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Abstract: The purposes of this study were to develop an efficient method of labeling D-glucosamine hydrochloride 
with gallium 68 (68Ga) and investigate the imaging properties of the resulting radiotracer in a human tumor xeno-
graft model using micro-positron emission tomography (µPET). The precursor compound 1,4,7,10-tetraazacyclodo-
decane-1,4,7,10-tetraacetic acid (DOTA)-2-deoxy-D-glucosamine (DOTA-DG) was synthesized from D-glucosamine 
hydrochloride and 2-(4-isothiocyanatobenzyl)-DOTA. Radiolabeling of DOTA-DG with 68Ga was achieved in 10 minutes 
using microwave heating. The labeling efficiency and radiochemical purity after purification of 68Ga-DOTA-DG were 
~85% and greater than 98%, respectively. In A431 cells, the percentages of 68Ga-DOTA-DG and 18F-FDG uptakes 
after 60 min incubation were 15.7% and 16.2%, respectively. In vivo, the mean ± standard deviation of 68Ga-DOTA-
DG uptake values in A431 tumors were 2.38±0.30, 0.75±0.13, and 0.39±0.04 percent of the injected dose per 
gram of tissue at 10, 30, and 60 minutes after intravenous injection, respectively. µPET imaging of A431-bearing 
mice clearly delineated tumors at 60 minutes after injection of 68Ga-DOTA-DG at a dose of 3.7 MBq. 68Ga-DOTA-DG 
displayed significantly higher tumor-to-heart, tumor-to-brain, and tumor-to-muscle ratios than 18F-FDG did. Further 
studies are needed to identify the mechanism of tumor uptake of this new glucosamine-based PET imaging tracer.
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Introduction

The positron-emitting radioisotope gallium 68 
(68Ga; t1/2 = 68 minutes) is of great interest to 
practitioners of positron emission tomography 
(PET). This generator-produced nuclide does 
not require an on-site cyclotron for radioisotope 
production. 68Ga has excellent physical proper-
ties relevant to PET, including decays by 89% 
through positron emission and 3.2% through 
gamma emission [1]. A number of 68Ga-labeled 
peptides have been investigatror for in vivo PET 
imaging of tumors [2, 3]. 18F-fluorodeoxyglucose 
(FDG) is routinely used in the clinic as a bio-
marker of metabolic activity for the detection 
and staging of cancer and monitoring of treat-
ment response. 18F-FDG is transported into 
tumor cells by the glucose transporters  
(GLUTs) and is a substrate of hexokinases. 

D-glucosamine (DG) is an attractive scaffold as 
a glucosyl ligand. Studies have shown that a 
derivative of DG with a bulky moiety attached to 
its amino group is the substrate of GLUTs and 
hexokinases [4, 5]. 

Previously, the synthesis of 68Ga-labeled glu-
cosamine through 1,4,7,10-tetraazacyclo-
dodecane-1,4,7,10-tetraacetic acid (DOTA) 
radiometal chelator have been reported by us 
and others in abstract forms [6, 7]. Tworowska 
et al. [7] synthesized 68Ga-DOTA-glucosamine 
by heating to 95 °C using conventional method 
for 10-20 min. To improve the radiolabeling effi-
ciency, we used microwave to assist the label-
ing process. Microwave heating is used routine-
ly in the synthesis of organic compounds [8]. 
This heating increases the rate of reaction with-
out compromising the stability of reagents or 
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the safety of labeling procedures [9, 10]. Herein 
we report on our use of microwave heating-
assisted labeling of 1,4,7,10-tetraazacyclo-
dodecane-1,4,7,10-tetraacetic acid (DOTA)-DG 
with 68Ga for tumor imaging. We found that the 
resulting radiotracer, 68Ga-DOTA-DG, could 
clearly delineate tumor xenografts in nude mice 
with high tumor-to-nontumor ratios, making it a 
potentially useful radiotracer in PET imaging.

Materials and methods

Reagents

Dimethylformamide, sodium acetate, D-gluco-
samine hydrochloride, and N-methylmorpholine 
were purchased from Sigma-Aldrich (St. Louis, 
MO). 2-(p-Isothiocyanatobenzyl)-1,4,7,10-tetra-
azacyclododecane-1,4,7,10-tetraaceticacid 
(p-SCN-Bn-DOTA) was purchased from Macro-
cyclics (Dallas, TX). Other commercially avail-
able chemicals were purchased from VWR 
International (San Diego, CA). All reagents were 
used as received. 18F-FDG was obtained from 
the Department of Nuclear Medicine at The 
University of Texas MD Anderson Cancer 
Center.

Synthesis of DOTA-DG

DG was reacted with p-SCN-Bn-DOTA in an 
aqueous solution at pH 7 for 12 hours at room 
temperature to produce DOTA-DG linked via a 
thiourea bond (Figure 1). The progress of the 

reaction was monitored using high-perfor-
mance liquid chromatography (HPLC). DOTA-DG 
was analyzed via electrospray ionization mass 
spectrometry using an Agilent LC/MSD TOF 
mass spectrometer (Agilent Technologies, 
Santa Clara, CA) equipped with a Vydac C-18 
column (4.6×250.0 mm, 7-µm particle size, 
300-Å pore size (Grace, Deerfield, IL). The HPLC 
eluting conditions were as follows: solvent: A, 
0.1% trifluoroacetic acid (TFA) in water; B, 0.1% 
TFA in acetonitrile; gradient: B, 0-10% over 0-10 
minutes; B,10-50% over 10-12 minutes; B, 
50-80% over 12-20 minutes; B, 80% to 10% 
over 20-21 minutes. The flow rate was 1 mL/
minute.

Microwave heating-assisted 68Ga labeling of 
DOTA-DG

68GaCl3 in 0.1 N hydrochloric acid (370 MBq/0.3 
mL) was obtained from 68Ge/68Ga generator 
(Eckert & Ziegler, Berlin, Germany). Two meth-
ods were used for labeling of DOTA-DG with 
68Ga. In the conventional method, 370 MBq of 

68GaCl3 in 0.3 mL of a 1-M aqueous solution of 
sodium acetate (pH 4) was added to a solution 
of DOTA-DG in distilled water (100 µg in 0.1 
mL). The mixture was allowed to react at 90 ºC 
for 20 minutes in a water bath and then cooled 
to room temperature over 30 minutes. In the 
microwave heating-assisted method, the mix-
ture of 370 MBq of 68GaCl3 in 0.3 mL of a 1-M 
sodium acetate solution and 100 µg of DOTA-
DG in 0.1 mL of distilled water was heated in a 

Figure 1. Synthesis of 
the precursor compound 
DOTA-DG and labeling of 
it with 68Ga. M.W., micro-
wave heating.
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microwave reaction apparatus (Discover; CEM 
Corporation, Matthews, NC) at a power setting 
of 25 W for 5 minutes and 50 W for an addi-
tional 5 minutes. The reaction mixture was then 
kept at 40 ºC for 5 minutes. DOTA was labeled 
with 68Ga similarly to DOTA-DG, and the result-
ing radiotracer, 68Ga-DOTA, was used as a con-
trol in biodistribution study.

Radiolabeled compounds were analyzed using 
HPLC. The specific activity of 68Ga-DOTA-DG 
was determined with a radio-HPLC chromato-
gram by dividing the integrated peak radioactiv-
ity of the radiotracer by its physical quantity 
derived from the corresponding ultraviolet 

absorbance and a calibration curve of known 
quantities of the unlabeled compound. The 
labeling yields were determined using instant 
thin-layer chromatography (ITLC) (German 
Science, Ann Arbor, MI) developed with a solu-
tion of 0.1 M citric acid in saline. The strips 
were scanned using an ITLC scanner (AR-2000; 
Bioscan, Washington, DC).

In vitro cell uptake of radiotracers

A431 human epithelial carcinoma cells were 
obtained from the American Type Culture 
Collection (Manassas, VA). Cells were main-
tained at 37°C in a humidified atmosphere con-

Figure 2. HPLC analysis of DOTA-DG conjugate. A. p-SCN-Bn-DOTA (Rt = 7.51 minutes). B. DOTA-DG (Rt = 7.51 min-
utes). 

Figure 3. HPLC analysis of as-synthesized 68Ga-DOTA-DG. A. 68GaCl3 solution (Rt = 3.15 minutes). B. 68Ga-DOTA (Rt = 
2.92 minutes). C. 68Ga-DOTA-DG (Rt = 7.03 minutes). 
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taining 5% CO2 in Dulbecco’s modified Eagle’s 
medium and Ham’s F12 nutrient mixture con-
taining 10% fetal bovine serum (Gibco, Grand 
Island, NY).

Cell uptake assays were performed after seed-
ing 1.2×106 A431 cells/mL/well in 24-multiwell 
culture plates. When the cells were about 80% 
confluent, each well was injected with 74 KBq 
of 68Ga-DOTA-DG or 18F-FDG in 1 mL of culture 
media (2 µg/mL for both radiotracers). A block-
ing study was performed with the addition of 
both radiotracers with 1 mg of cold deoxy-D-
glucose to the wells (100 μL/well). After 60 
minutes of incubation at 37 ºC, the culture 
media were removed, and the cells were 
washed twice with ice-cold Hank’s balanced 
salt solution (pH 7.3). The cells were then dis-
solved in 0.5% sodium dodecyl sulfate (0.5 mL/
well). The radioactivity in the cells was mea-
sured using a gamma counter (Packard, 
Downers Grove, IL). The cell uptake of the radio-
tracers was calculated using the formula 
%uptake = (radioactivity of cells/total radioac-
tivity) × 100%. This study was performed in 
triplicate.

Biodistribution

The mice were kept under specific pathogen-
free conditions and were handled and main-
tained according to Institutional Animal Care 

and Use Committee guidelines. 
A431 cells were inoculated sub-
cutaneously into the right thighs 
of nude mice (20-25 g; Harlan 
Sprague Dawley, Indianapolis, 
IN) by injecting 1×106 viable 
tumor cells in a suspension of 
phosphate-buffered saline. 
When the resulting tumors grew 
to a diameter of 6-8 mm, the 
mice were allocated to three 
groups of three mice each. They 
were then injected intravenous-
ly with 68Ga-DOTA-DG or 18F-
FDG (3.7 MBq/mouse). The ani-
mals were killed at 10, 30, and 
60 minutes after injection. 
Blood, heart, liver, spleen, kid-
ney, lung, stomach, intestine, 
muscle, bone, brain, and tumor 
tissues were removed, weighed, 
and counted for radioactivity 

using a gamma counter. Uptake of each radio-
tracer in various tissues was calculated as the 
percentage of the injected dose per gram of tis-
sue (%ID/g).

Micro-PET imaging

A431 tumor cells were inoculated into nude 
mice as described above. When the resulting 
tumors grew to 6-8 mm in diameter, the mice 
were injected intravenously with 68Ga-DOTA-DG 
(20 µg, 14.8 MBq/mouse, 0.2 mL). The mice 
were then placed in the prone position for 
micro-PET (µPET) imaging. Prior to imaging, the 
mice were anesthetized with 2% isoflurane gas 
(Iso-Thesia, Rockville Centre, NY) in oxygen. 
During imaging, anesthesia in the mice was 
maintained with 0.5-1.5% isoflurane. µPET 
images were acquired 30-80 minutes after 
radiotracer injection using an R4 µPET scanner 
(Concorde Microsystems, Knoxville, TN).

Statistical analysis

Cell uptake and biodistribution data were ana-
lyzed using two-tailed, unpaired Student t-tests, 
with p values less than 0.05 considered to be 
statistically significant. The in vitro percentage 
of radiotracer uptake, in vivo percentage of 
injected radiotracer dose per gram of tissue, 
and tumor-to-nontumor ratios are presented as 
the mean ± standard deviation. All statistical 

Figure 4. In vitro cellular uptake of 68Ga-DOTA-DG and 18F-FDG in A431 cells. 
In blocking experiments, both radiotracers were coincubated with an ex-
cessive amount of cold D-glucose. The graph shows a signficant difference 
in cell uptake between the radiotracers and their corresponding blocking 
groups. *p<0.05; **p<0.005.
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computations were performed using the Excel 
software program (Microsoft Corporation, 
Redmond, WA).

Results

DOTA-DG synthesis and characterization

DOTA-DG was synthesized via nucleophilic 
addition of DG to p-SCN-Bn-DOTA (Figure 1). 
The resulting product was purified via flash col-
umn chromatography. Electrospray ionization 

mass spectrometry revealed a mass/charge 
ratio (m/z) of 729.2082 for [M-H]-, which agrees 
with the calculated value for C30H45N6O13S- of 
729.2771. HPLC analysis demonstrated a 
retention time of 7.61 minutes with greater 
than 90% DOTA-DG purity (Figure 2).

Radiochemistry and stability of 68Ga-DOTA-DG

68Ga-DOTA-DG was synthesized using two 
methods: conventional and microwave-assist-

Table 1. Biodistributions of 68Ga-DOTA-DG in mice bearing A431 tumors at different times at 10, 30, 
and 60 minutes after radiotracer injection

Mean %ID/g (± standard deviation)
Site 10 minutes 30 minutes 60 minutes
Blood 5.24±0.63 0.81±0.16 0.40±0.09
Heart 1.92±0.51 0.28±0.10 0.12±0.03
Liver 1.45±0.22 0.37±0.22 0.36±0.01
Spleen 1.09±0.14 0.24±0.07 0.21±0.02
Kidney 10.23±2.87 1.94±0.37 1.19±0.11
Lung 3.96±0.51 0.65±0.11 0.26±0.06
Stomach 1.93±0.08 0.30±0.05 0.12±0.01
Intestine 1.22±0.08 0.28±0.05 0.16±0.05
Muscle 0.99±0.14 0.16±0.10 0.12±0.13
Bone 0.86±0.16 0.16±0.04 0.07±0.03
Tumor 2.38±0.30 0.75±0.13 0.39±0.04
Brain 0.25±0.08 0.05±0.01 0.03±0.02

Table 2. Biodistributions of 68Ga-DOTA-DG, 18F-FDG, and 68Ga-DOTA in mice bearing A431 tumors at 1 
hour after radiotracer injection

Mean %ID/g (± standard deviation)
Site 68Ga-DOTA 68Ga-DOTA-DG 18F-FDG
Blood 0.44±0.07 0.40±0.09 0.54±0.10
Heart 0.11±0.02 0.12±0.03 30.2±7.40
Liver 11.96±0.90 0.36±0.01 0.69±0.21
Spleen 2.77±1.13 0.21±0.02 1.50±0.60
Kidney 0.72±0.04 1.19±0.11 1.07±0.06
Lung 0.39±0.02 0.26±0.06 2.30±0.64
Stomach 0.11±0.05 0.12±0.01 2.93±1.50
Intestine 0.06±0.02 0.16±0.05 1.42±0.40
Muscle 0.03±0.00 0.12±0.13 2.37±0.16
Bone 0.07±0.01 0.07±0.03 2.06±0.44
Tumor 0.20±0.07 0.39±0.04 4.26±1.10
Brain 0.03±0.00 0.03±0.02 5.81±2.83
Tumor/muscle 7.82±2.40 6.75±5.55 1.80±0.47
Tumor/brain 7.83±2.56 14.03±2.00 0.79±0.18
Tumor/heart 1.75±0.33 3.30±0.71 0.15±0.04
Tumor/liver 0.02±0.00 1.08±0.11 6.40±1.62
Tumor/kidney 0.27±0.08 0.33±0.05 3.96±0.92
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Figure 5. Comparison of the tumor: nontumor (T/NT) uptake ratios for 18F-FDG and 68Ga-DOTA-DG in mice bearing 
A431 tumors at 1 hour after radiotracer injection. *p<0.05.

deoxy-D-glucose could not block 68Ga-DOTA-
DG. To the contrary, the presence of cold deoxy-
D-glucose increased the uptake of 68Ga-DOTA-
DG in A431 cells by 121% (p=0.03). 

Biodistribution in tumor-bearing mice

The biodistributions of 68Ga-DOTA-DG at 10, 
30, and 60 minutes after radiotracer injection 
in mice bearing A431 tumors are presented in 
Table 1. A comparison of the biodistributions of 
68Ga-DOTA, 68Ga-DOTA-DG, and 18F-FDG at 60 
minutes postinjeciton are presented in Table 2. 
The tumor-to-nontumor ratios for 68Ga-DOTA-
DG and 18F-FDG are shown in Figure 5.

The 68Ga-DOTA-DG blood activity at 10 min 
postinjection was 5.24 %ID/g, which is similar 
to that of the reported blood level of 5.4 %ID/g 
for 18F-FDG [11]. The initial 68Ga-DOTA-DG 
tumor uptake value at 10 minutes after injec-
tion was 2.38%ID/g. At 60 minutes after injec-
tion, the tumor uptake values for 68Ga-DOTA, 
68Ga-DOTA-DG, and 18F-FDG were 0.20%ID/g, 
0.39%ID/g, and 4.26%ID/g, respectively. The 

ed heating. The radiochemical labeling efficien-
cy of 68Ga-DOTA-DG with the microwave heating 
technique was 85%. After purification of 
68Ga-DOTA-DG using a semipreparative HPLC 
column, the radiochemical purity was greater 
than 98% (Rt = 7.01 minutes). Radio-HPLC 
readily distinguished 68Ga-DOTA-DG from 
68GaCl3 (Rt = 3.15 minutes) and 68Ga-DOTA (Rt 
= 2.92 minutes) (Figure 3). In comparison, the 
radiochemical labeling efficiency for 68Ga-DOTA-
DG using the conventional method was 60%. 
The specific activity of 68Ga-DOTA-DG using the 
microwave heating method was 790 Ci/mmol 
(2.9 × 1013 Bq/mmol).

Cell uptake of radiotracers in vitro

In vitro, 68Ga-DOTA-DG and 18F-FDG had similar 
uptake levels in A431 cells after 60 minutes of 
incubation (Figure 4). The percentages of 
68Ga-DOTA-DG and 18F-FDG uptake were 15.7% 
and 16.2%, respectively. The presence of an 
excessive amount of cold deoxy-D-glucose (1 
mg/mL water) significantly blocked the uptake 
of 18F-FDG in these cells (p<0.001). However, 
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blood activity levels at 60 min postinjection 
were similar for both 68Ga-DOTA-DG (0.40 
%ID/g) and 18F-FDG (0.54 %ID/g) (Table 2). 
Thus, 18F-FDG had significantly higher tumor-to-
nontumor ratios than 68Ga-DOTA-DG did at 60 
minutes after injection in blood (p=0.05), liver 
(p=0.03), and kidney (p=0.02). On the other 
hand, 68Ga-DOTA-DG had significantly higher 
tumor-to-nontumor ratios than 18F-FDG did in 
muscle (p=0.05), brain (p=0.02), and heart 
(p=0.02) (Figure 5). 

µPET images

µPET images of mice with A431 tumors 
obtained at different times after 68Ga-DOTA-DG 
injection are shown in Figure 6. We observed 
relatively high activity of 68Ga-DOTA-DG in the 
kidney and bladder 30-60 minutes after injec-
tion. The activity of 68Ga-DOTA-DG in the kidney 

gradually cleared, and by 80 minutes after 
injection, 68Ga-DOTA-DG was largely cleared 
from the body via the renal system. µPET imag-
ing clearly showed uptake of 68Ga-DOTA-DG in 
the tumors at all time points. 

Discussion

In this study, we showed that DOTA-DG could be 
labeled with 68Ga with high efficiency with the 
assistance of microwave. The observation that 
the cellular uptake of 68Ga-DOTA-DG could not 
be blocked by a large excess of D-glucose sug-
gests that 68Ga-DOTA-DG is taken up by tumors 
cells via biological processes independent of 
GLUTs (Figure 4). At present, the structural fea-
tures that govern the behavior of derivatives of 
DG are not clear. Although previous studies 
demonstrated that DG and its fluorescent  
analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)

Figure 6. µPET images of a nude mouse bearing an A431 tumor acquired at 30-80 minutes after intravenous injec-
tion of 68Ga-DOTA-DG. T, tumor.
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amino]-2-deoxyglucose are substrates of GLUTs 
[4, 5, 12], the uptake of other derivatives of DG 
in tumor cells could not be blocked by D-glucose 
or DG. For example, several 99mTc- and near-
infrared fluorescent dye-labeled DG com-
pounds have similar characteristics as 
68Ga-DOTA-DG with respect to insensitivity to 
glucose concentration on their tumor uptake in 
vivo [13-15]. 

Several authors have reported the synthesis 
and in vivo imaging with gamma emitter-labeled 
DG. Bayly et al. [16] reported the successful 
synthesis of DG labeled with the tricarbonyls of 
99mTc (I), but the resulting radiotracer was not 
very stable in the presence of cysteine and his-
tidine. Yang et al. [15] demonstrated that 99mTc-
labeled DG through an ethylenedicysteine che-
lator accumulated in murine tumors. Chen et al. 
[17] developed a one-step 99mTc-labeled diethy-
lenetriaminepentaacetate-DG kit and showed 
accumulation of 99mTc-labeled diethylenetri-
aminepentaacetate-DG in MCF-7 human mam-
mary tumors in nude rats. These studies did 
not attempt to determine whether these glu-
cose analogs are actually involved in key steps 
in glucose metabolism. Further work is needed 
to delineate the mechanisms of cellular uptake 
of 68Ga-DOTA-DG and other DG-based 
radiotracers. 

μPET images acquired with 68Ga-DOTA-DG 
clearly delineated A431 tumor grown in nude 
mice. With the current available data, it is not 
possible to ascertain whether the tumor uptake 
of 68Ga-DOTA-DG is specific or nonspecific. 
Although DOTA is used widely for 68Ga-labelling, 
DOTA is not an optimal chelator for 68Ga. Other 
chelators such as 1,4,7-triazacyclononane-tri-
acetic acid (NOTA) and triazacyclononane-phos-
phinate (TRAP) chelators have been shown to 
possess superior 68Ga binding ability and yield 
higher specific activity [18]. Thus, future work 
should be also be directed at synthesizing and 
testing 68Ga-NOTA-glucosamine and 68Ga-TRAP-
glucosamine conjugates. 

In conclusion, we successfully synthesized 
68Ga-labeled DOTA-DG as a PET radiotracer. 
Microwave heating-assisted radiosynthesis of 
68Ga-DOTA-DG resulted in high labeling efficien-
cy and short labeling times. µPET with 
68Ga-DOTA-DG demonstrated high tumor-to-
nontumor ratios for muscle, brain, and heart in 
human tumor xenograft models. We also 

observed a significant difference between the 
biodistribution of 68Ga-DOTA-DG and 18F-FDG in 
the liver and kidney. Future work are needed to 
elucidate the biological processes responsible 
for tumor uptake of 68Ga-DOTA-DG.
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