab’)2 scintigraphy allows for 
clear visualization of inflamed joints in RA pa-
tients through radioimmunodetection of acti-
vated vascular endothelium, as early as 4 hours 
and optimally at 24 hours post-injection [172, 
173]. In addition, this imaging technique was 
shown to be superior to both 111In- and 99mTc-
labeled HIG scintigraphy in terms of sensitivity, 
specificity, lower background activity, higher 
radiotracer uptake, and better image contrast. 
However, due to the higher radiation burden 
imparted to the patient and lower spatial resolu-
tion of 111In-labeled radiopharmaceuticals, a 
99mTc-labeled anti-E-selectin radiotracer was 
subsequently developed and tested in RA pa-
tients. 
 
In a two part study, Jamar and colleagues evalu-
ated the validity of using [99mTc]1.2B6 Fab frag-
ments in RA patients as compared to [111In]
1.2B6 F(ab’)2 and [99mTc]HDP [128]. For the 
double-isotope comparative study, planar im-
ages were acquired 4 and 20-24 hours follow-
ing administration of either [111In]1.2B6 F(ab’)2 
or [99mTc]1.2B6 Fab in 10 RA patients and 2 
healthy volunteers. Additionally, 16 RA patients 
underwent scintigraphic evaluation for compari-
son between [99mTc]1.2B6 Fab and [99mTc]HDP 
(740 MBq (20 mCi)) at 4 hours post-injection of 
either radiotracer. [99mTc]1.2B6 Fab scinti-
graphic findings were found to be congruent 
with those of [111In]1.2B6 F(ab’)2. Deviations in 
radiotracer distribution were noted, but could 
mostly be attributed to the differences in normal 



Imaging of rheumatoid arthritis 

 
 
188                                                                                          Am J Nucl Med Mol Imaging 2012;2(2):174-220 

biodistribution of 99mTc- and 111In-labeled anti-
body fragments. Due to the comparable results 
between the radiotracers and the fact that im-
age quality and contrast were superior for the 
99mTc-labeled radiotracer at the earlier scan, the 
substitution of [99mTc]1.2B6 Fab for 111In-
labeled F(ab’)2 is not only valid, but also advan-
tageous, as it allows for a one day imaging pro-
tocol.  
 
In the second subset of RA patients, radio-
labeled anti-E-selectin, despite its lower joint-to-
soft tissue uptake ratios and persistence of vas-
cular activity, served as a significantly better 
discriminant (P<0.0001) of active joint inflam-
mation than [99mTc]HDP, as a consequence of 
its specific uptake by activated vascular endo-
thelium and lack of accumulation in normal 
joints. Conversely, although [99mTc]HDP images 
were of high-quality, they exhibited variable dif-
fuse and non-specific bone uptake over a major-
ity of joints, regardless of clinical involvement, 
greatly diminishing its capacity to differentiate 
between clinically active and normal or chroni-
cally damaged joints (Figure 4). 
 
A similar approach that utilizes a binding pep-
tide as the delivery agent for targeting E-selectin 
has also been described [174]. In a rat-adjuvant 
arthritis model, [99mTc]E-selectin binding peptide 
([99mTc]ESbp) accurately localized inflammatory 
foci through selective, high-affinity binding (KD= 
2-5 nM) to E-selectin in activated endothelium 
[175]. To date, the clinical role of both E-
selectin nuclear medicine imaging strategies 

has yet to be fully clarified, particularly in light of 
the advent of E-selectin-targeted MRI and opti-
cal imaging approaches [176-178]. 
 
[99mTc]- and [111In]Octreotide 
 
Similar to the previous approach, octreotide 
targets endothelium activation and macrophage 
recruitment. Octreotide is a long-acting soma-
tostatin analogue that when radiolabeled allows 
for the in vivo visualization of somatostatin re-
ceptor distribution and density. Somatostatin 
and its receptors are clinically relevant due to 
their ubiquitous nature and regulatory involve-
ment in several physiological processes. While 
first reported as a growth hormone release-
inhibiting factor and neurotransmitter in the 
hypothalamus, somatostatin was subsequently 
assigned other important functions, including 
inhibition of motor activity in the gastrointestinal 
tract and release of a number of exocrine and 
endocrine secretions [179-181]. These mainly 
suppressive functions are mediated through 5 
distinct G-protein-coupled receptor subtypes 
(sst1-5) widely distributed in the central nervous 
system and peripheral tissues [182]. Hyperex-
pression of these receptors is well documented 
in a variety of pathological conditions and 
serves as a basis for octreotide imaging [183-
185].  
 
Currently, [111In]DTPA-D-Phe1-octreotide ([111In]
pentetreotide, OctreoScan®), an 111In-labeled 
DTPA-conjugated octreotide peptide that specifi-
cally targets sst2,3,5, is routinely used for the 

Figure 4. Images obtained 4 h 
after injection of 99mTc-1.2B6-
Fab (left) and 99mTc-HDP (right) in 
two patients with RA. The images 
on the top correlate well; the 
bottom images show discor-
dance between the lack of up-
take of the mAb fragment and 
diffuse bony uptake. (Reprinted 
from Jamar F, Houssiau FA, De-
vogelaer JP, Chapman PT, 
Haskard DO, Beaujean V, Beck-
ers C, Manicourt DH and Peters 
AM. Scintigraphy using a techne-
tium-99m labelled anti-E-selectin 
Fab fragment in rheumatoid 
arthritis. Rheumatology (Oxford) 
2002; 41: 53-61; by permission 
of Oxford University Press). 
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scintigraphic and/or SPECT imaging of primary 
neuroendocrine tumors and their metastases as 
well as other somatostatin receptor-bearing 
malignancies [186-191]. Non-neoplastic appli-
cations of this imaging technique have only re-
cently been explored [185]. The demonstration 
of somatostatin’s role in the modulation of the 
immune response prompted investigations into 
the value of somatostatin receptor scintigraphy 
in chronic inflammatory diseases and other im-
mune-mediated disorders [192]. The possibility 
of utilizing this imaging technique for the in vivo 
study of RA was raised only after researchers 
coincidentally observed uptake of radiolabled 
octreotide in the arthritic joints of a sarcoidosis 
patient [193]. As a logical progression, it was 
supposed and subsequently confirmed that the 
synovia of affected joints in RA patients overex-
press somatostatin receptors, the target of oc-
treotide. In particular, immunohistochemical 
staining of diseased synovial tissue samples 
from RA patients revealed expression of sst2 on 
activated venule endothelial cells and infiltrat-
ing mononuclear phagocytes [193-195]. Consti-
tutive expression of sst1 and sst2 on fibroblast-
like synovial cells, as the result of TNF-α induc-
tion, has additionally been noted [196]. In com-
parison, the synovial tissue from a patient with 
clinically and biochemically confirmed RA who 
successfully underwent treatment did not stain 
for these receptors to any significant degree 
[196]. This suggests a role for octreotide imag-
ing not only in disease localization, but also 
monitoring therapeutic response. 
 
Van Hagen and co-workers conducted a pilot 
study to evaluate octreotide imaging in a cohort 
of 14 RA patients [193]. Somatostatin receptor 
scintigraphic findings were found to correlate 
well with clinical parameters. Increased [111In]
pentetreotide uptake allowed for the visualiza-
tion of inflamed synovia with a lesion-related 
sensitivity of 76%. The specific uptake of octreo-
tide by somatostatin receptors expressed in 
diseased joints was confirmed with in vitro 
autoradiographic studies. In comparison, no 
radiotracer accumulation was observed in the 
joints of control patients. 
 
Somatostatin receptor imaging continues to be 
an area of interest for the assessment of rheu-
matoid arthritis, particularly as this approach 
has implications for therapy. A number of stud-
ies have indicated that therapy with soma-
tostatin analogues improves symptoms in RA 

patients and attenuates inflammatory proc-
esses such as synovial proliferation and IL-6 
and IL-8 production [196-199]. Positive scinti-
graphic findings may therefore serve as a ration-
ale for treatment with unlabeled somatostatin 
analogues. However, to the best of our knowl-
edge, no clinical studies have evaluated this 
novel role for octreotide imaging. 
 
[99mTc]Anti-CD3 mAb 
 
As mature T lymphocytes play a large role in the 
pathogenesis and extension of RA, radiophar-
maceuticals that target this cell population can 
serve as a useful tool in evaluating disease 
course and localization. Radiolabeling mono-
clonal antibodies (mAbs) directed against CD3 
is a recently developed method that allows for 
the selective imaging of T lymphocyte migration 
into rheumatoid synovium. The CD3 antigen 
consists of 2 heterodimeric glycoproteins (CD3-
δ/ε and CD3-γ/ε), embedded almost exclusively 
in the cell membranes of CD4+ and CD8+ T lym-
phocytes [200]. This protein complex noncova-
lently associates with the T-cell receptor (TCR) 
and 2 TCR-ζ accessory chains, and collectively, 
they are responsible for T-cell activation [201, 
202]. The CD3 antigen more specifically partici-
pates in signal transduction, following the bind-
ing and recognition of the major histocompati-
bility complex (MHC) proteins by the TCR [201, 
202]. 
 
Muromonab (Orthoclone OKT3) was the first 
specifically engineered anti-CD3 mAb. This mur-
ine IgG2a antibody binds to epitopes of human 
CD3-ε, resulting in the early, temporal activation 
of peripheral T cells followed by a sharp inhibi-
tion and modulation of T cell functions [203]. As 
a potent immunosuppressant, OKT3 is indi-
cated for the treatment of acute allograft rejec-
tion [204]. Recently, however, interest has 
turned toward radiolabeling OKT3 for use in 
immunoscintigraphic imaging of rheumatic dis-
eases. In a study of 7 RA patients and 2 pa-
tients with psoriatic arthritis, Marcus and co-
workers demonstrated that the [99mTc]OKT3 
scintigraphic findings correlated well with pa-
tient history and physical examination [205]. 
Increased focal radiotracer uptake was present 
in a minority of asymptomatic joints, but this is 
likely indicative of subclinical synovitis. Conse-
quently, the authors suggested that [99mTc]
OKT3 scintigraphy may allow for earlier diagno-
sis of RA and psoriatic arthritis. Unfortunately, 2 
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patients in this study experienced shaking chills 
and neck pain approximately 1 hour post-
injection of the anti-CD3 mAb. These adverse 
events appear consistent with cytokine release 
syndrome and will likely limit the use of OKT3 in 
RA patients [203, 206]. 
 
Despite these possible complications, Martins 
and colleagues further investigated the applica-
tion of [99mTc]OKT3 imaging to the detection of 
synovitis in 38 RA patients [207]. Anterior pla-
nar scans showed increased focal [99mTc]OKT3 
accumulation in 68.8% of tender joints, 71.8% 
of swollen joints, and 88.1% tender and swollen 
joints. Correspondingly, [99mTc]OKT3 scinti-
graphic findings significantly correlated with 
swollen joints, tender joints, and the visual ana-
logue scale (VAS) (p<0.05). Moreover, [99mTc]
OKT3 scintigraphy allowed the differentiation of 
patients in remission from those with active 
synovitis, according to their disease activity 
score. Unlike the previous study, there were no 
reported adverse events. 
 
[99mTc]OKT3 scintigraphy not only has the ca-
pacity to assess disease activity, but also the 
ability to distinguish juvenile idiopathic arthritis 
(JIA) and RA patients from those with other 
rheumatic diseases, such as gouty arthritis (GA) 
and osteoarthritis (OA). As these patients can 
present clinically with overlapping signs and 
symptoms, this distinction is critical to optimal 
patient management and therapeutic interven-
tion. In a study by Lopes and colleagues, the 
joints of 77 patients with rheumatic diseases 

(44 RA, 5 JIA, 15 OA, and 13 GA patients) were 
evaluated by [99mTc]OKT3 scintigraphy [208]. 
Since activated T lymphocytes play a large role 
in the pathophysiological processes of RA and 
JIA, but not in OA or GA, there were observable 
differences in the [99mTc]OKT3 uptake patterns 
obtained for the patients with each respective 
disease. As expected, there was high initial 
radiotracer uptake in the inflamed joints of RA 
and JIA patients, and a subsequent increase in 
accumulation visualized on the delayed scans 
(Figure 5). 
 
Contrastingly, the initial radiotracer uptake was 
absent or minimal in cases of OA followed by a 
decrease in uptake observed at the delayed 
scan. This is consistent with the fact that the 
inflammatory process in OA is independent of T 
cell activation by the TCR/CD3 complex. Accord-
ingly, no uptake was noted in any of the painful 
joints of OA patients. For joints (n=4) where the 
presence of edema was the main complaint, 
however, there was 1 joint for which the scan 
showed mild radiotracer accumulation. More-
over, another scan exhibited slightly increased 
[99mTc]OKT3 uptake when OA joints (n=6) with 
pain and edema were considered. Interestingly, 
a patient with previously diagnosed OA had an 
elevated ESR and early and delayed scinti-
graphic images showing increased uptake in the 
knees and hands (which on physical exam were 
shown to be painful and have edema), indica-
tive of RA. Upon further clinical examination, 
this patient was later re-diagnosed with RA. This 
case serves to demonstrate the clinical rele-

Figure 5. Scintigraphy with 99mTc-anti-CD3 of the knees shows an increase in the uptake of these areas in late im-
ages. Images taken (A) 1 h and (B) 3 h after endovenous injection of the radiopharmaceutical. (Reprinted from Lopes 
FP, de Azevedo MN, Marchiori E, da Fonseca LM, de Souza SA and Gutfilen B. Use of 99mTc-anti-CD3 scintigraphy in 
the differential diagnosis of rheumatic diseases. Rheumatology (Oxford) 2010; 49: 933-939; by permission of Oxford 
University Press). 
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vance of this imaging technique. GA patients, in 
comparison, were noted to have an initial in-
crease in articular radioactivity, but this greatly 
declined as observed on the delayed scan. The 
authors suggested that the early accumulation 
of [99mTc]OKT3 in the joints of GA patients is 
likely the result of increased vascularity and cell 
infiltration in patients whose main complaint 
was edema or edema and pain. And thus, the 
eventual decrease in articular radioactivity lev-
els reflects the absence of TCR/CD3-mediated T 
lymphocyte activation in GA pathophysiology. 
 
While promising results, a major drawback to 
this imaging technique is the safety profile of 
OKT3 mAbs. Although no adverse events were 
noted in the Martins et al. and Lopes et al. stud-
ies, a whole host of side effects, particularly 
cytokine release syndrome (CRS), are associ-
ated with OKT3 use, even at microgram doses 
[203, 205]. CRS appears to be the result of the 
binding of antibody Fc regions to Fc-γ-receptors 
on immune effector cells and subsequent acti-
vation of these cell populations [209]. In this 
process, T lymphocytes are activated as well, 
which ultimately leads to the release of cyto-
kines, mitogenicity, and antibody- and comple-
ment-dependent cytotoxicity [209]. Further-
more, as a murine mAb, OKT3 has the potential 
to elicit a human anti-mouse antibody (HAMA) 
response. This not only limits follow-up imaging, 
but also long-term therapeutic use. In an effort 
to limit these clinical complications, a number 
of humanized and chimeric OKT3 Fc variants 
have been developed [210-214].  
 
Malviya et al. recently radiolabeled visilizumab 
(Nuvion®), a non-Fc-γ-receptor binding human-
ized IgG2 mAb that binds with the CD3-ε chain 
with high specificity and high avidity (Ka= 
0.5x109) [215, 216]. Favorably, this mAb does 
not activate T lymphocytes and thus has limited 
potential to induce cytokine release or acute 
cytotoxicity [216]. This imaging strategy was 
evaluated in Balb/c and SCID irradiated mice 
reconstituted with human lymphocytes and 
shown to be able to accurately map CD3+ cell 
distribution in vivo [215-217]. From these find-
ings, the authors suggested that in addition to 
offering information about disease localization, 
[99mTc]visilizumab could provide a rationale for 
therapy with unlabeled visilizumab in select can-
didates. Unfortunately, visilizumab has been 
withdrawn from production as a therapeutic 
agent after phase III trials [217]. Insufficient 

efficacy and, surprisingly, inferior safety profile 
were cited as the reasons for the withdrawal. 
While visilizumab could be manufactured solely 
for imaging purposes, it may be clinically useful 
to instead radiolabel anti-CD3 mAbs that offer 
therapeutic benefits and thus allow for the cou-
pling of imaging and treatment.  
 
[99mTc]anti-CD4 mAb 
 
Anti-CD4 imaging is yet another strategy to visu-
alize the highly relevant molecular process of T 
lymphocyte infiltration. In contrast to the previ-
ous technique, however, CD4 radioimmu-
nodetection does not target a pan-T cell anti-
gen, but instead, a molecule only present in a 
subset of T lymphocytes. CD4 is a 55 kDa 
monomeric glycoprotein expressed on the cell 
surface of all mature T helper cells (TH, CD4+ T 
lymphocytes), a majority of thymocytes, and to a 
lesser extent, monocytes-macrophages and 
dendritic cells [218]. Its extracellular domains 
bind to non-polymorphic regions of major histo-
compatibility complex class II (MHC-II) mole-
cules, stabilizing the interaction between TH 
cells and MHC-II-positive antigen-presenting 
cells (APCs) during T cell activation [219, 220]. 
In addition to functioning as a co-receptor for 
the TCR on TH cells, CD4 plays a role in signal 
transduction due to the physical association of 
its short cytoplasmic tail with tyrosine kinase 
p56Ick, an important protein integral for the in-
tracellular signaling cascade following T cell 
activation [221].  
 
CD4 antigen represents a potentially important 
target in the study of RA, as CD4+ TH cell clones 
with abnormal phenotypes are abundant among 
cell infiltrates in arthritic synovial tissue and 
fluid [222, 223]. Synovial tissue and fluid also 
contain monocytes-macrophages, which ex-
press, in lower density, the CD4 molecule. In-
creased numbers of CD4+ TH cells in the periph-
eral blood have been noted as well during active 
disease [224]. Furthermore, a higher frequency 
of certain MHC-II alleles has been described in 
RA, suggesting that antigen-specific responses 
of autoreactive CD4+ TH cells are critical to the 
development and possible maintenance of this 
disease [15, 225, 226]. 
 
Based on these considerations, Becker and 
colleagues evaluated anti-CD4 radioimmunos-
cintigraphy in 6 patients with severe, clinically 
active RA [227]. Whole body and joint-specific 
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planar images were obtained for all patients at 
1.5, 4, and 24 hours following intravenous in-
jection of [99mTc]MAX.16H5, a 99mTc-labeled 
murine IgG1 mAb that binds with high affinity to 
the human CD4 molecule in 5 patients, and in 
vitro labeled [99mTc]MAX.16H5 lymphocytes 
(≥10 MBq) in 1 patient. Scintigraphic findings 
were compared to those of clinical examination 
(Ritchie index, joint swelling) of 44 joints and 
early (5 minutes) and late (2 hours) [99mTc]HDP 
bone scans that each patient received within 7 
days prior to immunoscintigraphy. [99mTc]
MAX.16H5 imaging allowed clear visualization 
of diseased joints at 4-6 hours after radiotracer 
administration in all patients. These results cor-
related well with those of the early bone scan 
(P<0.01) and clinical scoring of joint swelling 
(P<0.01), but not with the late bone scan 
(P>0.05) or Ritchie index scoring of painful 
joints. A number of mismatches between joint 
uptake patterns in late bone scans and [99mTc]
MAX.16H5 scintigrams were noted, suggesting 
that the latter imaging technique has higher 
sensitivity in detecting early, active disease, 
comparable to that of clinical diagnosis. Al-
though not substantiated in this study, CD4 ra-
diolocalization may be able to differentiate be-
tween RA and other forms of arthritis, such as 
septic arthritis, as it binds to infiltrating mono-
nuclear cells, not granulocytes characteristic of 
acute inflammation. This property would be 
valuable and an advantage over both bone 
scanning and radiolabeled leukocyte scintigra-
phy. 
 
While the Becker et al. study demonstrated in-
creased uptake of [99mTc]MAX.16H5 in arthritic 
joints, it is unclear from their work as to whether 
accumulation of radiolabeled anti-CD4 mAbs in 
inflamed synovium is a consequence of specific 
target recognition or non-specific mechanisms 
[227]. To validate the specificity of this tech-
nique, Kinne and co-workers compared [99mTc]
MAX.16H5 uptake with that of non-specific poly-
clonal [99mTc]HIG in 8 patients with severe, clini-
cally active RA and 2 healthy volunteers [228]. 
In all examined arthritic joints, accumulation of 
[99mTc]MAX.16H5, expressed as percentage of 
total body radioactivity, did not significantly dif-
fer from that of non-specific [99mTc]HIG. Despite 
similar total uptake values, [99mTc]MAX.16H5 
had lower background activity and thus signifi-
cantly higher target-to-background (T/B) ratios 
as compared to [99mTc]HIG as early as 4 hours 
following radiotracer administration. Semi-

quantitative visual scoring of scans confirmed 
higher average counts in the synovial mem-
brane over those in either blood vessels or mus-
cle for radiolabeled anti-CD4 mAbs in arthritic 
knee and elbow joints as compared to control 
Ig. ROI analysis of knee joint scans allowed 
quantification of T/B ratios, corroborating the 
results from the visual assessment. Kinne et al. 
argued that the improved T/B ratios were solely 
the result of [99mTc]MAX.16H5 specificity for 
CD4+ inflammatory cell infiltrate, and, conse-
quently, radiolabeled anti-CD4 mAbs allow for 
superior detection of inflammatory foci in RA 
than [99mTc]HIG scintigraphy. In support of this 
claim, another study by the same authors re-
ported that [99mTc]MAX.16H5 exhibited higher 
total radioactivity levels and T/B ratios in ar-
thritic joints of a single patient with longstand-
ing, severe RA in comparison to [99mTc]anti-
carcinoembryonic antigen mAb, an isotype-
matched non-specific control mAb [229]. 
 
Conflicting reports exist, however, as a study 
utilizing a rat-adjuvant arthritis model has re-
vealed similar levels of uptake and T/B ratios in 
inflamed synovium for both radiolabeled anti-
CD4 mAbs and isotype-matched Ig controls 
[230]. The authors posited that the low T/B ra-
tios may be the result of non-specific trapping of 
the anti-CD4 mAb due to its large size and/or 
binding to Fc receptors in arthritic joints rather 
than true non-specificity of the molecule [230, 
231]. To test this hypothesis, Kinne and co-
workers compared the joint uptake and body 
distribution of [99mTc]anti-CD4 (W3/25; IgG1) 
Fab’ fragments, which are smaller in size and 
devoid of Fc receptor-binding regions, to those 
of non-specific Fab’ fragments ([99mTc]NCA-90) 
in a rat-adjuvant arthritis model [231]. Although 
both Fab’ fragments showed increased uptake 
in arthritic compared to non-arthritic joints, ac-
cumulation of anti-CD4 Fab’ fragments was sig-
nificantly higher (approximately 1.6-fold) than 
that of control Fab’ at all time points. Quantifica-
tion of T/B ratios by ROI analysis confirmed su-
periority of anti-CD4 Fab’ fragments over control 
Fab’ fragments as well as whole anti-CD4 mAbs 
in delineating inflammatory foci. In addition to 
having higher specific accumulation in inflamed 
synovium compared to entire anti-CD4 mAbs, 
anti-CD4 Fab’ fragments favorably had faster 
blood clearance and renal excretion and lower 
levels of background plasma radioactivity [232]. 
It was noted, however, that the Fab’ fragments 
exhibited greater in vivo instability than the 
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whole anti-CD4 molecule [232]. 
 
From these studies, it is clear that [99mTc]anti-
CD4 imaging can detect inflammatory foci with 
high sensitivity; as to whether this imaging tech-
nique will play a large role in the routine clinical 
evaluation of RA patients in the future is un-
known. As has been previously discussed, a 
critical advantage for utilizing radioimmunoscin-
tigraphy over other conventional methods is the 
ability to localize molecules that can serve as 
potential targets of therapeutic intervention. 
Currently, a controversy in the literature exists 
concerning the therapeutic benefit of anti-CD4 
mAbs for RA patients [233-239]. Further evalua-
tion of the efficacy of scintigraphic and thera-
peutic use of anti-CD4 mAbs and Fab’ frag-
ments in RA is needed. 
 
[99mTc]Anti-CD20 mAb 
 
While T lymphocytes have long been favored as 
the principal agents in RA pathogenesis, there is 
increasing evidence that B cell-mediated proc-
esses are critical for the development of auto-
immunity, warranting the targeting of this cell 
population for radioimmunoscintigraphy and 
therapeutic interventions. B cell functions that 
may contribute to the propagation of chronic 
inflammation include T cell activation through 
expression of co-stimulatory molecules 
(CD80/86 and CD40), antigen presentation to T 
lymphocytes, secretion of pro-inflammatory cyto-
kines, production of autoantibodies such as 
Rheumatoid Factor (RF), and their subsequent 
formation of immune complexes that activate 
the complement system and bind to Fcγ-
receptor-bearing effector cells [240-244]. Addi-
tionally, B cell infiltrates have been noted in 
inflamed synovial tissues, providing the ration-
ale for the use of B cell-targeted imaging in the 
in vivo study of RA patients. Instead of directly 
tagging B lymphocytes, researchers have devel-
oped radiolabeled mAbs that target CD20, a 
pan-B cell surface antigen that is important for 
calcium homeostasis and the development and 
activation of this cell population [245]. CD20 
represents a potentially useful target because 
95% of circulating normal and malignant B lym-
phocytes expresses this transmembrane phos-
phoprotein [246]. Furthermore, it is exclusive to 
B lymphocytes, specifically in their late pro-B 
phase to maturity [241, 246, 247]; CD20, how-
ever, is not expressed in hematopoietic stem 
cells and is shed upon differentiation into 

plasma cells [241, 247, 248]. 
 
In a pilot study, Malviya and co-workers radio-
labeled Rituximab (Rituxan, MabThera®), a chi-
meric mouse/human IgG1κ mAb that recognizes 
epitopes on human CD20 antigen, with 99mTc to 
image B cell infiltration in the affected tissues of 
10 patients with chronic inflammatory diseases, 
including RA [249]. Planar images obtained at 6 
hours post-injection displayed increased [99mTc]
Rituximab uptake in a majority, but not all, clini-
cally inflamed joints. In one RA patient, [99mTc]
Rituximab scintigraphic results were compared 
to those of [99mTc]anti-TNF-α imaging. Interest-
ingly, the authors found a mismatch between 
the degree of uptake of [99mTc]Rituximab and 
radiolabeled anti-TNF-α in various synovial 
joints. While low radiotracer sensitivity is a pos-
sible explanation for this finding, it is more likely 
an indication that selective inflammatory path-
ways are in effect in different synovial joints, 
causing divergent articular phenotypes. Conse-
quently, [99mTc]Rituximab scintigraphy may al-
low for the visualization of the degree of local 
and systemic involvement of B lymphocytes in 
disease propagation.  
 
Moving forward, this method of mapping B cell 
infiltration has the potential to establish person-
alized therapy, select candidates for treatment 
with unlabeled anti-CD20 mAbs, and monitor 
the efficacy of these therapies [206, 217]. A 
later study by the same group of authors sup-
ported this approach by citing a high intra-
articular and inter-individual variability of [99mTc]
Rituximab uptake and thus B lymphocyte infil-
tration in RA patients [250]. More studies, how-
ever, are needed to test the clinical efficacy and 
relevance of this imaging technique. As RA pa-
tients have been shown to benefit from unla-
beled Rituximab and other B cell-depleting 
therapies, the role of [99mTc]Rituximab scintigra-
phy may expand in the near future [251-255]. 
 
[99mTc]Anti-TNF-α 
 
Numerous pro-inflammatory cytokines play a 
role in the development and maintenance of 
chronic inflammation. Interleukin-1 (IL-1), inter-
leukin-6 (IL-6), interleukin-2 (IL-2) and tumor 
necrosis factor-α (TNF-α), in particular, have 
been identified as important inflammatory me-
diators in RA [256-258]. Directly and indirectly 
targeting cytokines and their receptors for imag-
ing purposes is a novel strategy that has only 
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recently been explored in the context of RA. One 
study investigated the utility of [123I]IL-1 recep-
tor antagonist ([123I]anakinra), which has a simi-
lar binding affinity to IL-1, but no biological activ-
ity, in imaging RA patients [259]. Nevertheless, 
the authors concluded that this probe was not 
useful for the scintigraphic assessment of RA 
patients because it did not show higher uptake 
levels than non-specific radiolabeled albumin, 
and thus, no follow-up studies were performed. 
Accordingly, attention has turned toward target-
ing TNF-α for radioimmunoscintigraphic evalua-
tion of RA patients and unlike [123I]anakinra, 
this imaging technique has shown promising 
results.  
 
TNF-α is a pleiotropic pro-inflammatory cytokine 
that has been implicated as a mediator of key 
pathophysiological processes in a number of 
neoplastic and chronic inflammatory autoim-
mune diseases. It is synthesized, primarily by 
activated monocytes-macrophages and lympho-
cytes, as a 27 kDa prohormone that, upon ag-
gregation into a homotrimer, serves as a trans-
membrane protein [260]. Through proteolytic 
cleavage by metalloproteinase TNF-α converting 
enzyme (TACE), soluble trimeric TNF-α (sTNF-α) 
is produced and secreted extracellularly [261, 
262]. In either form, TNF-α carries out its nu-
merous immunoregulatory and inflammatory 
functions by binding to its cognate cell-surface 
receptors, type 1 TNF-α receptor (TNFRI, p55) 
and type 2 TNF-α receptor (TNFRII, p75) [263-
265]. These are found on neutrophils, endothe-
lial cells, fibroblasts, and other cell types. The 
pro-inflammatory functions of TNF-α include the 
ability to upregulate adhesion molecules on the 
surface of vascular endothelium, and thus, pro-
mote recruitment of granulocytes and mononu-
clear cells, stimulate fibroblast growth, mediate 
bone resorption, and induce synthesis of other 
pro-inflammatory mediators such as IL-1, IL-6, 
prostaglandin E2, and IFNγ [266-274].  
 
Based upon these considerations and the fact 
that elevated levels of membrane-bound and 
soluble TNF-α and its receptors are found in the 
sera and inflamed synovial tissue and fluid of 
patients with active RA, this potent inflamma-
tory cytokine represents a critical target for im-
munotherapy in these patients [256, 275, 276]. 
Numerous clinical studies have supported the 
sustained efficacy of TNF-α antagonists by dem-
onstrating significant reduction of symptoms 
and disease severity and slowing or arresting of 

joint erosive progression in RA patients when 
used in combination with conventional DMARDs 
[277-280]. Consequently, TNF-α blockade has 
become an established therapeutic approach, 
particularly in cases of refractory RA. Current 
FDA-approved TNF-α inhibitors for the treatment 
of RA include infliximab (Remicade®), adalimu-
mab (Humira®), golimumab (Simponi®), certoli-
zumab pegol (Cimzia®), and etanercept 
(Enbrel®). While TNF-α antagonists have revolu-
tionized rheumatologic intervention, it is impor-
tant to note that some RA patients do not re-
spond to these agents [281]. This is likely the 
result of high inter-individual and intra-articular 
variation in the concentrations of TNF-α and 
other inflammatory cytokines [258]. Determin-
ing the quantity and distribution of TNF-α in vivo 
in all inflamed joints prior to initiating therapy 
may therefore prove to be useful in selecting 
candidates likely to respond to TNF-α inhibition. 
This technique moreover has the potential to 
provide an objective measure of disease activity 
and treatment efficacy. To date, 2 TNF-α an-
tagonists have been radiolabeled and utilized in 
the study of RA- infliximab and adalimumab. 
 
Infliximab is a bivalent, chimeric (murine-
human) IgG1 monoclonal antibody that binds to 
both membrane-bound and soluble TNF-α with 
high specificity and affinity (KD= 1x10-10 M) 
[282]. It has a biological half-life of 9.5 days 
and functions as a TNF-α inhibitor by blocking 
the interaction between TNF-α and its receptors 
(p55 and p75) [283]. In addition, infliximab can 
induce antibody-dependent cellular cytotoxicity 
(ADCC) or complement-mediated cytotoxicity 
(CDC) of membrane-bound TNF-α expressing 
cells [283-286]. Recently, infliximab was radio-
labeled with 99mTc and shown to have the same 
affinity for TNF-α as its unradiolabeled counter-
part [287]. It has since been tested in patients 
with various infectious and chronic immune-
mediated inflammatory diseases. In a prelimi-
nary study, Conti and co-workers scintigraphi-
cally assessed the in vivo levels of TNF-α in the 
inflamed knee of a patient with undifferentiated 
spondylarthropathy [288]. Following administra-
tion of [99mTc]infliximab (15 mCi), planar images 
of the knee joints were acquired at 6 and 24 
hours post-injection. Significant uptake of 
[99mTc]infliximab was observed for the inflamed 
knee as compared to the clinically uninvolved 
knee, indicating high intra-lesional levels of TNF-
α. These scintigraphic findings served as the 
rationale for the patient receiving an intra-
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articular injection of unradiolabeled infliximab. 
Clinical follow-up for a period of 4 months 
showed no signs of active disease (VAS score 
for pain= 0; no swelling or tenderness) in the 
injected knee, which was confirmed by negative 
scintigraphic findings, suggesting a role for 
[99mTc]infliximab imaging in localizing disease 
activity and monitoring therapeutic response in 
RA patients. 
 
The utility of [99mTc]infliximab scintigraphy for 
the detection of TNF-α-mediated inflammation 
in the joints of RA patients was assessed in an-
other pilot study [289], evaluating patients pre- 
and post-therapy. Planar images of the inflamed 
joints were obtained for all patients at 3, 6, and 
24 hours following intravenous administration 
of [99mTc]infliximab. Pre-treatment scans dem-
onstrated increased regional radiotracer accu-
mulation in inflamed joints with high target-to-
background (T/B) ratios; no uptake was ob-
served for clinically uninvolved joints. [99mTc]
infliximab uptake in joints, however, showed 
more variability in scans performed 3 months 
after therapy. In comparison to the previous 
scan, 4 joints exhibited significantly reduced or 
no radiotracer uptake while 6 joints showed 
little to no change in [99mTc]infliximab accumula-
tion. Patients with higher pre-therapy levels of 
TNF-α, as determined by scintigraphy, and sig-
nificantly decreased [99mTc]infliximab uptake 
post-treatment were shown to have a better 
clinical response (improved swelling and pain) 
to infliximab treatment. These findings, in addi-
tion to those from the Conti et al. study, support 
the use of [99mTc]infliximab scintigraphy in the 
objective selection of potential candidates that 
are likely to benefit from local or systemic inflixi-
mab treatment [288]. Although promising, a 
proof-of-mechanism study has yet to be per-
formed with a larger patient cohort. Further-
more, as a chimeric mAb, infliximab use can 
trigger a human anti-mouse antibody (HAMA) 
response, which not only can hamper follow-up 
imaging studies, but also markedly decrease 
the efficacy of repeated therapeutic doses of 
infliximab. 
 
In an effort to reduce immunogenicity, adalimu-
mab, a recombinant humanized anti-TNF-α IgG1 
mAb, was engineered and has been approved 
for use in RA patients [290]. Adalimumab binds 
to membrane-bound and soluble TNF-α with 
high specificity and affinity (KD= 6x10-10 M) 
[291]. Similar to infliximab, adalimumab neu-

tralizes TNF-α by blocking its interaction with 
p55 and p75 and inducing ADCC and CDC of 
TNF-α-expressing cells [292]. Adalimumab has 
been radiolabeled with 99mTc as well and em-
ployed in clinical trials. In a two-part study, 
Barrera and co-workers investigated the feasi-
bility and validity of using [99mTc]adalimumab 
scintigraphy in the study of 10 RA patients 
[293]. In the first scintigraphic session, whole-
body and joint-specific planar images were ac-
quired for each patient 5 minutes, 4 and 24 
hours following intravenous injection of [99mTc]
adalimumab to assess tissue biodistribution 
and imaging properties. The same imaging pro-
cedure was utilized in the second scintigraphic 
assessment that took place 2 weeks later, but 
an excess of unlabeled adalimumab (10 mg/kg) 
was co-administered in a subset of 5 patients to 
evaluate the degree of specific binding. The 
remaining 5 patients received a single intramus-
cular dose of methylprednisolone (120 mg) 2 
days before scintigraphic evaluation to study 
the ability of [99mTc]adalimumab imaging to de-
tect clinically significant changes in intra-
articular disease activity in response to systemic 
corticosteroid therapy.  
 
In all patients studied by Barrera et al., signifi-
cant physiologic uptake of [99mTc]adalimumab 
was seen in the liver and spleen [293]. Joints 
were clearly delineated at 4 and 24 hours fol-
lowing radiotracer injection, with inflamed joints 
demonstrating a 2- to 4-fold increase in radio-
tracer uptake over normal tissues. Not all clini-
cally active joints, however, showed accumula-
tion of radiolabeled anti-TNF-α mAbs; this was 
particularly true for the small joints of the hands 
and feet. Although no explanation was offered, 
this finding likely reflects the high intra- and 
inter-individual variability of TNF-α expression in 
inflammatory foci. Conversely, no uptake was 
observed in clinically uninvolved joints. Scinti-
graphic results from the second imaging ses-
sion showed that the uptake of radiolabeled 
adalimumab is partly the result of specific bind-
ing to TNF-α; co-administered excess unlabeled 
adalimumab abrogated the signal of radio-
labeled anti-TNF-α mAbs by a median of 16% 
and 25% at 4 and 24 hours, respectively. These 
results were reproduced in later studies [294, 
295]. Anti-TNF-α radioimmunoscintigraphy was 
also able to detect clinically relevant changes in 
synovitis following systemic corticosteroid treat-
ment. The 5 patients who received treatment 
exhibited a decrease in clinical disease activity, 
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as expected, and a concomitant decline in 
[99mTc]adalimumab uptake in inflamed joints. 
No adverse events were reported.  
 
Further validating this imaging technique, Ro-
imicher and co-workers compared the results of 
[99mTc]adalimumab scintigraphy to those of MRI 
and clinical evaluation in 8 patients with active 
RA and 1 healthy volunteer [295]. Whole-body 
and anterior planar images of hands and wrists 
were acquired for each patient at 30 minutes 
and 3 hours following injection of a subthera-
peutic dose (15% of treatment dose) of [99mTc]
adalimumab. Two nuclear medicine specialists 
visually evaluated the scintigraphic scans for 
intensity and pattern of [99mTc]adalimumab up-
take. All patients underwent clinical examina-
tion and MR imaging of hands and wrists. Axial 
and coronal pre- and post-Gadolinium contrast 
T1-weighted spin echo MR images were ob-
tained for each patient, as were axial and cor-
onal short tau inversion recovery (STIR) images. 
Two radiologists evaluated the scans for synovi-
tis, according to the definition put forth by the 
OMERACT MRI collaborative subgroup (see be-
low). Representative MR and scintigraphic im-
ages can be seen in Figure 6.  

Of 198 examined joints in the study by Ro-
imicher et al., 49 joints were determined to be 
positive for synovitis on MRI and 48 joints on 
scintigraphy [295]; agreement between the 
methods was found for 44 joints (sensitivity of 
89.8%). One hundred and forty-five joints were 
found to be negative on both MRI and scintigra-
phy, resulting in a specificity of 97.3%. Five 
false-negatives and 4 false-positives were re-
ported. The authors suggested that these false-
negative scintigraphs were likely the result of 
the absence of detectable TNF-α levels in those 
inflamed joints. It has previously been shown 
that other cytokines besides TNF-α can act as 
the primary mediator of inflammation in some 
clinically active joints [258]. The ability to indi-
rectly measure intra-lesional levels of TNF-α 
expression is a major advantage of this imaging 
technique, as it allows for evidence-based bio-
logic therapy and patient selection. A number of 
studies have indicated that patients with higher 
pre-therapy uptake of [99mTc]adalimumab were 
more likely to respond to treatment with unla-
beled anti-TNF-α mAbs than patients with lower 
or no radiotracer accumulation [294, 296]. Con-
sequently, both positive and negative scinti-
graphic findings appear to offer clinically rele-

Figure 6. (A) Right hand with 
fourth PIP joint swelling and 
capsular bulging. (B) Hand 
scintigraphy scan, showing 
increase in uptake of 99mTc-
anti-TNF-a in the fourth right 
(PIP) (arrow), third and fourth 
left PIP and wrists. (C and D) 
Right-hand MRI coronal (C) 
and axial (D) slices showing 
fourth PIP synovitis. (Reprinted 
from Roimicher L, Lopes FP, 
de Souza SA, Mendes LF, 
Domingues RC, da Fonseca 
LM and Gutfilen B. 99mTc-anti-
TNF-α scintigraphy in RA: a 
comparison pilot study with 
MRI and clinical examination. 
Rheumatology (Oxford) 2011; 
50: 2044-2050; by permission 
of Oxford University Press). 
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vant data. In addition to finding comparable 
results between MRI and [99mTc]adalimumab 
scintigraphy, the authors found that the latter 
technique was more sensitive and specific than 
clinical examination in detecting synovitis, sug-
gesting a possible diagnostic role for [99mTc]
adalimumab scintigraphy. 
 
Overall, anti-TNF-α scintigraphy represents a 
promising tool in the study of RA. High quality 
whole-body scans with relatively low doses can 
be rapidly acquired for RA patients. Scinti-
graphic findings give clinically relevant data that 
may assist in accurate diagnosis, evidence-
based biologic therapy, and localization and 
measuring of disease activity. Moving forward, it 
may be of interest to radiolabel anti-TNF-α Fab’ 
or F(ab’)2 fragments for scintigraphic use to re-
duce non-specific uptake and immunogenicity 
associated with Fcγ-receptor binding as well as 
to improve imaging properties such as plasma 
clearance and excretion time. Larger studies 
that determine the prognostic value of anti-TNF-
α scintigraphy are needed as well. 
 
[99mTc]Annexin V 
 
Radioimmunodetection of apoptosis is another 
novel imaging strategy being employed in the 
study of RA. As apoptosis is a highly regulated, 
complex cascade of enzymatic activity, there are 
numerous and diverse potential targets for mo-
lecular imaging. Among these targets, phos-
phatidylserine (PS), an anionic aminophosphol-
ipid that constitutes 10-15% of plasma mem-
brane content, has garnered the most interest, 
as its location within the lipid bilayer not only 
reflects but also has a direct bearing on the 
apoptotic status of a cell [297, 298]. In normal, 
healthy tissue, PS expression is actively re-
stricted to the inner (cytoplasmic) leaflet of the 
plasma membrane through the enzymatic activ-
ity of an ATP-dependent aminophospholipid 
translocase (APLT) [297, 299]. In comparison, 
other phospholipids are largely constrained to 
the outer (exoplasmic) leaflet, resulting in the 
deliberate establishment of an asymmetrical 
phospholipid distribution [297, 299].  
 
With the onset of apoptosis, however, this asym-
metry collapses as PS residues are rapidly exter-
nalized through the simultaneous inhibition of 
APLT and activation of scramblase, a non-
selective enzyme that bi-directionally transports 
phospholipids between leaflets [300, 301]. Cell-

surface exposure of PS occurs early in the apop-
totic cascade and only later serves as a signal 
for macrophages to phagocytize the PS-
expressing cell [302-305]. Under normal cir-
cumstances, macrophages and neighboring 
cells can efficiently remove and thus minimize 
the presence of apoptotic cells and cell rem-
nants. On the other hand, in diseased states, 
there is a sustained presence of PS-expressing 
cells due to the increased activation of apop-
totic cellular pathways and the inability of 
phagocytes to efficiently clear dying cells in 
pathological tissue [306-308]. Radiotracers that 
specifically target and bind to cell-surface ex-
posed PS, therefore, have the potential to non-
invasively assess the presence, extent, and, 
with long-term follow-up, rate of apoptosis in its 
early to intermediate phase.  
 
Although various PS-targeting compounds have 
been reported in the literature, radiolabeled 
annexin V is the only radioligand that has been 
validated as a reliable in vivo cell marker of 
apoptosis and has been utilized in both pre-
clinical and clinical imaging studies. Annexin V 
is an endogenous human protein (molecular 
weight, 35.8 kDa) that is widely expressed in-
tracellularly and has been supposed to play a 
role in anti-coagulation and inhibition of protein 
kinase C and phospolipase A2 [309-311]. While 
the exact physiologic function of annexin V is 
unknown, its biological activity is thought to 
stem from its ability to bind to anionic phosphol-
ipids in the presence of calcium [312]. In par-
ticular, annexin V selectively binds to the phos-
phoserine head of cell-surface exposed PS resi-
dues in all cell lines with high affinity (kD= 0.1-2 
nM) [313]. Consequently, upon initiation of 
apoptosis and subsequent PS externalization, 
there is a concurrent increase in the concentra-
tion of annexin V and the number of annexin V 
binding sites per cell [314-316]. Binding to PS, 
annexin V is internalized by the PS-expressing 
cell through a modified form of pinocytosis 
[317]. To date, several radiolabeled recombi-
nant human annexin V derivatives with various 
chelators and co-ligands have been developed 
for use in apoptotic imaging. 
 
Apoptosis imaging as it relates to the study of 
RA has only recently been explored. To investi-
gate this potential application, Post and co-
workers performed autoradiographic imaging 
studies with [99mTc]annexin V in a murine colla-
gen-induced arthritis model [318]. The front and 
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hind paws of collagen-inoculated DBA/1 mice 
showed increased multifocal uptake of [99mTc]
annexin V in peri-articular and ligamentous 
structures. Localization of [99mTc]annexin V to 
these sites of scattered mononuclear infiltra-
tion, confirmed histologically, was evidenced to 
be specific when compared to that of [125I]
bovine serum albumin, a non-specific radio-
tracer. At maximum effect size, [99mTc]annexin V 
uptake values in the digits and pads of front 
and rear paws and Achilles tendon sheaths of 
collagen-inoculated mice were 2- to 6 times 
higher than those for age-matched controls. 
Advantageously, this difference was discernible 
early in the disease course when there was no 
evidence of bone or joint erosions. Minimal fo-
cal radiotracer accumulation, however, was 
noted for control mice in the physeal growth 
plates of the digits and the Achilles tendon 
sheaths; uptake in these regions is most likely 
physiologic in nature, as previous studies have 
reported that normal apoptosis occurs at these 
sites [319]. Post and co-workers did not specifi-
cally identify the apoptotic cells that served as 
the radiotracer’s target(s). Clarifying the exact 
mechanism of [99mTc]annexin V localization in 
arthritic joints will prove to be crucial moving 
forward. Additionally, this study opened the door 
to the possibility of using [99mTc]annexin V imag-
ing to monitor treatment response in RA pa-
tients by showing that collagen-inoculated mice 
exhibited reduced radiotracer uptake in their 
extremities following 5 days of treatment with 
methylprednisolone. 
 
While only the Post et al. [318] study specifically 
explored apoptosis imaging in RA, there are sev-
eral pre-clinical and clinical studies that have 
validated the use of this technique in the study 
of cardiac ischemic-reperfusion injury, heart 
failure, acute allograft rejection, active myocar-
ditis, malignant intracardiac tumors, Alzheimer’s 
disease, neonatal and adult cerebral hypoxic-
ischemic injury, and atherosclerotic plaques 
vulnerable to thrombosis [320-327]. This imag-
ing strategy also has been shown to accurately 
monitor and predict response to chemotherapy 
in oncology patients [328]. These studies lend 
themselves to the validation of apoptosis imag-
ing in RA since they demonstrate that [99mTc]
annexin V has a high sensitivity and specificity 
for detecting apoptosis, rapid blood clearance 
(t1/2 =24 minutes) and renal excretion devoid of 
bowel activity (23% at 24 hours), favorable hu-
man biodistribution (although high radioactivity 

concentration in renal cortex), and a high signal-
to-background ratio that is achieved relatively 
quickly, allowing for shorter imaging times [329, 
330]. Moreover, this radiotracer has an accept-
able effective dose comparable to that of other 
99mTc-labeled radiopharmaceuticals and a low 
immunogenicity due to its human origin [331, 
332]. Possible disadvantages are that it cannot 
accurately differentiate between apoptosis and 
necrosis, as the latter process results in in-
creased PS availability as well, and the biologic 
half-life of the radiopharmaceutical (t1/2= 70 
hours) is long in comparison to its physical half-
life [333, 334].  
 
Overall, apoptosis imaging is in its infancy. Al-
though [99mTc]annexin V is the most prevalent 
probe for apoptosis scintigraphy and SPECT, 
various other agents have been or are being 
developed. Moving forward, it is likely that these 
other apoptosis-seeking radiotracers will be 
tested so as to maximize the sensitivity and 
specificity of this technique. Future options in-
clude [99mTc]annexin V derivatives with different 
chelators and co-ligands, radiolabeled anti-
annexin V mAbs, and non-annexin V PS-binding 
radiotracers [325, 336, 335]. As PET has better 
spatial resolution than SPECT and allows for 
quantitative analysis, efforts to develop and test 
annexin V derivatives labeled with positron-
emitting radionuclides are underway [337, 
338]. Annexin V derivates conjugated to super-
paramagnetic iron oxide nanoparticles for MRI 
have been introduced, as this imaging modality 
offers high tissue contrast without patient radia-
tion [339]. It is unclear at this time as to the 
direction apoptosis imaging will take. 
 
Other molecular imaging strategies for RA 
 
Magnetic resonance imaging (MRI) 
 
The goals for MRI imaging of RA are similar to 
those for nuclear and molecular imaging: 
namely, to detect the manifestations of RA at an 
earlier stage, identify patients at risk for pro-
gressive disease, and monitor progression that 
may prompt the need for altering therapy. Early 
and aggressive treatment may prevent subse-
quent development of irreversible joint damage, 
which underscores the need for accurate early 
diagnoses. While MRI is fundamentally an anat-
omic technique, it bridges the gap between 
anatomy and physiology. T1-weighted images, 
for example, clearly show peri-articular erosions 
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and synovial thickening, but it is the contrast 
enhancement pattern following Gadolinium ad-
ministration that identifies the hyperemia sug-
gestive of active inflammation from synovitis. 
There continues to be progressive advancement 
and better understanding of the significance of 
MRI findings in RA [340-342]. 
 
MRI versus radiography 
 
Radiography has long been the standard for 
detection of joint damage in established RA. It is 
readily available, low-cost, and reliably demon-
strates many of the more advanced changes, 
such as erosions, joint space narrowing, and 
juxta-articular bone loss. Radiographically-based 
scoring systems such as the Larsen and Sharp 
scoring methods are extremely reproducible 
[343, 344]. It is over 20 years, however, since 
the initial report of the utility of MRI over radio-
graphs in early RA [345]. Since then, numerous 
authors have concluded that MRI is superior to 
plain radiographs in detecting erosions in early 
active disease. In one study of RA patients 
evaluated in their first year after presentation by 
McQueen et al., MRI revealed erosions in 45% 
of patients versus only 15% of patients on radi-
ography at 4 months. This increased to 75% on 
MRI and 29% on radiographs at 1-year follow-up 
[346, 347]. This not only shows the superior 
sensitivity of MRI, but also that the development 
of erosions is a very dynamic process. Less than 
20% of patients with RA of less than 6 months 
duration will have erosions on radiographs 
[347]. 
 
There are 3 reasons why it is logical that MRI is 
more sensitive than radiography in early RA. 
MRI is a 2D/3D technique and does not attempt 
to project the findings onto a single planar im-
age (i.e., a film). The superimposition that oc-
curs on a "flat", single dimensional image can 
hide significant pathology. Second, since plain 
radiographs lack the contrast resolution of MRI, 
they do not discretely visualize and discriminate 
the various soft tissue structures from one an-
other; in particular, they do not differentiate the 
synovium from other overlying soft-tissues. 
Third, for erosions to be visible on radiographs, 
significant loss of bony mineral must have oc-
curred. This is most pronounced in established 
RA.  
 
MRI technical issues 
 
While there has been some variability in the MRI 

imaging techniques used in the literature, most 
exams are conducted consistent with the OM-
ERACT working group recommendations [348]. 
These include imaging in at least 2 planes, with 
T1-weighted images before and after Gadolin-
ium-based contrast administration, plus a T2-
weighted fat-saturated image (or STIR sequence 
if fat-saturation is not available). Most contem-
porary systems do allow fat-saturation, and this 
also is commonly used on post-contrast T1-
weighted images. If available, many sites per-
form gradient echo 3D acquisitions pre- and 
post-contrast, and reconstruct the images in 2 
dimensions to reduce exam time and improve 
spatial resolution; a minority prefer or are lim-
ited to direct axial and coronal acquisition of 2D 
images using spin-echo sequences for pre- and 
post-contrast imaging.  
 
Most clinical practices focus on imaging the 
dominant symptomatic wrist and metacarpal-
phalangeal (MCP) joints [349]. This has proven 
equivalent for follow-up and detection of pro-
gression as compared to serial radiographs of 
the hands and feet [242, 350]. Recently, it has 
been shown that creative combinations of sur-
face coils can produce whole body assessment 
of the major joints (13 per patient including the 
hands and wrists) in examination times compa-
rable to single joint assessments [351]. This 
technique, while close to true MR screening, 
suffers from reduced spatial resolution com-
pared to the traditional approach. Furthermore, 
the overall synovitis burden correlated quite 
closely with semi-quantitative hand/MCP synovi-
tis scores and therefore yielded little additional 
information. 
 
There is extensive experience now with both low
-field (.2-.6 Tesla (T)) and high-field (1.0-1.5 
Tesla) MRI. The low-field machines have lower 
spatial resolution and somewhat longer exam 
times, and earlier studies suggested that this 
adversely affected the detection of bone mar-
row edema (osteitis) [352]. More recent experi-
ence [353] has shown no such difference. In 
addition, erosions and synovitis appear equally 
well seen with both field strengths [354] with 
good intra- and inter-reader reproducibility 
[355]. 
 
MRI findings and their significance in RA 
 
MRI is capable of demonstrating the broad 
spectrum of findings seen in rheumatoid arthri-
tis [349].  
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Synovitis: Synovitis is one of the earliest abnor-
malities detected in RA. The synovial lining 
should be barely perceptible in normal patients 
with minimal or no contrast enhancement with 
Gadolinium administration. Thickening, in-
creased water content producing high signal on 
T2-weighted images, or more than minimal con-
trast enhancement suggests synovitis (Figures 7 
and 8). MRI appears to be more sensitive than 
clinical exam in detecting synovitis [356], and 
synovitis correlates well with development of 
subsequent erosive disease [357, 358]. The 
degree of enhancement can be used as a surro-
gate marker for hyperemia, and can help distin-
guish active from inactive disease [359]. 
 
Bone Marrow Edema: Bone marrow edema or 

osteitis, albeit non-specific, also occurs in early 
RA. On fat-suppressed T2-weighted images, it 
appears as high signal in the subchondral bone 
(Figure 9). At times osteitis is seen surrounding 
an erosion or clusters of erosions. Since marrow 
edema is a marker for generalized early inflam-
mation, it is not surprising that it often corre-
lates with an elevation of C-reactive protein and 
erythrocyte sedimentation rate serum levels; all 
3 (along with synovitis) are early predictors of 
subsequent erosive change [353, 358].  
 
Erosions: Erosions, when they develop in early 
RA, strongly imply that irreversible joint damage 
has developed (Figure 10). It is controversial as 
to whether erosions may "heal" but this appears 
to be a rare event. In a detailed analysis of spe-
cific erosions, McQueen and colleagues found 
that virtually all erosions seen on baseline MRI 
studies were also visualized one year later by 2 
radiologists [360]. In that same study, erosion 
scores on baseline MRI were predictive of the 
radiographic erosion score at 2 years. Bony ero-
sions in early RA predict a more aggressive dis-

Figure 7. Tenosynovitis. (A) T2-weighted fat-
suppressed axial image shows high signal surround-
ing the flexor tendons (arrows), which represents fluid 
or edema. (B) T1-weighted axial image shows inter-
mediate signal surrounding the flexor tendons 
(arrows). (C) T1-weighted fat-suppressed axial image 
after Gadolinium contrast administration shows high 
signal enhancement (arrows), representing tenosyno-
vitis surrounding the flexor tendons (Image courtesy 
of Dr. Kathleen Brindle, the George Washington Uni-
versity, Washington D.C.). 

Figure 8. Synovitis/synovial hypertrophy. (A) T1-
weighted fat-suppressed axial image shows interme-
diate signal of the synovium surrounding the meta-
carpal bases. (B) T1-weighted fat-suppressed axial 
image after Gadolinium contrast administration 
shows high signal enhancing synovium (arrows) 
around the base of the fourth metacarpal. The find-
ings suggest synovitis or synovial hypertrophy (Image 
courtesy of Dr. Kathleen Brindle, the George Wash-
ington University, Washington D.C.). 
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ease with radiographic progression and reduced 
functional outcomes. In one such study, hand 
and wrist tendon function were strongly pre-

dicted by the presence of erosions (and even 
more strongly predicted by bone edema) [361]. 
 
Other Findings: Tendinopathy is a common find-
ing in RA. Most commonly this takes the form of 
tenosynovitis, which exhibits MR evidence of 
fluid in the tendon sheath or increased thick-
ness or enhancement of the tendon sheath 
synovium. Tendonitis may also occur. Tenosyno-
vitis is not included in the RAMRIS scoring sys-
tem (see below), but is important since early 
evidence of tendinopathy has been reported to 
predict tendon rupture at 6 years [362]. Joint 
effusions occur in RA often in association with 
synovitis. Fibrotic pannus may also be present 
in RA, but is more common in long-standing dis-
ease. Loss of cartilage and joint space narrow-
ing occur late in long-standing disease. 
 
While not an imaging finding, it is worth men-
tioning anticyclic citrullinated peptide (anti-CCP) 
antibodies. This autoantibody has similar sensi-
tivity to rheumatoid factor, but with greater 
specificity and greater likelihood of being posi-
tive in early disease [363]. If positive it repre-
sents a risk factor for development of erosive 
disease.  

Figure 9. (A) Bone edema. T2-weighted fat-
suppressed coronal image shows intermediate signal 
in the bone of the second metacarpal (arrow) and in 
the carpal bones (arrowheads). In the setting of RA 
this can represent edema. (B) T1-weighted fat-
suppressed axial image shows uniform intermediate 
signal through the metacarpal bases. T1-weighted 
images without contrast are not sensitive for detec-
tion of bone edema. (C) T1-weighted fat-suppressed 
axial image after Gadolinium contrast enhancement 
shows diffusely increased bone signal at the base of 
the second metacarpal (arrow), consistent with en-
hancing edema (Image courtesy of Dr. Kathleen Brin-
dle, the George Washington University, Washington 
D.C.). 

Figure 10. Erosions. T1-weighted coronal image 
shows erosive changes of the navicular, multangular, 
and first metacarpal (arrows) (Image courtesy of Dr. 
Kathleen Brindle, the George Washington University, 
Washington D.C.). 
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Three of the above major imaging findings have 
been the focus of the OMERACT Rheumatoid 
Arthritis Magnetic Resonance Imaging Scoring 
(RAMRIS) system [348]. These are synovitis, 
bone erosions, and bone edema. Synovitis is 
scored in 3 regions of the wrist from 0 to 3 with 
3 representing severe synovitis (thickening and 
enhancement). Bone erosions are scored from 
0 to 10 based on 10% volume intervals of bone 
eroded within any given area of assessed bone 
volume. Bone edema or osteitis is scored on a 
scale of 0 to 3, each representing intervals of 
33% volume involvement. Edema may be the 
most difficult to assess of the RAMRIS catego-
ries, as it is often feathery and indistinct in na-
ture. 
 
While it requires training and experience to rec-
ognize the varied manifestations of RA, there is 
generally good agreement among readers. Prior 
to the development of the RAMRIS scoring sys-
tem, Østergaard and colleagues, using a similar 
scoring system, showed good agreement be-
tween readers for synovitis (86%) and erosions/
bone lesions (97%) [364]. Using the RAMRIS 
system, similar results were obtained with 
strong agreement for MCP erosions, wrist ero-
sions, and wrist synovitis [365]. Slightly less 
agreement was seen for MCP synovitis, MCP 
bone edema, and wrist bone edema.  
 
Progression of disease 
 
The advent of biologic therapies such as the 
anti-TNF-α class of drugs and continued use of 
immunosuppressive agents such as meth-
otrexate have created a growing emphasis on 
treating early disease before the development 
of structural joint damage. As mentioned above, 
MR excels at identifying erosions, and does so 
far earlier than radiographs. If erosions are pre-
sent, there is ample evidence supporting early 
treatment [366, 367]. If no erosions are present 
on initial MRI, however, McQueen et al. found 
that 82% of his RA cohort at 2 years did not de-
velop erosions on radiograph [347]. Conserva-
tive management to avoid the toxicity, immuno-
suppressive effects, and cost of the biologic 
agents may better serve patients without early 
erosions. This issue, however, remains contro-
versial, as the presence of bone marrow edema, 
positive anti-CCP antibodies, and synovitis may 
pose sufficient risk of developing erosions, that 
treatment is warranted even in the absence of 
early erosions.  

For patients undergoing treatment, the promise 
of MRI is its great potential for monitoring re-
sponse to therapy and disease arrest or pro-
gression. There have been numerous reports 
using parameters such as the RAMRIS score, 
the number of erosions, the volume of erosions, 
the volume or thickness of synovitis, and the 
peak synovial enhancement to track response 
to treatment. An earlier version of the synovial 
component of the RAMRIS score showed good 
correlation to the volume of enhancing syno-
vium [368]. Similarly, Dohn et al. showed good 
correlation between RAMRIS score, MR erosion 
volume, and CT erosion volume [369]. Until 
more automated techniques are developed to 
monitor disease activity and progression, one 
can expect to see variation in the parameters 
followed by individual investigators. 
 
Examples of the successful use of these MRI 
parameters to track response to treatment in-
cluded reduction in synovial and effusion vol-
umes in response to intra-articular steroid injec-
tion [370], reduction in thickness of synovial 
enhancement in response to intra-articular ster-
oids and methotrexate [371], reduced degree of 
enhancement of the synovium in response to 
infliximab [372], reduction in tenosynovitis in 
response to etanercept [373], reduced synovitis 
and arrested erosion development in response 
to adalimumab [374], and reduction in MRI 
findings of synovitis and bone edema in re-
sponse to golimumab and methotrexate [375]. 
While all of these studies exhibited success in 
using MR to monitor response, low-grade synovi-
tis may persist without erosion progression 
[376] or clinical progression [374]. Bone mar-
row edema may persist in patients in clinical 
remission as well [377]. The latter may explain 
why patients continue to develop erosions, de-
spite clinically doing well and appearing to be in 
remission.  
 
New MRI techniques 
 
MRI scanning techniques have continued to be 
refined and are being actively investigated. 
There has been a gradual migration to using 3T 
systems for imaging because of their enhanced 
signal-to-noise ratios, and better spatial resolu-
tion as compared to 1.5T. Some of the resultant 
gain in signal may also be used to shorten exam 
times. 3T magnets are not as universally avail-
able as 1.5T, and equipment costs are consid-
erably greater. Nevertheless, it can be expected 
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to see more studies done at 3T. Future studies 
of cartilage and cartilage loss in small joints 
may really benefit from use of the higher field 
3T systems [378]. 
 
Diffusion-weighted imaging is a relatively new 
technique that is currently being used on 1.5T 
scanners for a wide variety of neuroradiologic 
and body imaging applications. By applying ad-
ditional RF pulses and assessing the relative 
dephasing of spins of mobile versus less mobile 
protons, MRI can assess the relative diffusion 
protons in structures and abnormalities. In the 
context of cerebral infarcts, edema appears 
high signal on diffusion-weighted images but 
low signal on apparent diffusion coefficient 
(ADC) maps due to restricted diffusion of edema 
fluid. There are many MRI-related physical fac-
tors, which affect diffusion, not just the biologic 
properties of the tissue or fluid being imaged, 
but it may be possible to apply some of the 
quantitative measures such as ADC maps to 
bone marrow edema assessment. Clinical trials 
studying this are underway. 
 
Synovitis is an important predictor of future ero-
sion development. The degree of contrast en-
hancement has been used as a marker for the 
degree of synovitis [359]. Increasingly sophisti-
cated pharmacokinetic modeling is also being 
applied [379]. The relative early enhancement 
and "shape" of the enhancement curve may 
have prognostic implications that can be quanti-
tated in a more precise way than visual analysis 
of the enhancement of the synovium on the 
images. Accurate placement of representative 
region-of-interest curves to generate this data is 
a potential pitfall, but more rapid automated 
methods are now available that allow multiple 
enhancement data sets to be quickly reviewed 
and optimized.  
 
Non-contrast techniques for assessing perfu-
sion, such as arterial spin labeling, are becom-
ing established techniques as well, and show 
good correlation with disease activity and tradi-
tional Gadolinium-based enhancement [380]. In 
patients who may need multiple MRI exams 
throughout their clinical care, non-contrast tech-
niques may be beneficial in reducing cost and 
risk, especially if the patient has significant re-
nal dysfunction that would preclude the use of 
Gadolinium.  
 
Progress continues to be made on MRI quantifi-

cation of rheumatoid arthritis in the hopes that 
less subjective and less time consuming auto-
mated methods may replace manual scoring. 
Scoring, however, still remains the standard 
against which other techniques are compared 
[381]. While subjective, manual scoring does, in 
general, result in good inter-reader reliability. 
There are 2 excellent reviews of quantification 
techniques, that the reader is referred to, which 
describe scoring methods, manual, and auto-
mated segmentation methods that are being 
developed [341, 382]. 
 
Conclusion 
 
The clinical role of imaging in RA is greatly ex-
panding. As this field rapidly progresses, imag-
ing strategies are becoming increasingly inte-
grated into the multi-disciplinary approach to RA 
patient management. Spearheading this change 
are the advances in imaging technologies and a 
further understanding of the molecular basis of 
RA. In particular, the current trend we are see-
ing is a shift toward more functional imaging. 
This not only means a more inclusive role for 
functional imaging modalities, such as SPECT 
and PET, but also a push for newer imaging se-
quences and strategies that allow MRI to move 
beyond anatomic imaging. Gadolinium-
enhanced MRI and diffusion-weighted MRI are 
just two examples of how this imaging modality 
can provide more ‘physiological’ data. Further-
more, it is becoming more commonplace to use 
multi-modal imaging. PET/CT, SPECT/CT, and 
PET/MRI allow the fusion of complementary 
anatomic and functional data and thus offer 
high sensitivity, excellent tissue contrast, and 
improved spatial resolution. These hybrid imag-
ing modalities are likely to be a future mainstay 
of the rapidly developing field of molecular im-
aging.  
 
As we learn more about the active inflammatory 
processes specific to RA, we are gradually mov-
ing toward a molecular basis for imaging this 
disease. Imaging reporter agents have been 
and are being constructed that relay informa-
tion about leukocyte trafficking, endothelial acti-
vation, cytokine-mediated inflammatory path-
ways, and apoptosis. When used in conjunction 
with the appropriate imaging modality, these 
probes have the potential to provide an earlier 
and more reliable assessment of clinical out-
come, disease activity, severity, and location, 
and treatment response. Molecular imaging 
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may also allow for diagnoses early in the dis-
ease course prior to irreversible changes in joint 
anatomy, as evidence suggests there is a sub-
clinical phase of RA, in which cellular and mo-
lecular changes precede any anatomic, physio-
logical, or metabolic alterations. The future 
holds great promise for this field. 
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