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Abstract: Cardiovascular disease is the leading cause of death worldwide. Unstable atherosclerotic plaques are 
prone to rupture followed by thrombus formation, vessel stenosis, and occlusion and frequently lead to acute myo-
cardial infarction and brain infarction. As such, unstable plaques represent an important diagnostic target in clini-
cal settings and the specific diagnosis of unstable plaques would enable preventive treatments for cardiovascular 
disease. To date, various imaging methods such as computed tomography (CT), magnetic resonance imaging (MRI), 
ultrasound (US), and intravascular ultrasound (IVUS) have been widely used clinically. Although these methods have 
advantages in terms of spatial resolution and the ability to make detailed identification of morphological alterations 
such as calcifications and vessel stenosis, these techniques require skill or expertise to discriminate plaque insta-
bility, which is essential for early diagnosis and treatment and can present difficulties for quantitative estimation. 
On the other hand, nuclear imaging techniques such as positron emission tomography (PET) and single photon 
emission computed tomography (SPECT) can noninvasively collect quantitative information on the expression levels 
of functional molecules and metabolic activities in vivo and thus provide functional diagnoses of unstable plaques 
with high sensitivity. Specifically, unstable plaques are characterized by an abundance of invasive inflammatory 
cells (macrophages), increased oxidative stress that increases oxidized LDL and its receptor expressed on cells in 
the lesions, increased occurrence of apoptosis of macrophages and other cells involved in disease progression,  
increased protease expression and activity, and finally thrombus formation triggered by plaque rupture, which is 
the most important mechanism leading to the onset of infarctions and ischemic sudden death. Therefore, these 
characteristics can all be targets for molecular imaging by PET and SPECT. In this paper, we review the present state 
and future of radiolabelled probes that have been developed for detecting atherosclerotic unstable plaques with 
nuclear imaging techniques. 
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Introduction

Despite recent therapeutic advances, cardio-
vascular disease remains the leading cause of 
death worldwide [1]. Since stenosis severity is 
reported to be a poor predictor of subsequent 
acute myocardial infarction (AMI) [1], methods 
to directly evaluate the biological properties of 
atherosclerotic lesions would be valuable diag-
nostic tools [2]. Atherosclerotic plaques formed 
by lipid accumulation in vessel lesions have a 
variety of characteristics, ranging from stable 
to unstable [3]. Unstable plaques are prone to 
rupture followed by thrombus formation, vessel 

stenosis, and occlusion and frequently lead to 
AMI and brain infarction [4, 5]. Thus, the spe-
cific diagnosis of unstable plaques would 
enable preventive treatments for AMI and brain 
infarction and represents a promising diagnos-
tic target in clinical settings.

Unstable plaques are characterized by a large, 
soft lipid core that contains extracellular lipids 
and is covered by a thin fibrous cap, as well as 
an abundance of invasive inflammatory cells 
such as macrophages. In contrast, stable 
plaques have a small lipid core, thick fibrous 
caps, and little or no macrophage invasion with 
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the development of fibrous tissue resulting in 
intimal thickening of the vessel [6-9]. 

To date, various non-invasive imaging and inva-
sive methods such as computed tomography 
(CT), magnetic resonance imaging (MRI), ultra-
sound (US) and intravascular ultrasound (IVUS) 
have been widely used clinically [10-15]. These 
approaches have advantages in terms of spa-
tial resolution and the ability to identify in detail 
morphological alterations such as calcifica-
tions and vessel stenosis, a degree of which is 
retained by compensative outward dilation of 
the vessel, especially in the early phase of ath-
erosclerosis, and further deteriorates after 
over 40% of the growth [16]. Thus, such mor-
phological imaging techniques have disadvan-
tages in detecting early/mild atherosclerosis. 
Furthermore, about 70% of diseases leading to 
AMI were reported to be those with less than 
50% stenosis and 80-90% of the culprit lesions 
for infarction were those with less than 70% 
stenosis [17]. Therefore, the functional discrim-
ination of plaque instability rather than the 
degree of stenosis is essential for early diagno-
sis and treatment. Although efforts have been 

made towards detecting unstable plaques 
using these morphological imaging techniques, 
they require skill or expertise to distinguish the 
plaque properties, which could make quantita-
tive estimation challenging. On the other hand, 
nuclear imaging techniques such as positron 
emission tomography (PET) and single photon 
emission computed tomography (SPECT) can 
noninvasively collect quantitative information 
on the expression levels of functional mole-
cules and metabolic activities in vivo and thus 
provide functional diagnoses of unstable 
plaques with high sensitivity [18].

In this paper, we review the present state and 
future of radiolabelled probes (Figures 1 and 2) 
that have been developed for detecting unsta-
ble atherosclerotic plaques using nuclear imag-
ing techniques [2, 3, 19-24].

Probes to detect macrophage activity

2-[18F]Fluoro-2-deoxy-D-glucose ([18F]FDG) is 
taken up by cells via the glucose transporter 
and trapped inside cells after phosphorylation 
by hexokinase [25]. [18F]FDG has proven to be 

Figure 1. Atherosclerosis progression and potential targets for molecular imaging. MCP-1: monocyte chemotactic 
protein-1, LDL: low density lipoprotein, Mφ: macrophage, LOX-1: lectin-like oxidized LDL receptor-1, MMP: matrix 
metalloproteinase, MT-MMP: membrane type MMP, TF: tissue factor.
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Figure 2. Probes described in this article. DTPA: diethylenetriaminepentaacetic acid, Dil: long-chain dialkylcarbocya-
nine, SAAC: single amino acid chelate.

useful in varied clinical fields including diagno-
sis, prediction and measurement of treatment 
effectiveness in tumors, myocardial infarction, 
and epilepsy, making it one of the most com-
monly used probes in nuclear medicine [26-
29]. In unstable plaques, an abundance of 
invading macrophages causes inflammation 
that makes plaques vulnerable to rupture. 
Therefore, specific imaging of macrophages is 
effective for diagnosing unstable plaques in 
atherosclerotic lesions. Since glucose metabo-
lism is active in macrophages, [18F]FDG has 
been used widely for basic and clinical studies 
[27]. 

In a basic study using a rabbit model, myocar-
dial infarction-prone Watanabe heritable hyper-
lipidemic rabbits (WHHLMI rabbit), which pres-

ent atherosclerotic lesions similar to those 
seen in humans [30-32], significantly higher 
accumulation of [18F]FDG in WHHLMI rabbit 
vessels than that in normal New Zealand White 
rabbit vessels was observed. Also, the probe 
accumulation in vessels of model rabbits was 
related to the quantity of macrophages and not 
intimal thickening, indicating that [18F]FDG can 
diagnose unstable plaques as it detects invad-
ing macrophages [33]. In fact, the usefulness 
of [18F]FDG to detect unstable plaques has 
been indicated by several clinical studies 
[34-36]. 

Since several statins reduce cholesterol levels 
in the blood but do not directly affect the accu-
mulation of invading macrophages in athero-
sclerotic lesions [37, 38], [18F]FDG imaging to 
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diagnose the vulnerability of lesions during 
drug treatment should be useful for planning 
subsequent treatments as well as aiding drug 
development in clinical trials. In studies where 
rabbits were treated with probucol, [18F]FDG 
uptake in the atherosclerotic vessels decreased 
along with reductions in macrophages [39-41]. 
In clinical trials to develop atherosclerotic 
drugs, [18F]FDG imaging was used as an imag-
ing biomarker [42]. Despite its usefulness as a 
probe, care must be taken in evaluating [18F]
FDG imaging results because [18F]FDG uptake 
in vessels can be affected by several factors 
such as diet and lifestyle changes, as well as 
drug administration [43]. 

In addition, plaque-invading macrophages 
accompany increased construction of cell 
membranes with proliferative activation, which 
induces an increase in the uptake of choline, a 
constituent of the cell membrane. Thus, [11C]
choline and the 18F labeled choline analog ([18F]

fluoro choline ([18F]FCH)) were evaluated for 
their ability to detect unstable plaques and 
both were reported to image unstable plaques 
with higher sensitivity than [18F]FDG [44-46]. 
Fatty acids are a common constituent of ath-
erosclerotic plaques and are synthesized in the 
plaque. Since a main substrate of fatty acid 
synthesis is acetyl-coenzyme-A, which is pro-
duced from acetate [47], [11C]acetate PET may 
have the potential to provide additional infor-
mation for characterizing atherosclerotic 
plaques, similar to its current use in imaging 
procedures used to evaluate tumors and myo-
cardial oxidative metabolism [48]. Indeed, the 
feasibility of [11C]acetate PET for imaging arte-
rial wall alterations has been demonstrated in 
a cohort of asymptomatic patients [49].

Probes to detect LOX-1

Lectin-like oxidized LDL receptor-1 (LOX-1) is a 
receptor for oxidized LDL and is expressed on 

Figure 3. Planar images of WHHLMI and JW rabbits at 10 min and 24 hr post administration of 99mTc-LOX-1 mAb and 
subclass-matched control antibody (99mTc-IgG2a). The atherosclerotic abdominal aorta was clearly visible 24 hr post 
administration in the WHHLMI rabbits given 99mTc-LOX-1 mAb while high blood pool radioactivity in the abdominal 
aorta was shown in every rabbit at 10 min. Arrows = aorta; K = kidney; L = liver; S = spleen.
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vascular endothelial cells, smooth muscle cells, 
monocytes, and macrophages in atheroscle-
rotic lesions. LOX-1 is related to lesion progres-
sion and induces development of plaques and 
destabilization by several mechanisms: 1) 
induction of cell adhesion molecule and leuco-
cyte chemotactic factor expression on the sur-
face of vascular endothelial cells; 2) facilitation 
of foam cell formation from macrophages; 3) 
induction of apoptosis in smooth muscle cells 
(spontaneous cell death); and 4) induction of 
matrix metalloproteinases (MMP) that degrade 
the extracellular matrix in plaques [50-57]. 
Therefore, LOX-1 is an important target for 
nuclear imaging. In fact, the instability of ath-
erosclerotic plaques was reported to be highly 
correlated with LOX-1 expression in a WHHLMI 
rabbit model [58]. 

A radiolabeled probe for LOX-1, 99mTc labeled 
monoclonal antibody ([99mTc]anti-LOX-1 mAb), 
was evaluated in WHHLMI rabbits [59]. As 
expected from the expression profile of LOX-1 in 
atherosclerotic vessels, [99mTc]anti-LOX-1 mAb, 
which recognizes the LOX-1 protein extracellu-
lar domain as its epitope, could detect athero-
sclerotic vessels in WHHLMI rabbits in planar 
imaging when compared with control rabbits 
(Figure 3). In addition, the radioactivity accu-
mulation in vessels was correlated with the 
instability index of lesions estimated from 
immunohistochemical staining and the speci-
ficity of accumulation in unstable lesions was 
higher than that of [18F]FDG. Another example 
of the use of LOX-1 as a targeting probe was a 
liposome probe coated with anti-LOX-1 mAb on 
its surface as a targeting moiety and loaded 
with 111In, Gd, and fluorophores as signal emit-
ting moieties for multimodality imaging [60]. In 
vivo evaluation using ApoE knock out mice 
revealed that this multifunctional probe could 
image atherosclerotic lesions by MRI, as well as 
with optical and nuclear imaging. In accordance 
with results from a previous study, radioactivity 
accumulation was related to LOX-1 expression, 
macrophage existence, apoptosis occurrence, 
and MMP-9 expression, indicating that LOX-1 is 
a promising target for evaluating unstable 
plaques in in vivo imaging. Another scavenger 
receptor, CD68, has been studied as a target 
for molecular imaging. 124I labeled CD68 conju-
gated to an Fc-fragment was evaluated as a 
tracer in ApoE knock out mice to indicate the 
enhanced radioactivity in aortic lesions by ex 
vivo autoradiographic analysis [22].

Probes to detect apoptosis

During atherosclerosis progression, macro-
phage apoptosis contributes to the formation 
of the lipid core of plaques while smooth mus-
cle cell apoptosis destabilizes the plaque’s 
fibrous cap by suppressing extracellular matrix 
formation [61, 62]. As such, apoptosis imaging 
is useful for evaluating the instability of athero-
sclerotic lesions. [99mTc]Annexin A5 was devel-
oped as an imaging agent for apoptosis due to 
its ability to bind to phosphatidyl serines that 
typically reside in the inner leaflet of cell mem-
branes and become exposed on the outer sur-
face of cell membranes during apoptosis [63-
66]. [99mTc]Annexin A5 has also been widely 
used in atherosclerotic imaging [67-70] and 
reportedly can image unstable plaques more 
specifically than [18F]FDG [71]. The accumula-
tion of [99mTc]Annexin A5 in atherosclerotic 
plaques represents the treatment efficiency of 
caspase inhibitors [70]. While apoptosis has 
been recognized as a promising target to esti-
mate atherosclerosis in studies with [99mTc]
Annexin A5, low molecular weight probes such 
as 18F labeled isatin derivatives have also been 
developed recently [72, 73]. 

Probes to detect MMP 

Unstable plaques are morphologically charac-
terized by a thin fibrous cap that overlays a 
large lipid core. MMPs degrade the extracellu-
lar matrix that constitutes this fibrous cap, 
resulting in plaque destabilization [74-76]. 

MMPs can be divided into two groups: soluble 
and membrane-bound [77-79]. Most soluble 
MMPs, including MMP-2 and MMP-9, require 
extracellular post-translational cleavage to 
become biologically active following release 
from cells. A membrane-bound MMP, mem-
brane type-1 matrix metalloproteinase (MT1-
MMP or MMP-14), mediates activation of 
MMP-2 and MMP-13 on the cell surface. 
Increased expression of MMP-2 and MMP-9 
has been observed in human atherosclerotic 
lesions [74, 80, 81] and these MMPs are known 
to cleave native type IV, V, VII, and X collagens 
and elastin, as well as the degradation prod-
ucts of collagens types I, II, and III after prote-
olysis by collagenases such as MMP-1 and 
MMP-13. In a recent animal study, co-distribu-
tion of MT1-MMP and MMP-2 was demonstrat-
ed in grade IV atheroma, indicating a possible 
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role for MT1-MMP in the destabilization of ath-
erosclerotic plaques [82], which is supported 
by MT1-MMP expression that was observed in 
human atherosclerotic plaques [83, 84]. Thus, 
MMPs are potential targets for diagnostic imag-
ing of atherosclerotic plaques that are at higher 
risk for rupture [85, 86]. In the development of 
MMP imaging probes, the following three 
approaches have been pursued.

The first strategy involves radiolabelled MMP 
substrates that remain within the lesions after 
degradation by activated MMPs [87] and was 
used in one of the first attempts to image MMP 
activity in vivo for optical imaging of tumor-
associated MMP activity. The resulting imaging 
probe was a kind of smart probe containing a 
MMP-2 peptide substrate with quenched near-
infrared fluorochromes that are cleaved upon 
recognition by the MMP [88]. Recently, an acti-
vatable SPECT imaging probe specific for MMP-
14 using a cell penetrating peptide as the 
retention moiety in the cells after MMP recogni-
tion was reported to be partly successful in in 
vitro experiments [89]. 

The second strategy uses radiolabelled MMP 
inhibitors such as [99mTc]RP805 (MPI) and [111In]

RP782, which have been shown to have higher 
accumulation in vessels of apoE KO mice as 
compared to control mice [90, 91]. The vessel 
accumulation of [99mTc]RP805 was reported to 
be correlated with the expression of MMP-2, -9 
and macrophages and is effective for assess-
ing the treatment effect of statins [92]. In addi-
tion, since MMP-2 and MMP-9 expression was 
higher than the rate of apoptosis in progressive 
atherosclerotic lesions in apoE KO mice, [99mTc]
RP805 was presumed to be more useful for 
evaluating later stages of atherosclerosis than 
is [99mTc]Annexin A5 [93]. Further, low uptake of 
[99mTc]RP805 in the myocardium provided 
another advantage over [18F]FDG to yield high 
S/N ratios for imaging of coronary arteries [22]. 

The third strategy involves radiolabelled mono-
clonal antibodies such as 99mTc labeled mono-
clonal antibodies specific for membrane-bound 
MMPs ([99mTc]anti-MT1-MMP mAb) [94]. In a 
recent study comparing MMP-2 with MT1-MMP, 
MT1-MMP was reported to be expressed spe-
cifically in unstable lesions that are prone to 
rupture, indicating its potential use as a target 
for molecular imaging [82]. Indeed, [99mTc]anti-
MT1-MMP mAb accumulated in unstable 

Figure 4. Planar images of WHHLMI and JW rabbits at 10 min and 24 hr post administration of 99mTc-MT1-MMP 
mAb and subclass-matched control antibody (99mTc-IgG3). The atherosclerotic abdominal aorta was clearly visible 24 
hr post administration in the WHHLMI rabbits given 99mTc-MT1-MMP mAb while high blood pool radioactivity in the 
abdominal aorta was shown in every rabbit at 10 min. Arrows = aorta; K = kidney; L = liver; S = spleen.
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lesions (grade IV atheroma) specifically in the 
vessels of WHHLMI rabbits (Figure 4) [94]. 

Together with the studies described above, 
MMPs have long been recognized as important 
targets for evaluating atherosclerotic plaque 
instability. Other MMP subtypes such as MMP-
12 have recently attracted a great deal of 
attention as a target for atherosclerosis treat-
ment [95], with recent studies indicating a det-
rimental role for MMP-12 in plaque progression 
and instability in both mouse [96] and rabbit 
models [97, 98] and an association between 
MMP-12 expression and advanced human ath-
erosclerotic lesions [99, 100]. Also, treatment 
of apoE KO mice with selective MMP-12 inhibi-
tors could retard atherosclerosis development 
resulting in a more fibrous plaque phenotype 
[95], indicating that development of a MMP-12-

Figure 5. Illustration of LOX-1, MT1-MMP, and TF expression in atherosclerotic lesions described in references 
59, 94, and 105. Atherosclerotic lesions in model rabbits were divided into the 4 categories using a classification 
scheme based on the recommendations of the American Heart Association: neointimal (types I-III) A. atheromatous 
(type IV) B. fibroatheromatous (types Va and Vb) C. and collagen-rich (type Vc) D. Morphologic destabilization analy-
sis showed that the atheromatous lesion was the most vulnerable to rupture.

selective imaging probe would be desirable for 
diagnosis and/or prediction of atherosclerosis 
and selection of drug treatments. In general, 
the complex relationship between MMP activity 
and plaque stability has made understanding 
the roles of each MMP subtype in atherosclero-
sis challenging, and the close structural similar-
ity of the MMP active sites has made develop-
ing highly selective MMP inhibitors difficult. 
However, recent advances in novel peptide 
chemistry have made it possible to provide 
more selective inhibitors of zinc-proteases and 
this strategy could also be applied for develop-
ing selective MMP inhibitors [101].

Probes to detect thrombus formation

Thrombus formation triggered by plaque rup-
ture is the most important mechanism leading 
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to the onset of AMI and ischemic sudden death. 
Thus, thrombus-forming vulnerable plaques are 
a clinically important target for estimating risk 
and providing more effective and precise treat-
ments. Tissue factor (TF) initiates the exoge-
nous blood coagulation cascade that leads to 
thrombus formation in vivo. Although TF in ath-
erosclerotic lesions was identified in several 
cell types, including endothelial cells, smooth 
muscle cells, monocytes, macrophages, and 
foam cells [102], TF expression is reported to 
be increased in the later stages of atheroma-
tous progression and thus was selectively 
detected in atheromatous lesions in both ani-
mal and human studies [103, 104]. In the blood 
coagulation cascade, TF initiates the cascade, 
while factor XIII covalently cross-links fibrin 
polymers and renders the thrombus more resis-
tant to lysis.

The use of a 99mTc-labelled anti-TF monoclonal 
antibody as a TF imaging agent was recently 
reported [105]. In ex vivo experiments using 
WHHLMI rabbits, a close relationship between 
probe accumulation and TF expression in 
lesions and the selective accumulation of the 
probe in atheromatous lesions was indicated. 
Thus, imaging of TF has the potential to selec-
tively detect atheromatous plaques that are at 
higher risk for rupture. Figure 5 illustrates the 
expression profiles of LOX-1, MT1-MMP, and TF 
that were evaluated under the same experi-
mental conditions as those used previously 
with WHHLMI rabbits [59, 94, 105]. Although 
each of the three molecules is expressed main-
ly in atheromatous lesions, TF is the most 
selective in rupture-prone lesions, while the 
LOX-1 profile is closely related to macrophage 
distribution. On the other hand, a series of 
imaging agents have targeted fibrin and factor 
XIII in thrombi using antibodies or peptides 
[106]. EP-2104R, an 11-amino-acid peptide 
conjugated to four gadolinium-tetraazacyclodo-
decane tetraacetic acid moieties (Gd-DOTA), 
binds fibrin with micromolar affinity and can 
detect thrombi in vivo in pigs and patients using 
a clinical 1.5T whole-body MRI system with 
high-signal amplification [107-109]. Probes that 
conjugate a factor XIII substrate peptide to fluo-
rochromes or 111In-chelates were reportedly 
able to visualize factor XIII activity in clotted 
human plasma in vitro, and in acute murine 
thrombi induced by FeCl3 [110, 111]. Since P2, 
P3-monochloromethylene diadenosine-5 ,́ 5΄́ -́

P1, P4-tetraphosphate (AppCHClppA) is a com-
petitive inhibitor of adenosine diphosphate-
induced platelet aggregation, the 18F labeled 
analog ([18F]AppCHFppA) has then been stud-
ied as an imaging probe that can accumulate in 
macrophage-rich atherosclerotic plaques in 
rabbit models and thus may merit further eval-
uation [112]. Although further studies are 
required to investigate which target molecule(s) 
in the blood coagulation cascade are the most 
appropriate for estimating the in vivo vulnera-
bility of a plaque, [99mTc]anti-TF mAb will be use-
ful for early detection of the cascade while 
fibrin and factor XIII imaging probes can detect 
later stages and thrombi themselves. 
Furthermore, given the great efforts that have 
been made in developing anti-coagulation and 
anti-platelet pharmaceuticals for treating ath-
erosclerosis and hyperlipidemia, effective 
imaging probes that target blood coagulation 
cascades are also required for efficient drug 
development.

Probes to detect intraplaque angiogenesis

While inflammation is considered to be a key 
feature of plaque progression, intraplaque 
angiogenesis mediated by proliferation of the 
medial vasa vasorum has also been recently 
implicated in rapid plaque growth and plaque 
rupture [113]. The fragile neovasculature struc-
ture may lead to extravasation of blood compo-
nents with subsequent intraplaque hemor-
rhage leading to plaque rupture. Thus, 
angiogenesis and inflammation within athero-
sclerotic lesions may be an important target for 
molecular imaging.

[18F]Galacto-RGD is a peptide tracer that binds 
to αvβ3 integrin, a cell surface glycoprotein 
receptor that is highly expressed during angio-
genesis. [18F]Galacto-RGD PET has been exten-
sively validated for imaging of angiogenesis in 
tumors [114]. Dosimetry of [18F]galacto-RGD 
has already been evaluated in humans based 
on PET imaging data that indicated a radiation 
dose comparable to that of [18F]FDG, so that 
[18F]galacto-RGD can safely be used for integrin 
αvβ3 imaging [115]. Since both macrophages 
and activated endothelial cells can express 
high levels of αvβ3 integrin in atherosclerotic 
lesions, [18F]galacto-RGD PET has the potential 
for imaging angiogenesis in atherosclerotic 
lesions. In a study using hypercholesterolemic 
mice fed a western diet [116], [18F]galacto-RGD 



Atherosclerotic plaque imaging probe

440 Am J Nucl Med Mol Imaging 2012;2(4):432-447

demonstrated specific uptake in atherosclerot-
ic aorta lesions that was associated with mac-
rophage density. Furthermore, an in vivo PET 
imaging experiment showed [18F]galacto-RGD 
uptake that co-localized with calcified lesions 
of the aortic arch as indicated by CT angiogra-
phy. Thus, [18F]galacto-RGD is a potential tracer 
for noninvasive imaging of atherosclerotic 
lesions. A 99mTc labeled Cy5.5-RGD imaging 
peptide (CRIP) [117] was also developed for 
assessing cardiac remodeling after myocardial 
infarction and its responsiveness to anti-angio-
tensin treatment. In addition, atrial natriuretic 
peptide and C-type natriuretic peptide have 
recently been demonstrated to attenuate 
angiogenesis and have been widely investigat-
ed for their therapeutic potential. Thus, the 
clearance receptor (NPR-C) has been recog-
nized as an ideal target for imaging the anti-
angiogenic effect of NPs, followed by the devel-
opment of imaging probes such as 64Cu labeled 
peptide probe and 64Cu labeled peptide conju-
gate nanoprobe [118, 119], which have been 
used in mice and rabbit models for imaging 
NPR-C in angiogenesis.

Intraplaque inflammation plays an important 
role in the progression and destabilization of 
atherosclerotic lesions [120]. [11C]PK11195 is 
a specific ligand of the translocator protein 
(TSPO), which is highly expressed in activated 
cells of the mononuclear phagocyte lineage 
[121]. [3H]PK11195 was recently reported to 
show specific binding to macrophages in human 
carotid endarterectomy samples [122] and 
[11C]PK11195 can be used with CT angiography 
in humans to assess vascular inflammation in 
carotid atherosclerotic plaques in vivo [123, 
124]. In addition, [67Ga]gallium has traditionally 
been used to image inflammation with gamma 
cameras, while [68Ga]gallium has been applied 
for imaging macrophage-rich areas in inflam-
matory lesions in mice [125]. Although that 
study indicated a moderate uptake in the 
plaques, especially at the sites rich in macro-
phages, the slow blood clearance may limit this 
probe’s usefulness for clinical imaging of ath-
erosclerotic plaques.

Probes for other targets

In addition to the probes described above, 
99mTc, 111In, or 18F labeled LDL [126-129], which 
exploit the important role of LDL in plaque pro-
gression especially in the early phase, 

111In-oxine labeled monocytes [130], 18F 
labeled small vascular cell adhesion molecule 
(VCAM)-1 affinity ligand ([18F]4V) [131], and 
radiolabeled cytokines such as IL-2 [132] and 
MCP-1 [133], which rely on the close relation-
ship between the occurrence of vessel inflam-
mation and plaque progression have also been 
studied. Furthermore, researchers have recent-
ly been investigating the use of nanoparticles 
as a fundamental part of molecular probes for 
MRI and optical imaging, as well as for nuclear 
medicine [134]. 

Conclusion

Although a variety of molecular probes have 
been developed for molecular imaging of ath-
erosclerotic lesions, only [18F]FDG and [99mTc]
annexin A5 have had successful clinical appli-
cations. One possible obstacle for probe devel-
opment would be low signal levels in the lesion 
that may be due to inefficient probe delivery to 
the lesion. Drug delivery systems that use 
nanocarriers such as liposomes, micelles, and 
monoclonal antibodies as well as multimeriza-
tion of targeting moieties like RGD probes typi-
cally used in tumor imaging [114] can be bene-
ficial strategies for facilitating development of 
atherosclerotic lesion probes. In a clinical set-
ting, a large variety of imaging strategies have 
been utilized for imaging of atherosclerosis, 
such as nuclear medical techniques (PET and 
SPECT), MRI, US, and optical imaging. Nuclear 
medical techniques are advantageous owing to 
their high sensitivity and high quantitative 
capacity to noninvasively provide biological 
information on molecules that deteriorate in 
atherosclerotic processes deep within the 
human body. In addition, results from PET and 
SPECT noninvasive whole body imaging in ani-
mals can be translated to use in humans while 
optical imaging can only be used in animal 
imaging and may be difficult to quantify. 
Furthermore, PET is more sensitive than SPECT 
and probes in tracer amounts can be detected 
by in vivo PET imaging, which may minimize the 
possibility of pharmacological effects and tar-
get saturation and in turn be important for 
molecular imaging in atherosclerosis because 
the expression of target molecules in lesions is 
usually low. Continued progress in probe devel-
opment, especially for PET, is urgently needed 
for successful disease prevention and patient 
treatment strategies.
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