
 

 

Introduction 
 
Diabetes is a prominent risk factor for the devel-
opment of cardiovascular disease. Patients with 
diabetes carry 4 times greater risk of cardiovas-
cular mortality, and constitute a disproportion-
ate cohort of large scale heart failure studies. 
The interaction between diabetes and heart 
failure is diverse, with many pathways having 
been implicated. One factor in common be-
tween the conditions is impairment of the car-
diac sympathetic nervous system (SNS), charac-
terized initially by hyperactivity and elevated 
norepinephrine spillover, eventually culminating 
in sympathetic denervation and reduced capac-
ity for norepinephrine release. Acute sympa-
thetic activation evokes increased heart rate 
and contractility, whereas chronic activation can 

depress SNS sensitivity. 
 
Continued advances in molecular imaging have 
led to the characterization of multiple radio-
tracers for the interrogation of the cardiac SNS. 
In a preclinical setting, longitudinal non-invasive 
imaging studies of sympathetic regulation dur-
ing the development of diabetes and subse-
quent left ventricular dysfunction can provide 
important mechanistic insights into cardiac pa-
thology. Long-term clinical application of imag-
ing techniques could be used to stratify cardio-
vascular risk among diabetic patients. 
 
Sympathetic nervous system signal 
transduction 
 
The autonomic nervous system is the primary 
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Abstract: Diabetes is commonly associated with increased risk of cardiovascular morbidity and mortality. Perturba-
tions in sympathetic nervous system (SNS) signaling have been linked to the progression of diabetic heart disease. 
Glucose, insulin, and free fatty acids contribute to elevated sympathetic nervous activity and norepinephrine release. 
Reduced left ventricular compliance and impaired cardiac function lead to further SNS activation. Chronic elevation 
of cardiac norepinephrine culminates in altered expression of pre- and post-synaptic sympathetic signaling elements, 
changes in calcium regulatory proteins, and abnormal contraction-excitation coupling. Clinically, these factors mani-
fest as altered resting heart rate, depressed heart rate variability, and impaired cardiac autonomic reflex, which may 
contribute to elevated cardiovascular risk. Development of molecular imaging probes enable a comprehensive 
evaluation of cardiac SNS signaling at the neuron, postsynaptic receptor, and intracellular second messenger sites of 
signal transduction, providing mechanistic insights into cardiac pathology. This review will examine the evidence for 
abnormal SNS signaling in the diabetic heart and establish the physiological consequences of these changes, draw-
ing from basic biological research in isolated heart and rodent models of diabetes, as well as from clinical reports. 
Particular attention will be paid to the use of molecular imaging approaches to non-invasively characterize and evalu-
ate sympathetic signal transduction in diabetes, including pre-synaptic norepinephrine reuptake assessment using 
11C-meta-hydroxyephedrine (11C-HED) with PET or 123I-metaiodobenzylguanidine (123I-MIBG) with SPECT, and post-
synaptic β-adrenoceptor density measurements using CGP12177 derivatives. Finally, the review will attempt to de-
fine the future role of these non-invasive nuclear imaging techniques in diabetes research and clinical care. 
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extrinsic control of heart rate and contractility. 
Sympathetic projections from the central nerv-
ous system synapse at the stellate and thoracic 
ganglia, where postganglionic fibres project to 
the heart [1, 2]. A complex network of sympa-
thetic neurons innervates the epicardium, with 
a homogeneous distribution of fibres to the en-
tire heart. Localized varicosities (boutons) along 
the length of the terminal axon act as storage 
and release points of norepinephrine forming 
relatively dispersed synapses compared to cen-
tral nervous system junctions [1]. Regional tis-
sue concentrations of norepinephrine are con-
sidered the gold standard measurement of car-
diac sympathetic activation. The highest norepi-

nephrine concentration is local-
ized to the sinoatrial node, atrio-
ventricular node, and atria as 
compared to the ventricles [2]. 
Sympathetic stimulation of the 
conduction system produces ele-
vated heart rate. 
 
Activation of sympathetic neurons 
evokes release of the neurotrans-
mitter norepinephrine into the 
synaptic cleft where it binds to G 
protein-coupled adrenoceptors at 
the cardiomyocyte membrane [3] 
(Figure 1). β-Adrenoceptors are 
positively coupled to stimulatory 
G protein Gαs, which activates the 
cAMP/PKA signaling cascade, 
culminating in enhanced Ca2+ 
influx and cardiac contractility [4]. 
The β2- and β3-adrenoceptor iso-
forms are also coupled to inhibi-
tory G protein Gαi, which reduces 
cAMP production providing bal-
ance in noradrenergic signaling 
[3]. 
 
The sympathetic signal is termi-
nated by active recapture of the 
neurotransmitter into the neu-
ronal varicosity by the sodium-
dependent norepinephrine reup-
take transporter (NET) via the 
uptake-1 pathway [5, 6]. Norepi-
nephrine is further packaged into 
neuronal vesicles by vesicular 
monoamine  t ranspor te r -2 
(VMAT2) [7, 8] or metabolized by 
monoamineoxidase (MAO) and 
catechol-O-methyltransferase 

(COMT) [9].  
 
Diabetic heart 
 
Metabolic and contractile adaptation 
 
The complex changes in metabolic and contrac-
tile cardiac function in the progression of diabe-
tes have been extensively reviewed [10, 11]. 
Briefly, the diabetic heart exhibits a shift in 
metabolic substrate preference to almost exclu-
sive utilization of fatty acids over glucose [12, 
13]. This shift exacerbates insulin resistance 
[14, 15] and contributes to the accumulation of 
lipid metabolites [16, 17] and advanced glyca-

Figure 1. Noradrenergic neuroeffector junction. Norepinephrine (NE) is 
released into the synaptic cleft where it is bound to postsynaptic β-
adrenoceptors (β-AR). Stimulation of Gs-coupled β-AR activate adenylate 
cyclase (AC) production of cAMP and downstream activation of protein 
kinase A (PKA). cAMP is broken down by phosphordiesterase-4 (PDE4). 
NE is recovered to the varicosity by NE reuptake transporter (NET). Ab-
breviations: TH, tyrosine hydroxylase; DOPA, dihydroxyphenylalanine; 
DDC, dopamine decarboxylase; DA, dopamine; DβH, dopamine β-
hydroxylase; PNMT, phenetanolamine-N-methyltransferase; Epi, epineph-
rine; VMAT2, vesicular monoamine transporter-2; MAO, monoamine oxi-
dase; COMT, catechol-O-methyltransferase. 
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tion end products [18, 19], leading to oxidative 
stress and myocardial fibrosis. These structural 
and metabolic changes culminate in the deterio-
ration of contractile function, manifesting ini-
tially as reduced ventricular compliance and 
abnormal diastolic function, progressing to mild 
systolic impairment [20, 21]. To compensate for 
failing systolic function, the SNS may be acti-
vated. 
 
Circulating factors 
 
In addition to the compensatory activation, ele-
vated plasma concentration of several factors 
have been shown to augment SNS activity. Ele-
vated endogenous or exogenous glucose pro-
duces elevated circulating levels of norepineph-
rine [22-24]. Similarly, hyperinsulinemia has 
been linked to increased SNS activity [25, 26]. 
Administration of exogenous fatty acids en-
hances muscle sympathetic nerve activity by 
45%, with resultant increases in heart rate and 
blood pressure [27]. 
 
Diabetic cardiac autonomic neuropathy 
 
Diabetic autonomic neuropathy is a late stage 
complication of prolonged diabetes character-
ized by the development of neuroaxonal dystro-
phy, a swelling of distal neuronal axons without 
relative neuron loss [28]. Whereas early diabe-
tes has been associated with elevated sympa-
thetic tone, autonomic neuropathy results in a 
decrease in cardiac norepinephrine content and 
an accumulation of neurotrophins consistent 
with damage sustained by sympathetic neurons 
[29, 30]. Accumulation of advanced glycation 
end products, activation of apoptotic signals, 
oxidative stress, and elevated basal firing rate 
contribute to the degeneration of sympathetic 
neurons [31, 32]. 
 
SNS in diabetes 
 
The presence of abnormal SNS signaling in the 
diabetic heart has been well established, as 
evidenced by direct and indirect measurements. 
It is unclear as to the order of sympathetic hy-
peractivity and development of insulin resis-
tance, with some investigators purporting that 
insulin resistance is precipitated by a primary 
increase in sympathetic tone [33, 34], and oth-
ers claiming independent development of insu-
lin resistance and hyperinsulinemia promoting 
sympathetic drive [35]. Because of the complex 

interaction of SNS activity, hyperglycemia, hy-
perinsulinemia, metabolism, and insulin resis-
tance it is difficult to define the primary insult. 
Recent clinical evaluations have attempted to 
define a temporal progression from sym-
pathoadrenal activation to insulin resistance. A 
recent meta-analysis has suggested that SNS 
dysfunction is present in 51.9% of diabetic pa-
tients, but is likely underestimated due to reli-
ance on somewhat crude tests [36]. 
 
Norepinephrine measurements 
 
Elevated norepinephrine turnover and accumu-
lation of neuronal norepinephrine have been 
found in diabetic animal models. Ganguly and 
colleagues demonstrated a twofold increase in 
cardiac and plasma norepinephrine concentra-
tion after 8 weeks of diabetes induced by strep-
tozotocin (STZ) in rats [23]. Studies in isolated 
perfused diabetic hearts revealed enhanced 
catecholamine turnover, evidenced by elevated 
tyramine-induced norepinephrine release, in-
creased initial rate of uptake of 3H-
norepinephrine, and reduced half time of 3H-
norepinephrine turnover. These parameters 
were normalized by treatment with insulin at 4 
weeks after diabetes induction [23, 37]. Ele-
vated norepinephrine levels have been de-
scribed in a number of animal models and dura-
tions of diabetes, including STZ-induced type 1 
diabetes [38], insulin-resistant intraperitoneal 
STZ-induced diabetes [24, 39], Zucker Diabetic 
Fatty rats [40], and non-obese Goto-Kakizaki 
type 2 diabetic rats [41].  
 
These findings are supported by histofluores-
cence studies using glyoxylic acid, demonstrat-
ing increased fluorescent noradrenergic vari-
cosities after 1 month of STZ-induced diabetes. 
In the same study, high performance liquid 
chromatography-quantified ventricular norepi-
nephrine levels were elevated by 48-58% in 1 
month diabetics compared to controls [42]. At 4 
weeks of diabetes, STZ rats show reduced dopa-
mine content in stellate ganglia, but an increase 
of ventricular norepinephrine, suggesting en-
hanced local conversion of neurotransmitter. No 
change in brain or plasma norepinephrine con-
tent was observed at this time point [43]. 
 
Sympathetic nerve activity 
 
Electrode measurement of renal sympathetic 
nerve activity showed a reduced ability to adapt 
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to volume expansion in STZ diabetic rats com-
pared to controls, associated with a blunted 
change in heart rate following phenylephrine 
administration [44]. Splanchnic sympathetic 
nerve activity response to phenylephrine was 
dampened in obese adult Zucker rats compared 
to age-matched lean Zucker rats in the absence 
of overt diabetes [45]. 
 
Baroreceptor reflex 
 
The baroreceptor reflex is an indirect indicator 
of SNS activation in the heart, reflecting respon-
siveness to α-adrenergic stimulation. Left aortic 
depressor nerve activity measurements taken in 
OVE26 transgenic type 1 diabetic mice demon-
strated a reduction in baroreflex control of heart 
rate in response to phenylephrine or sodium 
nitroprusside [46]. Pressure transducer evalua-
tion in type 1 diabetic rats at baseline com-
pared to non-diabetic controls describe reduced 
mean arterial pressure (-12%), heart rate (-13%) 
and lower rates of isolvolumic pressure develop-
ment and decay following phenylephrine chal-
lenge [47].  
 
Heart rate variability 
 
Advancement of implantable telemetry trans-
ducer/receiver technology has facilitated longi-
tudinal analysis of sympathetic tone in diabetic 
rats. Power spectral analysis provides a surro-
gate measurement of baroreceptor reflex activ-
ity and the quantification of heart rate variability 
[48-51]. 
 
Heart rate variability (standard deviation of nor-
mal heart rhythm, SDNN) has been demon-
strated to be reduced by 50% (18 vs 36 bpm) 
within days of diabetes induction by STZ com-
pared to non-diabetic controls [52, 53]. Low 
frequency to high frequency power ratio pro-
gressively increased over time, suggesting decli-
nation of high frequency (parasympathetic) and 
mid frequency (sympathetic) density [53]. Treat-
ment with insulin was insufficient to restore 
heart rate variability to control levels, though 
there was a a modest recovery of heart rate: 
362 vs 266 vs 303 bpm in non-diabetic, dia-
betic, and insulin-treated diabetic rats, respec-
tively [54]. 
 
In Goto-Kakizaki non-obese type 2 diabetic rats 
a less prominent but significant reduction of 
heart rate variability SDNN compared to non-

diabetic controls was observed at 2 months      
(-24%) and 7 months (-16%), but was attenu-
ated at 15 months of age (-5%) [55]. This is con-
sistent with reduced heart rate variability during 
aging [55], with parallel changes in NET expres-
sion and reuptake function reported [56]. The 
differences in heart rhythm derive in part from 
extended duration of electrocardiogram QRS 
complex with no difference in QT interval be-
tween groups [55]. Prolonged QRS is consistent 
with delayed repolarization as observed in STZ 
rats [57-59]. 
 
Continuous telemetric monitoring in db/db type 
2 diabetic mice describes a blunting of barore-
flex regulation of heart rate, calculated by se-
quence method and cross-spectral analysis. 
Whereas blockade of sympathetic signaling with 
metoprolol decreased heart rate substantively 
in db/db mice, the effect was negligible in db/+ 
mice, consistent with constitutive activation of 
the cardiac SNS [60]. Atropine blockade of para-
sympathetic tone was also blunted in db/db 
mice compared to db/+ controls [60]. Con-
versely, study of non-obese diabetic mice 
showed the presence of sympathetic neuropa-
thy, evidenced by elevated baroreceptor reflex 
activity that was not attenuated by metoprolol 
administration [61]. Heart rate variability meas-
urement demonstrated reduced standard devia-
tion of R-R interval in db/db mice compared to 
db/+ controls [60]. 
 
Power spectrum density analysis of systolic arte-
rial pressure in diabetic rats revealed a progres-
sive reduction of intermediate frequency (0.25-
0.65 Hz), the range generally corresponding to 
sympathetic modulation of vascular tone, re-
maining fairly consistent over 1 to 18 weeks 
after STZ induction of diabetes [62]. 
 
These findings have been replicated in the clini-
cal population. A study of young Norwegian 
males demonstrated that those in the highest 
quartile elevation of plasma norepinephrine 
during cold pressor test showed elevation of 
fasting plasma glucose level and homeostasis 
model assessment of insulin resistance at 18-
years follow-up. This observation suggests that 
early sympathetic dysfunction may partially un-
derlie subsequent development of insulin resis-
tance and pre-diabetes [63]. A similar result 
was obtained by heart rate variability analysis 
over 8 year follow up in the Atherosclerosis Risk 
in Communities (ARIC) trial. In this case, indi-
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viduals falling in the lowest quartile of heart rate 
variability (either standard deviation of R-R in-
terval or low-frequency power) were 60% more 
likely than the highest quartile to develop insu-
lin resistance or diabetes [64]. It has been rea-
soned that sustained sympathetic activation 
may augment lipid metabolism, leading to ele-
vated circulating fatty acids and insulin resis-
tance [64]. 
 
β-Adrenoceptor expression 
 
The persistent elevation of catecholamines 
evokes downregulation of cardiomyocyte β-
adrenoceptors, and a shift in the isoform popu-
lation to favour Gi-coupled β2-adrenoceptors. 
This pattern is well characterized in the develop-
ment of heart failure [65, 66], and has been 
extensively described in diabetes as well, in-
cluding rats [67, 68], large animal models [69], 
and the patient population [70]. Reduced β-
adrenoceptor expression has been consistently 
described in type 1 diabetic heart (Table 1), 
evidenced by significant reductions in total β-
adrenoceptor binding in radioligand binding 
assays [67, 71-76]. 
 
Latifpour and McNeill established time depend-

ent changes in cardiac autonomic receptor ex-
pression patterns in type 1 diabetic STZ-treated 
rats [75]. At 3 months of diabetes compared to 
age-matched non-diabetic controls, only 3H-
prazosin binding to α-adrenoceptors was re-
duced (Bmax 66.6 vs 78.8 fmol/mg protein), with 
no difference in 3H-dihydroalprenolol or 3H-
quinuclidinyl benzilate binding to β-
adrenoceptors and muscarinic cholinergic re-
ceptors, respectively. By 6 months of untreated 
diabetes, binding to all three receptors was re-
duced by 21-28% (α-adrenoceptor: 56.4 vs 
72.2; β-adrenoceptor: 22.5 vs 28.6; muscarinic: 
84.8 vs 117.4 fmol/mg protein) [75]. 
 
Reduced β-adrenoceptor density in diabetes 
reflects a shift in relative expression of β-
adrenoceptor subtypes as determined by West-
ern immunoblotting [67]. Quantification of 
Coomassie staining showed a shift in β1:β2:β3 
expression profile from 62:30:8 in control to 
40:36:23 in diabetic rat hearts [67]. This shift is 
similar to that observed during sympathetic hy-
peractivity in the development of heart failure 
[65]. In the same study, normalization of blood 
glucose by daily insulin injection for only 2 
weeks following 12 weeks of chronic diabetes 
was sufficient to revert expression patterns to 

Table 1. β-Adrenoceptor Expression in Diabetic Heart 
Diabetic Model Duration Measurement Isoform(s) Bmax* % Diff† Ref 
SD, alloxan 35 mg/kg iv 5 days 3H-DHA binding all 47±4 -51% [74] 
SD, STZ 65 mg/kg ip 2 weeks 3H-DHA binding 

   CGP20712 block, high affinity 
   CGP20712 block, low affinity 

all 
β1AR 
β2AR 

35±4 
10±1 
24±1 

-6% 
-46% 
+37% 

[68] 

WK, STZ 45 mg/kg iv 4-6 
weeks 

3H-CGP12177 binding all 33±7 -51% [72] 

WK, STZ 60 mg/kg iv 6 weeks Western immunoblotting β1AR 
β2AR 
β3AR 

  -65% 
+61% 
+140% 

[77] 

WK, STZ 55mg/kg iv 8 weeks 125I- CYP binding all 36±4 -31% [73] 
SHR, STZ 55 mg/kg iv 8 weeks 125I- CYP binding all 35±5 -34% [73] 
SD, STZ 45 mg/kg ip, 
      high fat feeding 

8 weeks 3H-CGP12177 ex vivo biodist. 
Western immunoblotting 

all 
β1AR 
β2AR 

  -40% 
-15% 
+12% 

[127] 

SD, STZ 65 mg/kg iv 10 
weeks 

3H-CGP12177 binding all 92±4‡ -41% [76] 

WK, STZ 45 mg/kg iv 14 
weeks 

Western immunoblotting β1AR 
β2AR 
β3AR 

  -45% 
-17% 
+200% 

[67] 

SD, STZ 65 mg/kg iv 13 
weeks 
26 
weeks 

3H-DHA binding all 28±3 
23±2 

-13% 
-21% 

[75] 

* fmol/mg protein; † (Diabetic – Control) / Control × 100%; ‡ fmol/106 cells. SD, Sprague Dawley rat; WK, Wistar Kyoto rat; SHR, 
Spontaneously Hypertensive Rat; DHA, dihydroalprenolol; 125I-CYP, 125I-cyanopindolol; biodist, biodistribution 
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normal, with a β1:β2:β3 expression profile of 
57:33:10 [67]. Displacement of 3H-
dihydroalprenolol by cold CGP20712 to distin-
guish high affinity β1-adrenoceptor binding from 
low affinity β2-adrenoceptor identified a shift in 
relative expression (β1:β2) from 52:48 in control 
to 30:70 in untreated diabetics, restored to 
40:60 by insulin [68]. These findings establish 
the critical involvement of glycemia in the main-
tenance of β-adrenoceptor expression. 
 
After 2.5 months of diabetes, internalization of 
β-adrenoceptors is evident, as determined by 
binding assays with the cell-surface imperme-
able 3H-CGP12177 compared to lipophilic 125I-
iodocyanopindolol [76]. This observation sug-
gests an increase in the internalization of β-
adrenoceptors during diabetes, prior to overt 
degradation, which, in the context of other dihy-
droalprenolol studies, is suggested to occur by 6 
months of diabetes. Treatment over 48 hours 
with insulin partially restored membrane sur-
face 3H-CGP12177 binding sites [76]. The rapid 
response to insulin suggests that early internali-
zation and impairment of β-adrenoceptor signal-
ing is readily reversible by glycemic control. 
 
The altered expression patterns of myocardial β-
adrenoceptors bear functional consequences. 
The reduced maximum rate of left ventricle dP/
dtmax was associated with a reduction of isopro-
terenol-induced adenylate cyclase activity after 
4 weeks of untreated diabetes, suggesting al-
teration of upstream signaling mediators [71]. 
Paradoxically, pressure transducer evaluation in 
type 1 diabetic rats following administration of 
low-dose β1-adrenoceptor agonist dobutamine 
(1 μg/kg) showed nearly double maximal iso-
volumic pressure development and decay com-
pared to controls. Insulin treatment normalized 
the response in diabetic rats. This suggests an 
increased sensitivity to β-adrenergic stimula-
tion, consistent with an upregulation of β1-
adrenoceptors [47]. However, no attempt to 
quantify adrenoceptors was performed in this 
study. 
 
In isolated perfused diabetic hearts (6 weeks 
post STZ), left ventricular developed pressure 
was significantly lower than controls by as much 
as 50% at higher left atrial filling pressure, asso-
ciated with a 50% reduction in relative β1-
adrenoceptor expression [77]. Treatment with 
the β1-adrenoceptor antagonist metoprolol not 
only increased expression of β-adrenoceptors in 

diabetic hearts, but also improved mechanical 
performance in left ventricular pressures [77]. 
Sharma and colleagues further demonstrated 
concomitant improvement in metabolic perform-
ance in metoprolol-treated rats, characterized 
by an 80% increase in glucose oxidation, 39% 
decrease of palmitate oxidation, driven in part 
by a reduction in carnitine palmitoyl transferase-
1B expression and activity [78, 79]. 
 
Downstream noradrenergic signaling 
 
In addition to changes in innervation and recep-
tors, downstream targets of the SNS have also 
been studied in diabetes. As early as 8 days 
after diabetes induction, the response of ade-
nylate cyclase to β-adrenergic stimulation was 
ablated, whereas other pathways of adenylate 
cyclase activation remained intact [80]. No dif-
ference in dihydroalprenolol binding was ob-
served [80], suggesting a functional uncoupling 
of adenylate cyclase from myocardial β-
adrenoceptors. Additional evidence suggests 
that adenylate cyclase and cAMP inotropic ef-
fects are independently impaired in diabetes, 
with reduced contractile force observed in iso-
lated perfused hearts following stimulation with 
adenylate cyclase activator forskolin, exogenous 
dibutyryl cAMP, or 3-isobutyl-1-methylxanthine 
(IBMX) [81]. Reduced expression of β-
adrenoceptors in isolated perfused 4 week dia-
betic heart also affects calcium mobilization, 
wherein diabetic rats exhibit lower intracellular 
Ca2+ following stimulation with isoproterenol 
[82]. This anomaly would impair the contractile 
response to sympathetic stimulation and stress. 
 
SNS imaging targets with PET and SPECT 
 
Tracer-based imaging of the SNS has gained 
traction in recent years, progressing toward 
more mainstream clinical application. Targets of 
molecular imaging include evaluation of neuron 
integrity at the NET and evaluation of postsy-
naptic expression of β-adrenoceptors at the 
cardiomyocyte membrane (reviewed in [9, 83]) 
(Figure 2A). Additional autonomic targets in-
clude muscarinic receptors [84], angiotensin II 
type 1 receptors [85, 86] and intracellular sig-
naling elements phosphodiesterase-4 [87] and 
diacylglycerol [88], though the validation of 
these tracers is at present unclear [89]. The 
bulk of SNS imaging has been focused on pre-
synaptic measurements of reuptake function 
and postsynaptic adrenoceptor density. 
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Neuronal imaging agents are generally ana-
logues of norepinephrine (Figure 2B), that are 
taken up via the sodium-dependent NET 
(uptake-1) pathway. In SPECT, the prevalent 
tracer is radio-iodinated metaiodobenzylgua-
nidine (123I-MIBG). Availability and regulation 
has limited 123I-MIBG use to research purposes, 
but recent advances have revealed an added-
value of neuronal imaging using 123I-MIBG 
among heart failure patients, which may accel-
erate its application as a clinical diagnostic tool 

[90, 91]. In PET, 11C-meta-
hydroxyephedrine (11C-
HED), 11C-phenylephrine, 
and 11C-epinephrine have 
been evaluated with vary-
ing degrees of success 
(reviewed in [9, 92]). The 
development, characteri-
zation, and application of 
these radiotracers have 
been extensively studied 
and reviewed [9, 92, 93]. 
 
123I-MIBG SPECT imaging 
 
Briefly, retention of 123I-
MIBG was shown to be 
reduced by blockade of 
NET (uptake-1) [94] and 
following sympathectomy 
by phenol application in 
the canine heart [95], 
though a high degree of 
extraneuronal uptake (via 
uptake-2) is consistently 
observed in many animal 
species. Heart transplant 
recipients reflect this ob-
servation, with a complete 
lack of early and late 123I-
MIBG uptake by myocar-
dium devoid of sympa-
thetic innervation [9]. 123I-
MIBG has been applied in 
nuclear cardiology to ex-
amine post-myocardial 
infarct healing [96, 97], 
arrhythmia [98, 99], and 
progression of congestive 
heart failure [100]. Re-
duced contrast between 
the heart and the medi-
astinum is characteristic 
of impaired neuronal func-

tion, which also manifests as enhanced late 
tracer washout [90, 98, 101]. 
 
11C-HED PET imaging 
 
Advantages of the PET tracer 11C-HED include 
high neuronal compared to extraneuronal up-
take [102], long neuronal retention time due to 
partial packaging in vesicles [103], and meta-
bolic stability due to resistance to catechola-
mine metabolism by MAO or COMT [104]. Due 

Figure 2. Established probes for evaluation of cardiac SNS. (A) Targets for mo-
lecular imaging in the sympathetic signaling include (1) presynaptic nervous 
integrity at NET; (2) postsynaptic β-AR density; and (3) indirect evaluation of 
cAMP levels and PKA activation at PDE4. (B) Chemical structures of probes for 
neurohormonal interrogation. 
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to its lipophilicity, 11C-HED can passively diffuse 
from the neuronal varicosity, and is also subject 
to active release during signal transduction. 
Kinetic studies have demonstrated the depend-
ence of 11C-HED retention on the availability of 
NET, established as susceptibility to blockade or 
displacement by the NET inhibitor desipramine. 
This has been observed in isolated perfused rat 
heart [94], ex vivo biodistribution in rats [105-
107] and dogs [94, 108] and more recently 
using small animal PET in rats [93] and mice 
[109]. Retention of 11C-HED is also subject to 
competition for limited reuptake sites with en-
dogenous and exogenous neurotransmitter, as 
demonstrated by treatments with the precursor 
and false neurotransmitter metaraminol [107, 
109], treatments to enhance endogenous nore-
pinephrine such as tranylcypromine [105] and 
by infusion of exogenous norepinephrine [105]. 
Clinical applications of 11C-HED have included 
post-infarct neuronal remodeling [110], tracking 
of post-transplant reinnervation [111, 112], 
arrhythmia [113, 114], congestive heart failure 
[115-117], hibernating myocardium [118, 119], 
hypertrophic cardiomyopathy [120], and coro-
nary artery disease [121]. Evaluation of 11C-HED 
in rats (Figure 3A) has demonstrated similar 
image quality to clinical images (Figure 3B), 
though accelerated tracer washout due to 
heightened basal sympathetic tone is observed 
in rats compared to humans [93]. 

11C-Phenylephrine is subject to metabolism by 
MAO to 11C-methylamine, complicating kinetic 
modeling [93, 122]. 11C-Epinephrine holds 
promise as a sympathetic neuronal marker with 
the added complication of labeled metabolites 
[93, 123]. Retention properties of both of these 
tracers are similar to 11C-HED, with advanta-
geous and disadvantageous characteristics 
(reviewed in [9]). Effectively, retention of 123I-
MIBG or 11C-HED provides a dynamic semi-
quantitative measurement of reuptake, storage, 
and release of norepinephrine from myocardial 
sympathetic neuronal varicosities. 
 
11C-CGP12177 PET imaging 
 
Non-invasive determination of β-adrenoceptor 
density is another target of interest in imaging 
the cardiac SNS. The bulk of research has been 
conducted using the non-selective 11C-
CGP12177 and its derivatives (Figure 2B). La-
beled with tritium, CGP12177 has been utilized 
in binding assays to determine β-adrenoceptor 
density ex vivo [124, 125]. As a radiotracer, 
CGP12177 shows high and sustained uptake in 
myocardium compared to surrounding tissues in 
rat hearts, and is selectively blocked up to 90% 
by β-blockers propranolol, atenolol and unla-
beled compound [126, 127]. Complicated syn-
thesis has limited the use of 11C-CGP12177 to 
some extent, though some clinical applications 

Figure 3. Sample 11C-HED myocardial images. (A) Rat 11C-HED coronal image obtained using Siemens Inveon DPET 
small animal camera showing heart and liver uptake. (B) Reoriented 11C-HED PET cardiac image from a patient with 
obstructive sleep apnea obtained using GE Discovery D690 PET/VCT 64 camera. 
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have emerged, including use in post-myocardial 
infarction [128], heart failure [117, 129], hiber-
nating myocardium [119], and non-ischemic 
cardiomyopathy [130, 131]. A correlation has 
been described between pre- and post-synaptic 
function, as assessed with 11C-HED and 11C-
CGP12177, respectively, with similar reduction 
in sympathetic neuron integrity and myocardial 
β-adrenoceptor density observed among sub-
jects with congestive heart failure [116, 129]. A 
similar correlation was described to early and 
delayed late heart-to-mediastinal ratio of 123I-
MIBG [131]. In a small scale trial in patients 
with stable chronic heart failure due to idio-
pathic cardiomyopathy, β-adrenoceptor density 
measured by 11C-CGP12177 PET predicted 20 
month response to carvedilol treatment, 
wherein the patients with the lowest CGP12177 
binding showed the greatest improvement in 
left ventricular ejection fraction [130]. Applica-
tion of CGP12177 in the diabetic heart has 

been limited to preclinical 
evaluations, but ex vivo biodis-
tribution studies suggest that 
CGP12177 is a suitable radio-
tracer for longitudinal evalua-
tion of β-adrenoceptor density 
in the diabetic heart [127]. 
 
(R)-11C-Rolipram PET imaging 
 
(R)-11C-Rolipram (Figure 2B)
has been characterized in 
small animals for evaluation of 
phosphodiesterase-4 expres-
sion in the heart, providing an 
indirect index of intracellular 
cAMP activation. Preliminary 
evaluation of (R)-11C-rolipram 
imaging has illustrated quality 
myocardium-to-blood and myo-
cardium-to-background con-
trast and specific binding in 
rats (Figure 4AB) and dogs 
(Figure 4C) [132, 133]. Car-
diac binding of (R)-11C-rolipram 
was enhanced by treatments 
elevating endogenous norepi-
nephrine and reduced when 
phosphodiesterase-4 is 
blocked [133, 134]. By con-
trast in animal models of 
chronic obesity and acute adri-
amycin-induced cardiotoxicity, 
characterized by elevated sym-
pathetic drive and catechola-

mine levels, no increase in (R)-11C-rolipram car-
diac binding was observed in response to block-
ade of the NET by desipramine and increased 
synaptic norepinephrine [135, 136]. This finding 
is consistent with downregulation of β-
adrenoceptors. 
 
Preclinical imaging of SNS in diabetes 
 
The development of specific radiotracers and 
dedicated small animal imaging systems has 
facilitated the interrogation of cardiac sympa-
thetic nervous integrity in rodent models of dia-
betes using SPECT and PET imaging, ex vivo 
biodistribution, and autoradiography techniques 
(Table 2). 
 
123I-MIBG preclinical imaging in diabetes 
 
A small number of preliminary imaging studies 
have been conducted using radioiodinated 123I-

Figure 4. Sample (R)-11C-rolipram images. (A) Rat (R)-11C-rolipram sagittal 
whole body image obtained using Siemens Inveon DPET small animal cam-
era showing heart, brain, and liver uptake. (B) Coinjection of cold (R)-
rolipram blocks the specific binding of (R)-11C-rolipram to phosphodiesterase
-4 in brain and heart. (C) Summed canine (R)-11C-rolipram coronal image 
obtained using ECAT-ART cardiac PET camera shows myocardial uptake. 
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MIBG in diabetic rodents. Small animal SPECT 
imaging revealed maintained uptake but en-
hanced myocardial washout of 123I-MIBG over 
30-120 min after injection among STZ diabetic 
C57/Bl6 mice compared to controls (41 vs 
21%). Liver washout and urinary excretion were 
also accelerated. 3H-Desipramine binding assay 
demonstrated a reduction of NET density (Bmax) 
in hearts of diabetic compared to non-diabetic 
mice (136 vs 244 fmol/mg protein) with no 
change in binding affinity (kd) [137]. Maintained 
initial uptake with enhanced washout suggests 
the presence of functional sympathetic nerve 
terminals and elevated sympathetic tone, with 
downregulation of NET consistent with other 
models of diabetes [24, 41]. 
 
Similar observations were made using pinhole 
SPECT studies in Wistar STZ rats, with washout 
acceleration to 21.0 as compared to 12.8 %/h 
in non-diabetic controls [138]. Evaluation of 123I-
MIBG in STZ rats at 8 weeks demonstrated re-
duced uptake at 60 min after injection com-
pared to age-matched healthy controls and ac-
celerated washout over 4 hours (36 vs 22%). 
The altered tracer kinetics were corroborated by 
an elevation of plasma norepinephrine (3.6 vs 
2.4 nmol/l) and reduced β-adrenoceptor expres-
sion measured by 125I-cyanopindolol binding 
assay (36 vs 52 fmol/mg protein) [139]. In com-
paring Zucker obese with lean rats at 22 weeks 

of age, obese animals displayed higher initial 
uptake of 123I-MIBG (0.67 vs 0.18 counts × kg 
body weight / pixel × injected dose). However, 
the washout was significantly accelerated in 
obese compared to lean rats (44 vs 19%) [139]. 
No change in norepinephrine was observed, but 
β-adrenoceptor density was 15% lower in 
Zucker obese rats. 
 
In ex vivo studies, regional distribution of 125I-
MIBG was compared with sestamibi (MIBI) using 
autoradiographic techniques in STZ diabetic 
rats to discern sympathetic neuronal density 
and perfusion, respectively. A decrease in infe-
rior wall 125I-MIBG distribution absorption ratio 
was observed in 10 week diabetic rats, with no 
comparable decrease observed in MIBI distribu-
tion. By contrast, no difference was reported in 
control rats. These observations correlated to 
an increase in regional norepinephrine levels in 
diabetic compared to non-diabetic rats (8.2 vs 
4.3 μg/g anterior wall; 8.7 vs 3.9 μg/g inferior 
wall) and a moderate decrease in inferior wall 
NET density (641 vs 809 fmol/mg protein) as 
measured by 3H-desipramine binding assay 
[140]. This suggests that while blood flow was 
maintained, a regional impairment of anterior 
sympathetic innervation was apparent. In non-
obese type 2 diabetic Goto-Kakizaki rats (8 
weeks old), the same investigators described 
maintained MIBI and a moderate decrease in 

Table 2. Summary of Preclinical Myocardial Presynaptic Imaging Studies in Diabetic Rodents 
Model Duration Tracer Method Finding Ref 

SD, STZ 55 mg/kg iv 4 weeks 125I-MIBG ex vivo autoradiogra-
phy 

-13% inferior LV retention [140] 

SD, STZ 45 mg/kg ip, 
high fat feeding 

8 weeks 11C-HED ex vivo biodistribution -12% LV retention [24] 

WK, STZ 50 mg/kg ip 6 months 
9 months 

11C-HED ex vivo biodistribution -33% distal LV retention 
-40% proximal LV retention  
-44% distal LV retention 

[30] 

Goto Kakizaki 8 weeks 125I-MIBG ex vivo autoradiogra-
phy 

-23% anterior LV retention  
-41% inferior LV retention 

[41] 

WK, STZ 60 mg/kg iv 8 weeks 123I-MIBG pinhole SPECT -58% counts x kg / pixel 
+61% washout rate 

[139] 

SHR, STZ 60 mg/kg 8 weeks 123I-MIBG pinhole SPECT -58% counts x kg / pixel 
+34% washout rate 

[139] 

Zucker Obese 22 weeks 123I-MIBG pinhole SPECT +272% counts x kg / pixel 
+44% washout rate 

[139] 

WK, STZ 60 mg/kg iv 8 weeks 123I-MIBG small animal SPECT +64% washout rate [138] 

mice, STZ 35 mg/kg 
ip × 5 d 

7 months 123I-MIBG small animal SPECT +95% LV washout rate  
+14% initial LV uptake 

[137] 

SD, Sprague Dawley; WK, Wistar Kyoto; SHR, Spotaneously Hypertensive Rat; 123I-MIBG, metaiodobenzylguanidine; 11C-HED, hy-
droxyephedrine 
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125I-MIBG inferior to anterior wall distribution 
absorption ratio. No difference in regional car-
diac norepinephrine concentration was de-
tected between Goto-Kakizaki and non-diabetic 
rats, but a dramatic reduction of NET density 
was observed by binding assay (263 vs 364 
fmol/mg protein anterior wall; 251 vs 459 fmol/
mg protein inferior wall) [41].  
 
11C-HED preclinical imaging in diabetes 
 
Distribution of 11C-HED has been assessed in 
STZ-induced diabetic rats using gamma count-
ing techniques. At 6 months of diabetes, STZ 
rats exhibited a significant 33% reduction of 11C
-HED retention restricted to the distal left ventri-
cle compared to non-diabetic controls, with a 
mild but significant increase in left ventricle 
norepinephrine (711 vs 600 ng/g proximal; 613 
vs 491 ng/g distal). By 9 months of diabetes, 
this defect was observed in the entire left ventri-
cle, with reduced HED accumulation by 40-44% 
in proximal and distal left ventricle segments. At 
the 9 month timepoint, significant reduction of 
norepinephrine (503 vs 694 ng/g proximal; 351 
vs 536 ng/g distal) and nerve growth factor (4.1 
vs 10.1 ng/g proximal; 2.9 vs 7.4 ng/g distal) 
was described. Taken together these data indi-
cated that while autonomic neuropathy was 
present at 9 months, this was preceded (at 6 
months) by a regional dysregulation of sympa-
thetic neurons during which norepinephrine 
release was not impeded [30]. 
 
A similar result was obtained at 2 months of 
diabetes in STZ diabetic rats fed high fat diet to 
produce insulin resistance. Retention of 11C-
HED in cardiac regions was globally reduced by 
15-30%, with a corresponding increase in car-
diac norepinephrine levels (20%) and a de-
crease in NET expression (-17%) compared to 
age-matched, high fat diet-fed controls. Immu-
nostaining for tyrosine hydroxylase confirmed 
the maintenance of intact sympathetic neurons 
in the left ventricle of diabetic rats [24]. Collec-
tively, these studies have built a foundation for 
further longitudinal evaluation of sympathetic 
dysregulation in the diabetic rodent heart. 
 
Postsynaptic preclinical imaging in diabetes 
 
To date, no small animal imaging has been con-
ducted using 11C-CGP12177 derivatives to visu-
alize cardiac β-adrenoceptors. In high fat diet-
fed STZ diabetic rats, 8 weeks of hyperglycemia 

was shown to reduce specific binding of 3H-
CGP12177 to cardiac β-adrenoceptors by 30-
40% compared to controls [127]. This result 
was in conjunction with a significant decrease in 
relative myocardial β1-adrenoceptor expression 
and no change in relative β2-adrenoceptor ex-
pression compared to controls [127], consistent 
with receptor internalization and degradation 
following sustained hyperglycemia. Norepineph-
rine levels in hyperglycemic rats were elevated 
2.5 fold in plasma and 1.2 fold in myocardium 
[24]. This study supports the suitability of 11C-
CGP12177 for longitudinal study of membrane 
β-adrenoceptor expression during the develop-
ment and treatment of diabetes. 
 
The evidence of altered adenylate cyclase regu-
lation [80] suggests a potential role for the 
phosphodiesterase-4 inhibitor (R)-11C-rolipram 
as a surrogate marker of cAMP activity during 
the development of diabetic cardiomyopathy. In 
conditions of sympathetic hyperactivity such as 
diabetes, examination of myocardial phosphodi-
esterase-4 expression and activity may provide 
insight into the development of signaling abnor-
malities. 
 
Clinical imaging of SNS in diabetes 
 
123I-MIBG clinical imaging in diabetes 
 
SNS imaging studies in the diabetic patient 
population have largely been limited to investi-
gation of presynaptic nervous integrity using 123I
-MIBG SPECT or 11C-HED PET. Evaluation of post
-synaptic β-adrenoceptors in human subjects 
has been limited. The trials have overwhelm-
ingly focused on type 1 diabetes and the devel-
opment of autonomic neuropathy, though some 
instances of early sympathetic dysregulation in 
diabetes have also been described (Table 3). 
 
Mean late heart-to-mediastinal ratio of 123I-
MIBG uptake was significantly lower in diabetic 
subjects compared to non-diabetic subjects, 
regardless of heart failure progression. Among 
diabetic patients, lower heart-to-mediastinal 123I
-MIBG late uptake ratio (<1.60) was associated 
with three times greater rate of heart failure 
progression as compared to diabetic patients 
with a normal (>1.60) heart-to-mediastinal 123I-
MIBG uptake ratio (33.5 vs 11.2% event rate) 
[141]. There was no difference in plasma nore-
pinephrine levels between diabetic and non-
diabetic subjects, suggesting greater prognostic 
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power from neuronal imaging. 
 
Greater impairment in baroreflex sensitivity was 
found among hypertensive type 2 diabetic pa-
tients as compared to normotensive diabetics, 
paralleled by a modest decrease in 123I-MIBG 
uptake (heart-to-mediastinum ratio) at early and 
delayed stages and an increased washout rate 
[142]. No difference in high and low frequency 
power heart rate variability or plasma norepi-
nephrine was found between these subgroups 
of diabetics [142]. 
 
In a study of 114 patients, autonomic function 
testing by heart rate variability and reflex tests 
identified 16 patients with cardiac autonomic 
neuropathy. Patients with neuropathy exhibited 
a modest decrease in 123I-MIBG heart to medi-
astinal ratio compared to those without (1.6 vs 
1.8) which significantly correlated with reduced 
resting tissue Doppler peak early diastolic veloc-
ity (4.7 vs 6.3 cm/s) [143]. Regional analysis 
demonstrated denervation particularly localized 
to the anterior and lateral walls of the ventricle 
[143]. 
 
11C-HED clinical imaging in diabetes 
 
Stevens and colleagues described a defect in 
11C-HED retention in ~7-9% of the distal left 
ventricle of diabetic patients, consistent with 

sympathetic denervation or dysinnervation 
[144]. At 3 years follow up, among patients who 
subsequently achieved good glycemic control 
this deficit of 11C-HED retention index was re-
duced by 77% compared to the first scan, and 
average retention index score in proximal and 
distal segments improved by 30%. By contrast, 
among patients with poor glycemic control the 
size of the apical defect was increased by 
340%, with distal segments showing a further 
21% decrease in retention index [144]. Interest-
ingly, no improvement in autonomic reflex test 
scores was observed among the patients with 
good glycemic control [144]. A similar capacity 
for recovery was shown in a 1 year follow-up 
scintigraphy study among type 1 diabetic pa-
tients, wherein patients achieving glycosylated 
hemoglobin <8% exhibited significant reduction 
of global and regional 123I-MIBG uptake score 
[145].  
 
In the presence of coronary artery disease, fixed 
defects of 11C-HED retention remain, but were 
not complicated by the presence of diabetes. 
The defect size of 11C-HED did not increase in 
size or severity over a 1 year follow up among 
coronary artery disease patients during normal 
therapy [146]. These patients exhibited good 
glucose control, with HbA1c levels of 6.9±0.9%, 
matching the cutoff value for glycemic control 
previously identified [144]. However, in seg-

Table 3. Summary of Clinical Myocardial Presynaptic Imaging Studies in Diabetic Patients 
Tracer N Groups Finding Ref 
11C-HED 10 

11 
  

type 1 diabetic 
healthy controls 

- reduced retention index (-30%) in diabetics 
- increased retention index (+25%) 3 y follow-up, good control 
- decreased retention index (-14%) 3 y follow-up, poor control 

[144] 

11C-HED 16 
12 
10 

diabetic MNA 
diabetic 
non-diabetic 

- increased area of retention defects (36% of LV) in MNA patients 
compared to diabetic controls (<1% of LV) 

[147] 

11C-HED 23 
10 
13 

CAD 
  type 2 diabetic 
  non-diabetic 

- slightly lower retention (-2.5%, p=0.0007)  at 1 y follow up in 
diabetic CAD patients 
- no change in non-diabetic CAD patients at 1 y 

[146] 

123I-MIBG 11 diabetic - reduced 1-y follow-up uptake score in poor glucose control 
- no change 1 y follow-up 123I-MIBG uptake in good glucose control 

[145] 

123I-MIBG 7 
26 
  

CAN 
healthy controls 

- reduced H/M ratio in CAN patients 
- correlation of H/M ratio to early diastolic tissue velocity 
(r2=0.32, p=0.01) 

[143] 

123I-MIBG 33 
15 
18 

type 2 diabetic 
  hypertensive 
  normotensive 

- enhanced washout in hypertensive diabetic (+20%) 
- lower H/M ratio in hypertensive diabetic (-14%) 

[142] 

123I-MIBG 961 
343 
618 

NYHA II-III 
  diabetic 
  non-diabetic 

- lower H/M ratio in diabetics vs non-diabetics 
- lower H/M ratio in diabetics with heart failure progression 
  

[141] 

MNA, microangiopathy; CAD, coronary artery disease; CAN, cardiac autonomic neuropathy; H/M heart-to-mediastinal 
ratio 
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ments with severely reduced coronary flow re-
serve, a significant reduction of 11C-HED reten-
tion was observed, which was purported to re-
flect ischemic rather than hyperglycemic neu-
ronal damage [146]. 
 
Indeed, in a small cohort Pop-Busui and col-
leagues identified a significant difference in 11C-
HED retention as affected area among type 1 
diabetic patients with early microangiopathy as 
compared to the stable patient population. Dia-
betic patients showed generally lower plasma 
norepinephrine levels at rest, an amplified re-
sponse to the cold pressor test, baroceptor re-
flex impairment, and echocardiographic indica-
tors of diastolic dysfunction [147]. In addition, 
myocardial blood flow reserve was reduced in 
diabetics compared to healthy subjects, and 
reduced further in the diabetic group with early 
microangiopathy [147]. This loss of flow reserve 
may derive from loss of vascular response to 
norepinephrine stimulation, consistent with con-
stitutively hyperactivated sympathetic nervous 
drive. Together, these observations support the 
presence of abnormal noradrenergic signaling 
and presynaptic sympathetic function even in 
the absence of diabetic autonomic neuropathy. 
 
Recent clinical investigations with 123I-MIBG 
have made a strong case for the prognostic 
value of molecular imaging of the cardiac SNS. 
Heart-to-mediastinal uptake ratio of 123I-MIBG 
(<1.60 threshold) was independently predictive 
of heart failure progression, arrhythmic events, 
cardiac death, and all-cause mortality among a 
heart failure patient population over a two year 
period [90]. While this study did not directly 
evaluate the benefit of 123I-MIBG imaging in 
these patients, it provides a solid foundation for 
the use of sympathetic imaging data in the 
stratification of patient risk to inform long term 
treatment options. Subjects with events had a 
modest elevation of plasma norepinephrine 
compared with event-free subjects (722 vs 642 
pg/ml), but norepinephrine levels alone were 
not of prognostic value in the study [90]. In pre-
vious reports, plasma norepinephrine has been 
identified as an independent predictor of car-
diac events in heart failure patients [148]. 
 
Collectively, the clinical data strongly support 
the utility of 123I-MIBG SPECT and 11C-HED PET 
imaging in stratifying risk of cardiovascular 
events among diabetic patients, particularly 
progression to heart failure and sudden cardiac 

death. The regression of sympathetic defects to 
glycemic control underscores the relationship 
between hyperglycemia, norepinephrine, and 
cardiac noradrenergic signaling, and suggests 
that altered regulation of sympathetic neuronal 
signaling precedes overt neuropathy. 
 
Future perspectives 
 
Considerable evidence from basic and clinical 
studies have established the presence of abnor-
mal SNS signaling in the diabetic heart, as both 
a consequence and cause of systolic and dia-
stolic dysfunction. Diabetes evokes elevated 
systemic and cardiac norepinephrine, leading to 
blunted baroreceptor adrenergic reflex, reduced 
heart rate variability, and downregulation of 
signaling elements including presynaptic NET 
and postsynaptic β-adrenoceptors (Figure 5). 
These abnormalities partially underlie the 
added risk of cardiovascular morbidity and mor-
tality incurred by the diabetic population. As 
molecular imaging research in this area pro-
gresses, a number of opportunities and ques-
tions stand to be addressed. 
 
As discussed in this review, the bulk of present 
studies have focused on the development of 
sympathetic neuronal changes in type 1 diabe-
tes, with limited imaging and non-imaging 
evaluation in the type 2 diabetic population. 
Preclinical imaging studies in established mod-
els of type 2 diabetes may provide additional 
insight into the progression of autonomic neu-
ropathy and sympathetic signaling abnormali-
ties in the development of diabetes. Some evi-
dence suggests that neuropathy is either de-
layed or absent in this population, providing the 
opportunity to study sympathetic hyperactivity 
and increased myocardial norepinephrine re-
lease and the effects of therapies to dampen 
this sympathetic signal. 
 
The continued development of micro imaging 
techniques will permit a longitudinal assess-
ment of diabetes progression in small animal 
models. Basic research suggests that denerva-
tion is preceded by a transient period of sympa-
thetic hyperactivity, which may contribute to the 
deterioration of myocardial performance. Serial 
studies in diabetic animals would facilitate the 
complementary analysis of sympathetic neu-
ronal imaging, functional measures such as 
echocardiography and left ventricular hemody-
namics, and in vitro determination of pathologi-
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cal mechanisms. These studies can be further 
translated to clinical imaging application, 
wherein cardiovascular risk may be identified by 
PET or SPECT. 
 
In addition to established imaging of sympa-
thetic nevous integrity (11C-HED, 123I-MIBG) and 
β-adrenoceptor density (11C-CGP12177), con-
tinuing research can explore novel neurohor-
monal targets in diabetes. Indirect measure-
ments of cAMP levels by (R)-11C-rolipram may 
provide a complementary measurement of sym-
pathetic tone in diabetes.  While the majority of 
research to date has focused on the sympa-
thetic signaling axis, changes in parasympa-
thetic neuronal signaling may also play a role in 
diabetic cardiac risk. Evaluation of myocardial 
m u s c a r i n i c  r e c e p t o r s  u s i n g  1 1 C -
methylquinuclidinyl benzilate (11C-MQNB) may 

provide additional information on cardiac func-
tion in diabetes. The development of 11C-labeled 
angiotensin II type 1 receptor antagonists pro-
vide the opportunity for dynamic evaluation of 
altered angiotensin II signaling, which partially 
regulates sympathetic tone. Moreover, diabetic 
patients treated with angiotensin II type 1 re-
ceptor blockers have been shown to exhibit im-
proved cardiovascular outcomes. 
 
In the long term, the literature demonstrates 
that abnormalities in SNS signaling identified 
using PET and SPECT imaging may be of value 
in the identification of diabetic patients at great-
est risk of cardiac disease, even prior to the 
development of autonomic neuropathy. Given 
the link between hyperglycemia and elevated 
norepinephrine, sympathetic neuronal imaging 
may be further applied to evaluate myocardial 

Figure 5. Schematic of sympathetic nervous activation in diabetes and physiological consequences. Shift in myocar-
dial metabolism to fatty acids over glucose stimulate nonesterified fatty acid (NEFA) accumulation and insulin resis-
tance, elevated glucose and insulin levels, and accumulation of lipid metabolites, collagen, and advanced glycation 
end products (AGE), leading to reduced left ventricular compliance and SNS activation. Chronic elevation of NE leads 
to downregualtion of NET and β-adrenoceptors with several functional consequences. 
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effects of, and thereby guide, anti-diabetic ther-
apy. 
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