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Abstract: Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell track-
ing with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based 
therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adapt-
ability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for 
stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are 
usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like 
fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and 
minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically 
active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, 
photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging.

Keywords: Stem cell therapy, optical imaging, nanoparticles, fluorescence imaging, photoacoustic imaging, Raman 
and surface enhanced Raman spectroscopy imaging

Introduction

Stem-cell-based cell therapy holds great prom-
ise for patients living with serious and currently 
incurable diseases including cancer, Alzheimer 
disease, Parkinson disease, diabetes and etc 
[1-6]. These potentials of stem cells rely on 
their remarkable properties of self-renewal and 
differentiation into diverse specialized cells, 
offering hope for the regeneration of tissues/
organs for replacing diseased and damaged 
areas in the body [7, 8]. Since the first bone 
marrow transplant was performed to treat two 
siblings with severe combined immunodeficien-
cy in 1968, scientists and clinicians have put 
tremendous effects to develop new stem-cell-
based therapeutics. Promising approaches 
include bone marrow derived mesenchymal 
stem cell for graft-versus-host disease [9]. 
Currently, ~4000 clinical trials around the world 
involve some form of stem cell therapy, includ-
ing therapies for cancer, cardiac disease, 

stroke (American’s top 3 causes of death), dia-
betes, bone repair and etc (Table 1) [10].

While preclinical results are promising, few 
treatments have been translated to humans 
due to conflicting results [11]. In addition to the 
limitation of preclinical models (i.e. the different 
behavior of stem cells between preclinical mod-
els and human), it is in part due to the lack of a 
comprehensive understanding of the fate, dis-
tribution, and the function of transplanted stem 
cells in the local microenvironment [12]. 
Traditionally, transplanted stem cells are stud-
ied through the histological analysis, which is 
largely invasive at pre-determined time points 
after transplant [13]. Thus non-invasive imaging 
methods are highly needed to monitor trans-
planted stem cells qualitatively and quantita-
tively. This will facilitate the prediction of treat-
ment efficacy, and reveal optimal transplantation 
conditions, allowing the cell dosage, delivery 
route, and timing of transplantations to be 
determined [14].

http://www.ajnmmi.us
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In comparison to other modalities like magnetic 
resonance imaging, positron emission tomog-
raphy and computed tomography, optical imag-
ing possesses distinctive advantages including 
low cost, easy accessibility, as well as high spa-
tial and temporal sensitivity. Furthermore, the 
molecular fingerprints derived from the spec-
troscopy that were collected during the imaging 
process are promising contributions to reveal 
the viability and differentiation of transplanted 
stem cells. For example, Raman spectroscopy 
contains information of vibrational, rotational 
and other low-frequency modes of molecules, 
which make it a powerful technique for monitor-
ing cellular processes (e.g. apoptosis or necro-
sis) [15, 16]. To identify administered cells from 
the host tissue, contrast agents are usually 
required to label the cells. Current contrast 
agents for optical imaging include endogenous 
biomolecules, fluorescent proteins, organic 
dyes, and fluorescent lanthanide chelates, all 
of which suffer from photo-bleaching effects, 
as well as chemical and metabolic degradation 
in vivo [17]. These shortcomings hinder the 
efforts to track transplanted stem cell in vivo. 
More recently, the development of optically 
active nanoparticles (NPs) over the past two 
decades provides hope in addressing this chal-
lenge [18-20]. One promising agent is the semi-
conductor nanocrystals or quantum dots (QDs), 
which exhibits non-bleachable fluorescence 

with controllable wavelength ranging from visi-
ble to near infrared [21-24].

This review summarizes recent developments 
in the field of stem cell tracking with optically 
active NPs (Figure 1). We will start with the fluo-
rescence imaging and photoacoustic imaging, 
and then explore the application of Raman and 
surface enhanced Raman spectroscopy (SERS) 
for stem cells tracking. Finally, we will discuss 
the strength and weakness of these three strat-
egies aforementioned, and the challenges of 
NP-based contrast agents for optical tracking 
of stem cells.

Stem cell tracking with nanoparticle-aided 
fluorescence imaging

Fluorescent imaging is attractive in terms of 
cost, sensitivity, and accessibility for the major-
ity of researchers. Furthermore, it is the only 
modality so far that could indicate the activities 
and functions of transplanted cells tagged with 
reporter genes (genetic) [25] and endogenous 
[26] or exogenous fluorescent indicators (non-
genetic) [27]. Normally, cells are pre-labeled 
with fluorescent NPs before their administra-
tion into the animals. Considering the quantum 
yield, brightness, and stability issues, popular 
fluorescent NPs for stem cell tracking include 
QDs, fluorescent silica NPs, and fluorescent 
polymer NPs.

Figure 1. Optical imaging strategies for stem cells tracking with optically active NPs.
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Quantum dots

QDs are highly fluorescent semiconductor NPs 
with high extinction coefficients, tunable emis-
sions, sharp emission bandwidths, and good 
photostability [28, 29]. The tunable emission 
especially at the near infrared region (> ~800 
nm) avoids the background signal of autofluo-
rescence of the animal tissues (emissions are 
mainly at the visible region, ~300-550 nm). 
Good photostability allows QDs for the long-
term tracking of stem cells.

Prior to the transplantation, stem cells have to 
be pre-labeled with QDs. There are at least six 
different ways to label cells including endocyto-
sis through incubation, receptor-mediated 
uptake, lipid-based transduction, microinjec-
tion, electroporation, and peptide-mediated 
delivery [30-32]. Passive incubation and pep-
tide-mediated delivery are the most commonly 
used labeling methods. Rosen and colleagues 

used passive incubation to load QDs into 
human mesenchymal stem cells (hMSCs), 
which was found more effective than electro-
poration and receptor-mediated uptake [33]. 
They found that QDs aggregated around the 
nucleus when electroporation and receptor-
mediated uptake were used and the inefficien-
cy of labeling might be correlated with the 
impairment of cell membrane. Furthermore, 
they demonstrated that QDs labeled hMSCs 
could be identified in histological sections of 
canine ventricle, and the fluorescence signals 
were visible for at least 8 weeks following the 
injection [33]. 

Besides passive incubation, cell-penetrating 
peptide is another favorable choice [34-36]. 
Yukawa et al introduced QDs into adipose tis-
sue-derived stem cells (ASCs) with octa-argi-
nine peptide (R8) [37]. When the concentration 
of R8 increased from 0.8 nM to 8 nM, the trans-
duction efficiency of QDs increased from 81.4% 

Figure 2. In vivo imaging of ASCs labeled with QDs after intravenous injection. A. ASCs (5.0 × 105 cells) labeled with 
QDs800 (0.8 nM) using R8 were transplanted through the tail vain into mouse. The images were taken 10 min after 
injection (excitation filter 575–605 nm, emission filter 645 nm long pass); B. The red fluorescence of QDs655 was 
detected in the lung only, with little or no QDs655 accumulation in the liver or spleen. Reprinted with permission 
from [37]. Copyright © 2010 Elsevier Ltd.
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Table 1. Clinical trials related with major 
stem-cell-based cell therapies (Results from 
www.clinicaltrials.gov) 
Types of diseases Number of trials
Cancer 3007
Graft-versus-host disease 631
Cardiac diseases 472
Diabetes 101
Bone repair 90
Stroke 66

to 90.8% [37]. In their stem cell tracking assay, 
QDs labeled ASCs were visualized in situ with 
Maestro in vivo imaging system following trans-
plantation through the tail vein of a mouse 
(Figure 2) and almost all ASCs were trapped in 
the lung [37]. Interestingly, if QDs labeled ACSs 
were mixed with heparin before the tail-vein-
injection into the acute liver failure mice, ASCs 
were accumulated not only in the lung, but also 
in the liver. The accumulation rate of ASCs in 
liver increased to about 30%, which suggested 
heparin was effective for increasing the accu-
mulation of transplanted ASCs in the liver [38]. 
To our knowledge, it is more likely that heparin 
increases the ability of transplanted ASCs to 
bypass the pulmonary circulation which is the 
first capillary system that the cells will encoun-
ter after tail-vein-injection. 

In contrast to the peptides that could improve 
the internalization of NPs by all types of cells, 
Lu et al recently developed a peptide which 
specifically targeted rhesus macaque embry-
onic stem cells (RM-ESCs) [39]. The peptide 
was identified by phage display and contains a 
sequence of APWHLSSQYSRT. Peptide was 
covalently conjugated on the QDs surface via 
N-Hydroxysuccinimide (NHS) and 
ethyl(dimethylaminopropyl) carbodiimide (EDC) 
chemistry. The final conjugates should be a 
promising contrast agent specifically for imag-
ing embryonic stem cells in vivo [39].

One major concern of QDs for stem cell labeling 
is their cytotoxicity [40, 41]. To address this 
issue, inert materials like silica have been used 
as the coating of QDs to decrease their cytotox-
icity and to add extra functionalities. For exam-
ple, silica coated QDs with cysteine (Cy) as cap-
ping ligands showed lower cytotoxicity to 
hMSCs without compromising the quantum 

yield [42]. When incubated with uncoated 
CdSe/ZnS-Cy at the concentration of 2.98 μM, 
the viability of hMSCs dropped down to 70%. In 
contrast, with the silica coated CdSe/ZnS-Cy at 
the same concentration, the cell viability was 
above 90% after 24 h incubation [42]. The con-
focal imaging illustrated efficient labeling and 
advised that no particles were located on the 
cell membrane or inside the nucleus.

Dye-doped nanoparticles

Despite their unique optical properties, QDs 
are not clinically applicable because of their 
potential cytotoxicity generated from the leak-
age of toxic metal ions [43]. As an alternative, 
researchers have designed biocompatible sili-
ca and polymeric NPs containing fluorescent 
dyes [44, 45]. The biocompatible shell (e.g. 
polymer or silica) not only prevents organic 
dyes from oxidation or decomposition, but also 
enables the generation of strong fluorescence 
by concentrating the dyes. 

Fluorescent silica NPs are mainly made through 
two approaches: sol-gel or reverse microemul-
sion [46, 47]. One example is the fluorescent 
silica core-shell NPs, which were first named as 
Cornell dots or C-dots [48]. During the synthe-
sis, organic dye molecules were covalently 
bound to a silica precursor to form adduct of 
the dye-rich core materials. Then silica sol-gel 
monomers were subsequently co-condensed 
with the core in specific order depending on the 
desired architecture to form a denser silica 
shell around the core [48]. C-dots possess 
enhanced brightness, photo-stability, biocom-
patibility, and versatile surface functionalities. 
Recently, the commercial version of C-dots, 
C•spec® from Hybrid Silica Technologies (HST) 
has already been regulated by FDA for tumor 
imaging in a phase-I clinical trials, which con-
firmed the safety of those silica-based NPs 
[49].

Besides C-dots, another type of silica NPs is 
cyanine dye-doped silica NPs (IRIS Dots), which 
were synthesized using a reverse microemul-
sion method [50]. Briefly, spherical silica NPs 
containing fluorescent trimethine indocyanine 
dyes were prepared using a water-in-oil micro-
emulsion method with diameter 50 nm. 
Entrapment of dye molecules in the silica matrix 
stabilized the photoemission over several hours 
of continuous irradiation [51]. IRIS Dots did not 
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Figure 3. Detection of IRIS Dots uptake by hMSCs using confocal microscope and transmission electron microscope: 
A–C. hMSCs were pretreated for 48 h with 10 µg/mL ActD and then incubated with 20 µg/mL IRIS Dots for an ad-
ditional 24 h. Both spontaneously detached and trypsinized cells were stained with either Annexin V–fluorescein 
isothiocyanate (A) or 2 μM calcein-AM (B, C) and then evaluated by confocal microscopy. The white scale bar repre-
sents 10 μm. One representative apoptotic cell co-stained with Annexin V–fluorescein isothiocyanate (A), one repre-
sentative apoptotic cell co-labeled with calcein-AM (B), and one representative live cell co-labeled with calcein-AM 
(C) are shown. D, E. hMSCs were pretreated for 48 h with 10 µg/mL ActD, incubated with 20 µg/mL IRIS Dots for an 
additional 24 h, and then analyzed by TEM. The black scale bar represents 0.5 μm. Reprinted with permission from 
[51]. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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affect the viability, proliferation and differentia-
tion capability of hMSCs as well as C-dots [51]. 
More interestingly, IRIS Dots could allow the 
discrimination between live and early-stage 
apoptotic stem cells through the different sur-
face distribution. Specifically, hMSCs were pre-
treated with apoptosis-inducing agent actino-
mycin D (ActD) to produce apoptotic cells. Then 
by incubating apoptotic and live hMSCs with 
IRIS Dots, they demonstrated that IRIS Dots 
were distributed in the cytoplasm of live cells 
(verified by stained with calcein-AM, Figure 3C), 
but on the outer cell surface of early apoptotic 
cells (stained with Annexin V-fluorescein iso-
thiocyanate, Figure 3A and 3B) due to loss of 
active endocytosis.

Besides silica NPs, fluorescent polymeric NPs 
like polystyrene (PS) NPs are another popular 
choice likely due to their distribution by all the 
major biotechnology companies and the variety 
of functional groups including non-modified, 
sulfate-modified, aldehyde-modified, carboxyl-
ate-modified or amine-modified surface [44, 
52]. Recently, the uptake of the anionic PS NPs 
by hMSCs was investigated using spinning-disk 
confocal optical microscopy [53]. In this study, 
carboxyl-functionalized PS NPs were shown to 
be internalized mainly through the clathrin-
mediated mechanism, which were more rapidly 
than the nonfunctionalized PS NPs.

Gold nanoparticles

With the rapid advancement of non-linear 
optics, fluorescence imaging with multiphoton 
excitation becomes a powerful technique for 
the high-resolution imaging. In this technique, 
noble metal NPs like gold NPs (Au NPs) were 
excited to a high energy state by two or more 
photons of red or near infrared (NIR) light simul-
taneously. Farrer et al. demonstrated that mul-
tiphoton-absorption-induced luminescence 
(MAIL) from Au NPs was generated efficiently 
with 800 nm laser and the luminescence 
spanned all the visible spectrum [54]. 
Compared with the traditional ultraviolet-visible 
(UV) excitation, NIR provided relatively higher 
depth of tissue penetration and minimized the 
interference of background fluorescence from 
the biological samples. In addition, Au NPs are 
generally considered biocompatible compared 
to other NPs [55], given that they have been 
used for human decorations for thousands of 
years. In another example, Nagesha et al. 
labeled mouse embryonic stem cells with Au 

NPs and visualized them through MAIL. They 
expected the further application of this method 
for the investigation of the molecular machin-
ery of endocytosis, post-internalization vesicle 
trafficking, lineage tracking, and cellular motili-
ty assays [56]. Au NPs are also well known for 
their plasmonic properties as well as the appli-
cations in photoacoustic imaging and SERS, 
which we will discuss later in other sections.

Upconversion nanoparticles

Upconversion (UC) is a process in which the 
sequential absorption of two or more photons 
leads to the emission of light at shorter wave-
length. It is a non-linear optical process, which 
refers to anti-Stokes type emission. The most 
efficient UC materials are formed by solid-state 
materials doped with rare-earth ions [57]. In 
the nanoscale, NPs made of UC materials (so 
called, UCNPs) benefit from this unique proper-
ties when they are utilized as contrast agents in 
molecular imaging. Imaging with UCNPs pro-
vides higher sensitivity (lack of autofluores-
cence background), less toxic components (in 
comparison to QDs), high penetration depths 
(excitation with NIR light), and good photosta-
bility (no photobleaching) [58, 59]. 

A number of groups have labeled progenitor 
cells with UCNPs for both in vitro and in vivo 
fluorescence tracking [60-62]. For example, 
Wang et al labeled and tracked mouse MSCs 
(mMSCs) with UCNPs [63], which were conju-
gated with R8 to facilitate cellular uptake. Little 
exocytosis of UCNPs from labeled mMSCs was 
found in the transwell assay after 10 days incu-
bation, suggesting its potential for long-term 
cell tracking. Even after two weeks, the labeling 
with UCNPs did not show any influence over the 
survivability, proliferation, and differentiation of 
mMSCs. To determine the detection sensitivity 
of UCNP-labeled mMSCs in vivo, various 
amount of mMSCs (10-104) labeled with UCNPs 
were subcutaneously injected beneath the skin 
of a nude mouse. It was then imaged by a modi-
fied Maestro in vivo imaging system with a 980 
nm laser as excitation source. The sensitivity of 
fluorescence imaging with UCNPs was as few 
as 10 cells, nearly at the single cell level. By 
utilizing the UCNPs-labeling, they observed the 
migration of mMSCs from lung to liver in a nude 
mouse model with the whole body imaging by a 
modified Maestro in vivo imaging system using 
a 980 nm optical fiber-coupled laser as the 
excitation source [63].
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While unique, UCNPs have the following disad-
vantages as contrast agents for fluorescence 
imaging. First of all, the upconversion efficien-
cies have been relatively low (usually less than 
1%) [64]. The excitation thresholds are quite 
high, and the investigated phosphors (generally 
fluorides) often presented poor chemical stabil-
ity [65]. Secondly, the potential long-term toxic-
ity of Ln3+ doped UCNPs is another significant 
concern [64]. A thorough and systematic inves-
tigation is highly needed to reveal their biocom-
patibility and biostability. 

Stem cell tracking with nanoparticle-aided 
photoacoustic imaging

Photoacoustic (PA) imaging, also called opto-
acoustic imaging is a new biomedical imaging 

modality based on photoacoustic effect, in 
which the absorbed energy from the light is 
transformed into kinetic energy of the sample 
through energy exchange processes. It is a 
hybrid modality, combining the high-contrast 
and spectroscopic-based specificity of optical 
imaging with the high spatial resolution of ultra-
sound imaging. In essence, a PA image is an 
ultrasound image in which contrast depends on 
the optical absorption of samples. Thus biologi-
cal tissues with optical properties such as 
hemoglobin could be visualized with PA 
imaging.

As stem cells usually don’t have obvious optical 
properties, in PA imaging, they are usually 
labeled with biocompatible materials with opti-

Figure 4. The backscatter (B-mode) (gray color) and PA (red color) images of the intramuscular injection of a posi-
tive control (0.7 nM SiGNRs; left), negative control (0 nM SiGNRs (no cells); middle), and 800 000 SiGNR-labeled 
MSCs (right) all in 50% matrigel/PBS into hind limb muscle of an athymic mouse. Imaging sequence is as follows: 
A-C. preinjection; D-F. needle insertion and position; G-I. postinjection; J-L. needle removal and final imaging, and 
M-O. contrast enhancement to illustrate increased signal. Pixels (signals) increased relative to preinjection image 
were coded yellow. Note significant signal increased in M and O at injection site relative to A and C (dashed circles 
highlight injection site). Also, note low signal in negative control (N). Scale bar in M and intensity scale in L and O 
applies to all images. The “b” in all panels indicated bone and the red dashed circle in J, K, L indicated that the 
injection bolus could also be seen with B-mode ultrasound. Reprinted with permission from [68]. Copyright © 2012 
American Chemical Society.
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cal properties such as Au NPs or Au nanorods 
(NRs). In a recent study, hMSCs were pre-
labeled with 20 nm Au NPs before their incor-
poration into PEGylated fibrin gel [66]. Then 
fibrin gel was injected intramuscularly in the 
lateral gastrocnemius of an anesthetized Lewis 
rat. The contrast brought by Au NPs allowed the 
researchers to visualize the in vivo differentia-
tion and neovasularization of hMSCs using PA 
imaging. Au NRs, another attractive probe for 
PA imaging, have plasmon resonance absorp-
tion and scattering in the NIR region [67]. 
Jokerst et al used silica coated Au NRs (SiGNRs) 
to label and image hMSCs [68]. They found that 
the silica coating could dramatically increase 
the cellular uptake of SiGNRs (5-fold) without 
any change to the viability and function of 
hMSCs. Figure 4 showed the process of intra-
muscular implantation of SiGNR-labeled 
hMSCs to the hindlimb muscles of the mouse. 
PA imaging provides relative high spatial reso-
lution (340 nm) and temporal resolution (0.2 s), 
which allows the real time monitoring of stem 
cell after transplantation.

Stem cell tracking with nanoparticle-aided 
Raman or surface enhanced Raman spectros-
copy

The last technology we would like to discuss is 
Raman or surface enhanced Raman spectros-
copy (SERS) based imaging. Raman scattering 
is the inelastic scattering of photons by molecu-
lar bonds that utilize the fact that every chemi-
cal bond in a molecule has a characteristic 
vibrational energy. This “molecular fingerprint” 
allows the nondestructive and label-free imag-
ing of biological molecules such as DNA and 
protein in cells and tissue. In comparison to 
infrared (IR) and nuclear magnetic resonance 
(NMR) spectroscopy, Raman spectroscopy is 
not affected by the presence of water. However, 
Raman scattering from the natural molecules 
produces a very weak signal which is usually 
approximately 12-14 orders of magnitude 
weaker than fluorescence [69]. SERS could be 
used to further enhance the signal. Although 
Raman spectroscopy and SERS have been 
widely used from imaging to diagnoses [70-77], 
it is relatively a new direction to track stem cells 
with those techniques.

Stem cell tracking with nanoparticle-aided Ra-
man imaging

Spontaneous Raman spectroscopy has been 
wildly used for monitoring the differentiation of 

human embryonic stem cells (hESC) [78-80], 
adult stem cells [81], and neural stem cells [80] 
due to the spectral characteristics of different 
types of cells. Notingher et al observed a clear 
reduction in DNA (786 cm-1 Raman peaks) and 
RNA (813 cm-1 Raman peaks) during living 
murine embryonic stem (ES) cell differentiation 
(over 16 days of differentiation) [78]. Chan et al. 
demonstrated specific Raman spectra could 
distinguish undifferentiated hESC from hESC-
derived cardiomyocytes and human fetal left 
ventricle cardiomyocytes [79]. These results lay 
the foundation for the development of single 
cell Raman spectroscopy as a systematic meth-
od for sorting cardiomyocytes derived from 
reprogrammed, embryonic or adult stem cells 
for future cell-based heart therapies [79]. 
Spectral variations assigned to glycogen have 
also been reported for hESCs maintained under 
normal growth condition in vitro [82, 83]. In 
addition, Raman spectroscopy has been 
employed to monitor osteoblast differentiation 
and in vitro mineralization capacity of MSC and 
osteoprogentior cells [84, 85]. Cultured normal 
and abnormal stem cells including normal 
hESC, karyotypically abnormal hESC, normal 
and transformed hMSC can be identified by 
Raman spectroscopy. The changes of intensity 
peaks from phenylalanine (1005 cm-1), cyto-
chrome C (1128 cm-1), protein, DNA/RNA, lipid 
in normal and abnormal stem cells show that 
Raman spectroscopy provides an alternative 
method allowing screening of cultured stem 
cells from abnormalities (abnormal and trans-
formed stem cells) prior to cell transplantation 
[86]. 

As mentioned above, the fingerprint character-
istics of Raman spectroscopy provides a way to 
distinguish stem cell types, differentiation pro-
cesses, and abnormalism (chromosomal insta-
bility, development of cell lines, in vitro replica-
tive senescence and etc). Statistic methods 
such as principal component analysis and lin-
ear discriminant analysis are usually required 
for the spectra analysis. However, due to the 
long acquisition time (normally several minutes 
for each Raman spectrum and hours for a sin-
gle cell imaging), tracking the fate and the func-
tion of stem cells in vivo based on its intrinsic 
Raman information remain significant challeng-
es [82]. Alternatively, if the Raman signal of cer-
tain probes within the cell is strong enough for 
fast imaging, tracking stem cell based on 
Raman signal could eventually be practical.
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Unlike fluorescent imaging, Raman imaging 
does not suffer from photobleaching and auto-
fluorescence background interference once 
NIR excitation is used. Among various NP-based 
contrast agents, single-walled carbon nano-
tubes (SWNTs) show an intense intrinsic Raman 
peak (G band at 1593 cm-1) produced by the 
strong electron photon coupling that causes 
efficient excitation of tangential vibration in the 
nanotubes quasi one-dimensional structure 
upon light exposure [87]. Strong and narrow 
signal of SWNTs not only enables fast mapping 
(with integration time of 0.1 s for each mapping 
point) but also provides easy differentiation 
from the tissue autofluoresence. So far SWNTs 
have been successfully used for specific tumor 
targeting in vivo within various tumor models 
[88-90] and whole-body, deep-tissue, small-
animal imaging [91]. They are chemical and 
photo stable, and can be used for long-term 
tracking and imaging in biological systems [92]. 
Wang et al. found the protamine and PEG func-
tionalized SWNTs (naturally accompany with 
Fe/Co metallic nanoparticles come from syn-
thesis methods) were allowed to track hMSCs 
without interfering their proliferation and differ-
entiation. Triple model Raman/MRI/PAT imag-
ing of SWNT-labeled hMSCs was further dem-
onstrated in living mice (Figure 5) [93]. 
Moreover, SWNTs with different isotope compo-

sitions (C12-SWNTs and C13-SWNTs) display 
well-shifted Raman G-band peaks (C12-SWNTs 
at around 1590 cm-1 and C13-SWNTs at around 
1528 cm-1) [94]. This character enables them 
to be potentially used for multiplex tracking of 
different types of stem cells which are injected 
simultaneously.

Stem cell tracking with nanoparticle-aided 
surface enhanced Raman spectroscopy

Besides Raman spectroscopy, imaging with 
SERS has also gained significant interest over 
the last several years [95]. SERS is a phenom-
enon that the Raman scattering from a mole-
cule is enhanced by many orders of magnitude 
due to its proximity to a metal surface (usually 
gold and silver) with surface plasmon efficiently 
coupling the energy of the incoming laser light 
[96]. Normally, two different methodologies, 
direct detection (with metallic NPs as SERS 
substrates for label-free detection of the ana-
lyte) and indirect detection (biotargeted 
research with SERS labels) are used for cell and 
biomedical research.

Similar to Raman spectroscopy, direct detec-
tion of SERS provides vibration information of 
stem cell while enhancing the signal sensitivity. 
By labeling mESC with Au NPs, Sathuluri and 

Figure 5. In vivo triple-modal imaging of SWNT-labeled hMSCs: unlabeled and SWNT-labeled hMSCs (10 nM of 
SWNTs during labeling) were subcutaneously injected into the back of a nude mouse before imaging. A. In vivo 
T2-weighted MR image. Arrows pointed to the sites where unlabeled (left) and SWNT-labeled (right) hMSCs were 
injected; B, C. In vivo Raman images of unlabeled (B) and SWNT-labeled (C) hMSCs; D, E. In vivo PAT images of unla-
beled (D) and SWNT-labeled (E) hMSCs. The circles highlighted the locations were hMSCs were injected. PA signals 
in the rectangle highlighted in D were from a blood vessel crossing this area. Reprinted with permission from [93]. 
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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colleagues demonstrated that specific SERS 
fingerprint information of undifferentiated sin-
gle cells, embryoid bodies and terminally differ-
entiated cardiomyocytes has unique SERS fin-
gerprints based upon nucleic acids, 
mitochondria, proteins, and cardiomyocytes 
adsorbed onto metal NPs. This information 
reflects the molecular changes accompanying 
with metabolic activities in each stage of dif-
ferentiation [97].

By labeling cells with Raman probes (molecules 
with significant Raman activity) and biospecific 
antibodies, an indirect method to visualize the 
distribution of certain proteins within living cell 
can be engineered. The expressed proteins, 
including CD34, Sca-1, and SP-C in bronchioal-
veolar stem cells (BASCs) in the murine lung 
were quantitatively compared based on multi-
functional NPs, namely fluorescent-surface-
enhanced Raman spectroscopic dots (F-SERS 
dots). Conjugated with BASC-specific markers, 
with the dual signal detection model, F-SERS 
dots provided multiple target analysis and clari-
fied the effective stem cell specific markers 
and therapy strategies for disease [98]. In addi-
tion to multiplex targeting, magnetic NP-based 
surface enhanced Raman spectroscopic dots 
(M-SERS Dots) could be used as a sorting sys-
tem effectively isolate BASCs [99].

Perspectives and conclusion

With the growing demands of regenerative ther-
apy, and the current lack of a sensitive and yet 
efficient method of tracking transplanted cells, 
there is an urgent need for the development of 
novel imaging technologies which allow the 
real-time and non-invasive monitoring of trans-
planted stem cells for their survival, biodistribu-
tion, migration, and differentiation. In compari-
son to other imaging modalities like MRI, PET, 
and CT, optical imaging is cost-effective, time-
efficient, and are thus more accessible for the 
majority of researchers during the pre-clinical 
studies with small animals. In this mini-review, 
we discussed three modalities of NP-aided 
optical imaging that have been widely used for 
stem cell imaging and tracking.

However, we should be aware that opportunity 
and risk always co-exist. Several concerns 
about using NPs for stem cell tracking should 
be addressed before they are routinely used in 
clinical treatments. Specifically, those challeng-

es include contrast agents transfer, signal dilu-
tion, interference from tissue autofluorescence, 
and inability to gather information on cellular 
functions [14, 100].

In contrast agents (i.e. NPs) transfer, NPs 
leaked out from labeled cells due to normal cell 
processes (e.g. cell death and exocytosis) and 
were able to re-enter into adjacent cells over 
time. The possibility of NPs leakage, a common 
challenge in cell tracking studies, leads to pos-
sible uptake of NPs by surrounding cells and 
thus introduces false positive results [101]. For 
example, stem cells were labeled with QDs in 
order to noninvasively track their distribution 
after being seeded on scaffolds and trans-
planted into a nude rat that was critically sized 
femoral defects. As excepted, clear fluores-
cence was observed at implantation sites; how-
ever, signals were also observed at sites treat-
ed with acellular QD-free scaffolds after surgery 
for 7-10 days [102]. Sarah et al demonstrated 
the transfer of QDs from labeled hMSCs to 
adjacent unlabeled cells in an in vitro co-cul-
ture system. Their leakage was further exam-
ined in vivo by transplantation of QDs-labeled 
hMSCs to an animal model of spinal cord injury, 
which indicated the deposition of QDs into the 
host cells after 1 week was probably due to 
their active excretion from labeled cells or the 
release from the dead cells [36]. These studies 
show that the leakage of NPs from labeled cells 
must be tested to avoid false positive results. 
Meanwhile, valid conclusion of cell localization 
cannot be drawn only from in vivo imaging data. 
It is also expected that modifications (e.g. cat-
ionic lipids [32]) of NPs with some specific 
ligands which eliminate their leakage over a 
long period of time could provide significant 
potential in long term in vivo imaging.

Signal dilution, another issue for long-term in 
vivo stem cell tracking, is the signal loss result-
ed from cell division and exocytosis. For exam-
ple, Sarah et al found that the fluorescence of 
QDs labeled hMSCs fell progressively with cell 
divisions. After four subculturing passage, the 
fluorescence intensity decreased by more than 
80% [36]. One approach is to genetically engi-
neer the cell to produce NPs [103, 104], which 
would be similar to the expression of green fluo-
rescence protein. However, it is still unclear 
whether genetic engineering of cells will have 
any long-term consequence on cell phenotype 
and function. Another approach is to enhance 
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the signal of NPs which will still detectable after 
multiple cell divisions [105]. Single NP optical 
imaging technique holds the promise of in vivo 
stem cell tracking even when only one NP is left 
in one stem cell after cell divisions. The real 
time tracking of the transport and random walk 
of single NP (gold and silver) in zebrafish embry-
os have been achieved by Xu’s group [106, 
107].

Optical imaging modalities except PA imaging 
usually suffer from the background interfer-
ence of autofluorescence of tissues [108]. NPs 
with tunable emission wavelength of light either 
generated from inherent properties (QDs) or 
encapsulated fluorescence probe (C-Dots) can 
avoid the autofluorescence background, which 
can also be reduced by UCNPs for fluorescence 
imaging and SWNTs for Raman imaging using 
NIR excitation light.

Although the location of stem cells post trans-
plantation could be tracked in vivo with good 
temporal and spatial resolution, the functions 
(e.g. differentiation of stem cells) of the trans-
planted cells are also important. In the clinical 
treatments, if the viability and function of trans-
planted stem cells can be obtained simultane-
ously, it will help the physician to make a deci-
sion without the need for multiple biopsies. 
One potential approach is to design NP-aided 
sensors, which can respond to the secreted 
chemicals or expressed chemokines/cytokines 
during cell differentiation, the local pH changes 
during cell apoptosis and death. Another 
approach is using Raman and SERS imaging 
modalities to simultaneously track stem cells in 
vivo and record fingerprint spectrum of certain 
chemicals indicated different cellular condi-
tions and functions.
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